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Abstract 
Background A lterations in the composition of the lung 
microbiome associated with adverse clinical outcomes, 
known as dysbiosis, have been implicated with disease 
severity and exacerbations in COPD.
Objective T o characterise longitudinal changes in the 
lung microbiome in the AERIS study (Acute Exacerbation 
and Respiratory InfectionS in COPD) and their 
relationship with associated COPD outcomes.
Methods  We surveyed 584 sputum samples from 101 
patients with COPD to analyse the lung microbiome at 
both stable and exacerbation time points over 1 year 
using high-throughput sequencing of the 16S ribosomal 
RNA gene. We incorporated additional lung microbiology, 
blood markers and in-depth clinical assessments to 
classify COPD phenotypes.
Results T he stability of the lung microbiome over time 
was more likely to be decreased in exacerbations and 
within individuals with higher exacerbation frequencies. 
Analysis of exacerbation phenotypes using a Markov 
chain model revealed that bacterial and eosinophilic 
exacerbations were more likely to be repeated in 
subsequent exacerbations within a subject, whereas 
viral exacerbations were not more likely to be repeated. 
We also confirmed the association of bacterial genera, 
including Haemophilus and Moraxella, with disease 
severity, exacerbation events and bronchiectasis.
Conclusions  Subtypes of COPD have distinct 
bacterial compositions and stabilities over time. Some 
exacerbation subtypes have non-random probabilities 
of repeating those subtypes in the future. This study 
provides insights pertaining to the identification of 
bacterial targets in the lung and biomarkers to classify 
COPD subtypes and to determine appropriate treatments 
for the patient.
Trial registration number R esults, NCT01360398.

Introduction
COPD is a chronic inflammatory disorder resulting 
in irreversible decline in lung function as a conse-
quence of inhalation of tobacco smoke or other 
irritants.1 One of the difficulties in treating and 
managing COPD is the heterogeneity of this 

complex disease in terms of severity, progression, 
exercise tolerance and nature of symptoms.2 3 This 
complexity is also evident in acute exacerbations 
of COPD (AECOPD), which are transient and 
apparently stochastic periods of increased COPD 
symptoms requiring additional medical treatment 
and, often, hospitalisation.4 Known subtypes of 
exacerbations are classified by the nature of key 
triggers including bacterial or viral infections, and/
or high eosinophil levels, and these events are typi-
cally treated with a combination of antibiotics and 
steroids in a non-specific manner.5

The lung microbiome represents an emerging 
opportunity to understand COPD heteroge-
neity and exacerbations. The healthy human 
lung contains a variety of commensal microbiota 
throughout the respiratory tract, and these bacteria 
can show substantial heterogeneity between indi-
viduals, across regions within the lung and over 
time within an individual.6–8 Alterations in the taxo-
nomic composition of the lung microbiome, known 
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measurements over 1 year.
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as dysbiosis, have been associated with multiple lung diseases, 
and in particular may play a functional role in disease severity 
and exacerbations in COPD.6 9

Multiple studies have reported differences in the microbiome 
between healthy and disease states, differences correlated with 
both COPD severity and exacerbation states within an indi-
vidual, and interactions between the microbiome and host 
immune response.7 9–12 Previous studies have observed changes 
in the lung microbiome between AECOPD events relative to 
stable events,9 13–15 but the stability of the lung microbiome 
longitudinally sampled over longer time frames and multiple 
exacerbations remains poorly understood.

The Acute Exacerbation and Respiratory InfectionS in 
COPD (AERIS) observational cohort study allows for a unique 
examination of the lung microbiome with a rich set of micro-
biology and clinical measurements longitudinally observed in 
stable time points and exacerbation events in 104 patients with 
COPD (a subset of the full cohort of 127 patients).16 17 Results 
have already been described for subjects followed over 1 year 
for the primary study objective (estimation of the incidences 
of all-cause AECOPD and AECOPD with sputum containing 
bacterial pathogens detected by culture) and for secondary 
objective results on the incidences of bacterial and viral patho-
gens detected in AECOPD by PCR and in stable-state COPD 
by culture (bacteria only) and PCR.17 Here we present 1-year 
data from the 16S rRNA gene sequencing analysis of the 
AERIS patient cohort. Using this deeply phenotyped cohort, 
we tested whether subtypes of COPD and AECOPD have 
different lung microbiome profiles and whether these compo-
sitions are stable over multiple clinical visits, particularly at 
exacerbations.

Methods
Study design
The AERIS study (​ClinicalTrials.​gov: NCT01360398) was a 
prospective, observational cohort study based at University 
Hospital Southampton (UHS). The study assessed the contribu-
tion of changes in the COPD airway microbiome to the incidence 
of AECOPD in patients aged 40–85 years with a confirmed 
diagnosis of COPD, categorised as moderate, severe or very 
severe,1 16 recruited from UHS and referring practices from June 
2011 to June 2012. The study protocol has been described in 
detail.16 AERIS was conducted in accordance with the Decla-
ration of Helsinki and Good Clinical Practice. All participants 
provided written informed consent. The protocol summary is 
available at www​.gsk-​clinic​alst​udyr​egis​ter.​​com (study identifier, 
114378).

Processing of sputum samples
All study procedures for sputum sampling, the detection of exac-
erbations and pathogen detection were described previously.16 17 
Briefly, patients were followed monthly in the stable state and 
reviewed within 72  hours of onset of AECOPD symptoms. 
Sputum samples were obtained by spontaneous expectoration 
or induced and were processed according to standard methods 
(and were collected prior to additional antibiotic treatment for 
the exacerbation). Bacterial respiratory pathogens were iden-
tified using techniques described in the online supplementary 
methods.

COPD exacerbation subtypes were classified using previously 
defined criteria.5 The online  supplementary methods provide 
more details on bacterial, viral and eosinophilic subtype classifi-
cation and DNA extraction.

16S rRNA gene amplification and sequencing
The V4 hypervariable region of the 16S rRNA gene was 
amplified with specific primers (515F/806R), including Illu-
mina sequencing adapters and sample-specific barcodes, and 
sequenced on an Illumina MiSeq sequencer (see online supple-
mentary methods). Sequence data are deposited in the National 
Center for Biotechnology Information’s Sequence Read Archive 
(SRA) (BioProject PRJNA377739, SRA accession SRP102629).

16S rRNA gene sequence analysis
Paired-end sequence reads were filtered for quality, assembled 
using PEAR (paired-end read merger)18 and then processed using 
the QIIME pipeline19 (see online supplementary methods). The 
flow chart for the analysis of FASTQ sequence files is shown 
in online supplementary figure S1. Because these samples were 
generated from low biomass material, we performed experi-
mental and bioinformatics controls and concluded that the prob-
ability of contaminating DNA amplicons was low (online 
supplementary figure S2).

Samples were rarified to a fixed depth (30,419 reads) corre-
sponding to the fewest number of reads in a sample which 
was sufficiently amplified and sequenced. Shannon diversity 
(evenness of bacteria within a sample), relative abundances 
and UniFrac distances (fraction of the genetic distance that is 
unique for one of the compared samples) were calculated using 
QIIME. Comparisons of Shannon diversity and relative abun-
dance between non-longitudinal groups were performed with 
Mann-Whitney or Kruskal-Wallis tests (after averaging repeated 
measures within a subject at that condition to a single value), 
and comparisons of UniFrac distances within and between 
groups were performed with a one-way analysis of variance 
after randomly dividing individuals into equally sized subsets for 
each comparison group and only using one distance measure-
ment from each individual to ensure independence of the test. 
Longitudinal comparisons of relative abundances between stable 
and exacerbation events were made using a linear mixed-effects 
model and treating the subject as a random effect. We assumed 
that multiple exacerbations within an individual are independent. 
Additional information on the statistical analyses is described in 
the online supplementary methods.

Markov chain modelling
In order to describe the probability of each exacerbation repeating 
the same phenotype in its subsequent exacerbation, longitudinal 
exacerbations within individuals were modelled as a Markov 
chain. Only subjects with multiple exacerbations were included 
and each exacerbation type was modelled as a state classified 
using the same criteria5 or modifications as listed. Transition 
probabilities were calculated by counting the relative frequency 
of observed transitions between temporally adjacent exacerba-
tions within an individual. Differences in Markov chain tran-
sition frequencies between observed frequencies and expected 
independent frequencies from incidence of each phenotype were 
tested with a χ2 test, and comparisons of frequencies between 
nodes were tested with a Fisher’s exact test.

Results
Population and sampling
Samples for 16S rRNA gene sequencing were collected from 104 
subjects with available sputum samples in the first year of the 
study (figure 1). Characteristics of the cohort used for micro-
biome analysis were similar to those of the full cohort17 (table 1 
for summary) (online Supplementary file 3 for full information). 
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Of the 104 subjects included, 101 had at least one sputum 
sample, which was  successfully amplified and sequenced for 
inclusion in the microbiome analysis. Comparison of the nature 
of sputum sampling on microbial profiles revealed no significant 

differences between spontaneous and induced samples (online 
supplementary figure S3).

Lung microbiome composition shows differences with COPD 
severity
An analysis of the relative abundances of bacterial taxa identified 
in the set of 584 microbiome samples passing quality control 
revealed bacteria commonly observed in the lung microbiome, 
with Firmicutes, Proteobacteria and Bacteroidetes representing 
the three most abundant phyla, and Veillonella, Haemophilus, 
Streptococcus, Prevotella and Moraxella representing the five 
most abundant genera (online supplementary figure S4 and 
Supplementary file 4). The number of successfully sequenced 
microbiome sputum samples averaged 5.7 per subject, with 2.1 
collected during an exacerbation.

We first compared the composition and diversity in observed 
bacteria (measured by the Shannon Diversity Index) of the 
lung microbiome with trends observed in previous studies. 
As described in other studies describing the lung microbiome 
in COPD, we observed a shift towards increasing Proteobac-
teria with increasing disease severity.20 21 More specifically this 
shift included a significant increase in Haemophilus (Proteo-
bacteria) and decreases in Prevotella (Bacteroidetes) and Veil-
lonella (Firmicutes), as well as decreased Shannon diversity (Padj 
<0.05 for each, Mann-Whitney) with increasing disease severity 
(figure 2A). Current smokers did not show significant differences 
in diversity or composition (online supplementary figure S5).

Changes in the lung microbiome in exacerbation states
Testing for differences between stable and exacerbation states 
allows for inclusion of longitudinal data from patients with 
samples at both visit types with a linear mixed-effects model. 

Figure 1  Flow chart of subject enrolment, sputum sampling and selection samples for microbiome analysis for AERIS (Acute Exacerbation and 
Respiratory InfectionS in COPD).

Table 1  Characteristics of the cohort for microbiome analysis

Characteristics N=101

Age (years) at enrolment, mean±SD 67.1±8.4

Female sex, n (%) 42 (41.6)

Body mass index at enrolment, mean±SD 27.6±5.4

Current smokers, n (%) 40 (39.6)

Medication for COPD, n (%) 101 (100)

 �  Inhaled corticosteroids, n (%) 94 (93.1)

COPD status, GOLD stage, n (%)

 �  Mild 0 (0)

 �  Moderate 45 (44.6)

 �  Severe 40 (39.6)

 �  Very severe 16 (15.8)

Bronchiectasis status, n (%) 10 (9.9)

Number of exacerbations experienced by subject in 12 months, 
n (%)

 � One exacerbation 31 (22.0)

 � Two exacerbations 23 (29.1)

 � Three or more exacerbations 47 (19.7)

FEV1 after bronchodilator use (% predicted), mean±SD 47.1±12.8

GOLD, Global Initiative for Chronic Obstructive Lung Disease; N, number of subjects 
in the microbiome cohort; n, number of subjects corresponding to characteristics. 

https://dx.doi.org/10.1136/thoraxjnl-2017-210408
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The differences between these states were less pronounced than 
differences between disease severities. No significant changes 
in Shannon diversity or core taxa relative abundances were 
observed, with the exception of the genus Moraxella (Proteobac-
teria), which showed a significant increase in relative abundance 
in exacerbations (P=0.0012) (figure 2B). To confirm these results 
we also used a paired t-test to compare matched stable and exac-
erbation events within an individual. Again, Moraxella showed a 
significant increase in exacerbation (P=0.0227) (figure 2C). The 
probability of a sample being observed in an exacerbation event 
compared with stable is 2.6-fold higher if the relative abundance 
of Moraxella is greater than 10% (95% CI 2.1 to 38.1).

Clinical and microbiology data have been used as biomarkers 
to stratify subtypes of COPD and AECOPD,5 and some of these 
have revealed distinct lung microbiome profiles.9 We compared 
the composition of previously defined exacerbation subtypes 
characterised by sputum potentially pathogenic bacterial culture, 
viral PCR or eosinophil percentage. The composition of bacterial 
exacerbations was dissimilar from those of viral and eosinophilic, 

with a higher proportion of Proteobacteria in bacterial exacer-
bations (online supplementary figure S6). Another classification 
of COPD with a unique microbiome profile is that of bronchiec-
tasis, where we observed a substantial increase in Haemophilus 
(P=1.2E-5), which was evident in both stable and exacerbation 
events (online supplementary figure S7).

Longitudinal stability of the lung microbiome
Longitudinal sampling within the AERIS study allowed us to 
assess the relative stability of the lung microbiome within an indi-
vidual. To analyse temporal microbiome stability, we computed 
UniFrac distances (weighted and unweighted) between all pairs of 
microbiome profiles within a subject, and stratified results based 
on comparisons between stable–stable, stable–exacerbation and 
exacerbation–exacerbation comparisons. This metric measures 
the similarity in bacterial composition between samples, and 
higher distances indicate more dissimilar communities. In all 
groups, we found UniFrac distance to be significantly lower 

Figure 2  Microbiome differences in disease severity and stable or exacerbation visits. (A) The Shannon Diversity Index and relative abundances of 
bacteria labelled at the phylum and genus level of samples grouped by COPD disease severity. The bar graphs show the mean relative abundance at 
the subject level after averaging for multiple measures for that subject. Significant differences in relative abundances between groups are labelled 
with arrows indicating the relative change in abundance; *P<0.05 (Mann-Whitney). (B) The same alpha diversity and relative abundances grouped 
by stable or exacerbation status showed fewer differences overall except for Moraxella; *P<0.05 (linear mixed-effects  model). (C) Paired analysis of 
changes in relative abundances of key genera between matched stable and subsequent exacerbation events; *P<0.05 (paired Student’s t-test).

https://dx.doi.org/10.1136/thoraxjnl-2017-210408
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within an individual compared with distances between indi-
viduals (figure 3A,B). This result suggests that individuals have 
somewhat distinct lung microbiomes from each other. More-
over, weighted UniFrac distances were significantly higher for 
exacerbation–exacerbation comparisons relative to stable–stable 
comparisons (P<0.05) (comparisons using unweighted UniFrac 
distance not significant) (figure 3B). This measure-specific result 
suggests that dysbiosis events in the lung may typically result 
from changes in the relative abundance of pre-existing bacteria 
(detected by weighted UniFrac) rather than complete removal or 
appearance of novel species (detected by unweighted UniFrac).

Moreover, given that weighted UniFrac distances involving 
exacerbations were higher than stable–stable, it appears exac-
erbation events are most likely to be associated with dysbiosis 
within an individual. While the lung microbiome may have a 
degree of within-subject stability, there remains a large degree 
of variation between longitudinal samples, especially when 
comparing an individual’s exacerbation events (see online 
supplementary figure S4B). One possible explanation is that 

the frequency of exacerbation events experienced by an indi-
vidual may contribute to destabilisation of the lung microbiome, 
such that frequent exacerbators may be associated with greater 
dysbiosis than infrequent exacerbators. To evaluate this hypoth-
esis, we analysed an individual’s UniFrac distance as a function 
of exacerbation frequency. Because of incomplete sampling of 
all exacerbation events, we conservatively estimated exacerba-
tion frequency in two ways, by counting total reported exac-
erbation events and by the proportion of microbiome samples 
obtained from an exacerbation event relative to the total number 
of microbiome samples obtained for that individual. We found 
that the lung microbiome became more distinct with greater 
exacerbation frequency using either definition, affecting bacte-
rial abundance in both stable and exacerbation states (r=0.14, 
P<0.001, Pearson) (figure 3C) (online Supplementary file 5). To 
identify specific taxa associated with exacerbation frequency, we 
computed the correlation between each taxon’s average abun-
dance with exacerbation frequency across subjects. The genus 
with the highest positive correlation was Moraxella (r=0.23, 

Figure 3  Lung microbiome stability. (A) Weighted UniFrac distances measured within and between subjects and comparing stable and exacerbation 
events after randomly dividing individuals into equal-sized subsets to ensure independence; *P<0.05, **P<0.01 (one-way analysis of variance 
(ANOVA)). (B) Unweighted UniFrac distances measured within and between subjects and comparing stable and exacerbation events on the same 
subsets; **P<0.01 (one-way ANOVA). (C) Weighted UniFrac distances for all within-subject samples as a function of exacerbation frequency defined 
by the number of exacerbation events and the fraction of samples within an individual taken during an exacerbation. (D) Paired weighted UniFrac 
distances between an exacerbation sample and its previous stable sample from that subject. Exacerbation subtypes labelled as B (bacterial), V 
(viral), E (eosinophilic), other or mixed. There was not a significant difference in UniFrac distances between these groupings of stable-to-exacerbation 
transitions (P=0.38, one-way ANOVA). EXA, exacerbation.
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P=0.016, Pearson) (online supplementary figure S8), consistent 
with our observation of its increased abundance in exacerba-
tions relative to stable states. In contrast, the genus Lactoba-
cillus showed the most negative correlation with exacerbation 
frequency (r=−0.37, P=0.02, Pearson).

To test whether any of the AECOPD phenotypes are more 
likely to experience dysbiosis, or large changes between stable 
and exacerbation events, we performed a paired analysis 
comparing the weighted UniFrac distance between each exacer-
bation and its previous stable event in that subject (figure 3D). 
While 18% of all matched stable–exacerbation transitions have 
a UniFrac distance greater than 0.5, and some of the largest 
occurred in bacteria-driven exacerbations, none of the exacer-
bation classifications had significantly higher changes in UniFrac 
distance compared with exacerbations lacking that phenotype. 
With 46% of transitions having a UniFrac distance less than 
0.25, many exacerbations show little evidence of dysbiosis.

Stochastic modelling of COPD exacerbation phenotypes
Having observed that some COPD exacerbation phenotypes had 
different lung microbiome profiles, we used the longitudinal 
attributes of the AERIS study to model the exacerbations expe-
rienced by an individual over time as a stochastic process. We 
employed a Markov chain analysis and defined each exacerba-
tion event as a discrete state of being positive or negative for 
bacterial, viral or eosinophilic status independently for each type 
(inclusive of mixed-type exacerbations). To estimate the state 
transition probabilities for each Markov model, we counted the 
number of exacerbations of a given phenotype that were chrono-
logically followed by another exacerbation with the same pheno-
type (figure 4A). We found significantly non-random transition 
probabilities for the bacterial and eosinophilic Markov models 
with P values of 9.25E-11 and 1.42E-3 (χ2 test, df=3), respec-
tively. In contrast, the viral Markov model was not significant 
(P=0.141). These results indicate that for bacterial and eosin-
ophilic exacerbations, the phenotype of the next exacerbation 
experienced by an individual may be more likely to repeat the 
prior exacerbation phenotype than expected by chance. Inter-
estingly, we did not detect a significant difference in the times 
between exacerbations for any of the Markov transitions (online 
Supplementary file 2).

Next, a Markov model of bacterial exacerbation phenotype 
was built to examine the potential role of Haemophilus influ-
enzae (HI). Most of the Haemophilus observed from sputum is 
likely non-typeable Haemophilus influenzae (NTHI) a non-cap-
sulated bacterium that commonly infects the airways and whose 
carriage is commonly associated with COPD and inflammation.12 
In our analysis of microbiome profiles in different COPD pheno-
types, Haemophilus was the dominant genus observed in patients 
with bronchiectasis, both in stable and exacerbation events. We 
hypothesised that patients with a positive HI culture in a posi-
tive bacterial exacerbation may be even more likely to repeat 
an HI-positive culture in their next exacerbation. The Markov 
chain of bacterial exacerbations was modified by dividing the 
bacterial-positive exacerbation state in two separate states of 
positive and negative HI. After calculating the new transition 
probabilities, this Markov chain was non-random (P=1.42E-12, 
χ2 test, df=5), and the HI-positive bacterial exacerbations were 
most likely to repeat a subsequent HI-positive exacerbation and 
less likely to transition non-bacterial exacerbation compared 
with HI-negative bacterial exacerbations (P=2.62E-4, Fisher’s 
exact test) (figure 4B). The repetition of HI-positive exacerba-
tions suggests a persistence of Haemophilus in certain subtypes 

of COPD over time and observed through multiple exacerba-
tions. We also expanded the Markov chain analysis of eosino-
philic exacerbations by dividing the eosinophilic-positive state 
into high eosinophilic (>6% in sputum) and moderate eosin-
ophilic (>3% and <6%) positive exacerbations.22 The revised 
model showed that the higher the eosinophil levels in the exacer-
bation the more likely it was to repeat the same high eosinophil 
phenotype (P=0.02, Fisher’s exact test) (online supplementary 
figure S9).

Discussion
This study has confirmed previous findings of lung microbiome 
heterogeneity with distinct patterns of bacterial abundance 
in COPD subtypes,9 20 21 and, for the first time, described the 
stability of the lung microbiome in COPD and the non-random 
nature of exacerbations experienced by an individual over time 
by modelling exacerbations as a Markov chain. Our analysis 
shows that grouping samples by specific phenotypes could yield 
distinct microbiome populations or probabilities of repeating 
that type of exacerbation. These subtypes underscore the impor-
tance of sample size and stratification in generating reproducible 
results in studying the microbiome of a heterogeneous disease.

Using the unique repeated longitudinal sampling of the 
AERIS study design, we found that the lung microbiome shows 
significantly less variation within an individual than between 

Figure 4  Markov chain analysis of transitions between exacerbation 
states. (A) Markov chain analysis from longitudinal exacerbation 
sampling within individuals identifies non-random transition 
probabilities for bacterial and eosinophilic exacerbations, but not viral. 
The size of each node is proportional to abundance of that exacerbation 
type, and the width of the edges is proportional to the transition 
probabilities. (B) Markov chain analysis of the bacterial exacerbation 
identifies significantly different transition probabilities for bacterial 
exacerbations that were positive or negative for the presence of 
Haemophilus influenzae (HI). 
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individuals, indicating some degree of temporal stability of an 
individual’s lung microbiome. Nevertheless, we also observed 
notable dysbiosis events within individuals. Exacerbations 
within individuals showed higher microbiome variability than 
stable time points, and frequent exacerbators are more likely 
to experience significant changes in lung microbiome patterns. 
These findings will require further examination to determine 
the causes and consequences of lung dysbiosis, as likely variables 
include bacterial composition, host immune system and the use 
of antibiotics. One appealing model is that lung microbiome 
composition can functionally drive host inflammatory signals via 
bacterial proteins or metabolites; specific examples have already 
been identified, and models to investigate their mechanism are 
being created and tested.9 11 23 24

An appreciation of an individual’s lung microbiome may 
influence the future clinician’s choice of appropriate therapy, 
especially for exacerbations that are commonly treated with 
antibiotics. The increasing prevalence of recurrent Clostridium 
difficile infections after antibiotic use has highlighted the risks of 
disrupting the healthy microbiome when treating primary infec-
tions.25 Therefore a move towards selective-spectrum antimi-
crobials, which may be less likely to disturb commensal species 
and hence minimise treatment-related risk of future infection 
or exacerbations, needs to be explored. The relationship of 
NTHI with bronchiectasis and its association with repeating 
bacterial exacerbations may represent a unique treatment chal-
lenge. Haemophilus is known to produce biofilms26 protecting 
it from the immune system and antibiotics, which may explain 
its persistence in these COPD subtypes and may offer another 
avenue for a therapeutic target. Biofilm formation is a compo-
nent of antibiotic resistance in Moraxella catarrhalis and Pseu-
domonas aeruginosa as well,27 indicating potentially common 
difficulties in eliminating pathogenic bacteria in the lung. The 
recurring motifs of key pathogenic bacteria such as Moraxella 
and NTHI identified in this and other COPD lung microbiome 
studies support the potential of a vaccine or targeted antibacte-
rial drug against these pathogens in order to minimise a wider 
disruption of the lung microbiome.

The ability to model exacerbation phenotypes as stochastic 
processes has important implications for diagnosis and treat-
ment of AECOPD if the phenotypes of future clinical events 
can be accurately predicted. Exacerbation events are typically 
diagnosed and treated as independent phenomena, as and when 
they are experienced by a patient with COPD.28 If clinical data 
from the previous exacerbation can inform the likely phenotype 
of the next event, it can enable a more rapid administration 
of the appropriate therapy.29 While bacterial and eosinophilic 
exacerbations are most likely to repeat the same phenotype 
in our Markov chain model, there is also evidence from other 
studies that viral infections may predispose the respiratory tract 
to subsequent secondary bacterial infections,30 indicating addi-
tional longitudinal relationships between the infections and 
colonisation of viruses and bacteria.

A major strength of this study is the longitudinal information 
within individuals over time at both stable and exacerbation 
time points, which has allowed for us to study the dynamics of 
the lung microbiome and its relationships with clinical pheno-
types in ways that have to date not been possible. While we 
have microbiome data sampled over 1 year in the study, they 
do represent a short period of time in the typical timeline of 
COPD progression. An analysis of how the stability of exacer-
bation phenotype probabilities or how microbiome diversities 
change over longer periods of time will require longer term 
studies.

A limitation of the study was the exclusive use of sputum 
as source material for 16S rRNA profiling. The diversity of 
microbiome compositions at different locations within the 
respiratory pathway was not fully represented. Sufficient 
sputum for microbiome analysis was not always available at 
every exacerbation or stable visit, which blinded the anal-
yses to these points in time. Samples in the study included 
both induced and spontaneous sputum, which may have 
confounding effects on the measurement of microbiome 
composition.31 Using sputum samples (which may contain 
relatively low abundances of bacterial DNA) increased the risk 
of sample contamination and warrants including additional 
negative controls.32 While massively parallel 16S rRNA gene 
sequencing is a powerful tool in surveying bacterial popula-
tions, using a single hypervariable region for PCR limited the 
resolution of our bacterial analysis to the genus level. This 
resolution prevented more subtle examination of meaningful 
differences in pathogenic versus non-pathogenic species or 
strains within the same genus, which can have very different 
effects on lung health and COPD (eg, HI compared with 
Haemophilus haemolyticus).33 However, HI-specific quantita-
tive PCR confirmed the high prevalence of this pathogen in 
the lung of AERIS subjects.17

A final caveat was that our study was conducted at a single 
site, which limited the geographical scope of the finding, but 
avoided the potential for additional confounding variables 
between different sites. This particular population limited 
our ability to explore the relations of the lung microbiome 
with different maintenance COPD medications as has been 
observed in other studies,13 34 as the vast majority of sampled 
participants (94 out of 101) were receiving inhaled cortico-
steroid treatment at the time of the study. It is worth noting 
that sputum samples from exacerbation events were collected 
before antibiotic treatment, which likely simplifies another 
confounding treatment variable. Interestingly, despite being a 
single-site study, many of our microbiome observations mirror 
trends observed in other studies. The changes in Moraxella 
abundance in exacerbations and different compositions of 
exacerbations mirror findings by Wang and colleagues.9 Of 
course, Moraxella dysbiosis can only explain part of the vari-
ance in lung microbiome abundance, as in both studies only 
a minority of exacerbation events show a substantial increase 
in Moraxella, indicating other factors are involved. Haemoph-
ilus, while generally more stable (especially in bronchiectasis), 
can change in relative abundance in a minority of subjects 
and may also explain some of the dysbiosis in bacteria-driven 
exacerbations. We and others have observed commensal lung 
bacteria that correlate with positive outcomes, including 
Lactobacillus. Lactobacillus is often overlooked in  the lung 
microbiome given its modest abundance compared with the 
previously mentioned taxa, but it has been reported to have 
anti-inflammatory effects in COPD35 and convey protection 
against viral infections.36 This study therefore raises inter-
esting questions around the role of manipulating the lung 
microbiome which go beyond the eradication of key patho-
gens to the broader consideration of correcting the dysbiosis 
associated with poor clinical outcomes.

Observational microbiome studies suffer from the weakness 
of identifying correlations between the microbiome and clin-
ical features, and therefore carry with them the temptation to 
confuse correlation with causation. Changes in the microbiome 
are not necessarily just a function of disease progression, but 
also of environment, medication and lifestyle factors, which 
can confuse the analysis.37 Management of COPD introduces 
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these same covariates, and importantly the recurrent use of 
antibiotics to treat exacerbations may have adverse conse-
quences by driving loss of diversity, which may lead to greater 
risk of future exacerbations or indeed to disease progression 
itself. Additional functional studies of how the lung micro-
biome interacts with the host immune system and metabolic 
milieu of the lung will be necessary to translate models into 
robust biomarkers to better target treatments and to identify 
new therapeutic strategies aimed at the microbiome.
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