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SUMMARY

The human gastrointestinal tract is resident to a vastly diverse microbial consortium that co-exists 

through strict rules of invasion, dominance, resilience and succession. While some members 

possess stronger capabilities for survival than others, each one retains a genome characteristic of 

their bacterial denomination which subsequently determines survival and ultimately the 

composition of a human gut microbiome. Collective evidence advocates the concept of gut 

microbiota modulation via dietary compounds, with or without nutraceutical supplementation. 

However, consistent reports of strong individuality in responsiveness suggest that initial 

composition of host microbiota mediates the effect of nutrition modulation. There is also a strong 

potential for the interaction between mind and microbe to influence responsiveness, although 

mechanistic understanding of these complex exchanges remains in its infancy at best. Synthetic 

stool for FMT is a next-generation microbiome-therapy shown effective in treating C.difficile 
[417] which could provide a feasible alternative to current methods for patients with IBD. 

Nevertheless, studies investigating optimum timing for FMT administration are essential.

Animal and human studies are only starting to highlight the Pandora of interactions that endure 

between members of gut microbiome, their associated metabolites, dietary compounds, as well as 

host neurological and immune systems, all of which characteristic to each individual. Advanced 

research technologies have excelled the scientific evidence in support of CAM and toward 

generating NG-CAM systems designed for treatment of specific disease states, such as IBD. While 

the majority of envisioned NG-CAM strategies presently exist in their experimental and discovery 

phases, many show promise for future clinical application.
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INTRODUCTION

Crohn’s disease (CD) and ulcerative colitis (UC), both subtypes of inflammatory bowel 

disease (IBD), are chronic relapsing-remitting inflammatory disorders of the gastrointestinal 

tract associated with a deregulation of the T-cell mediated immune responses toward 

intestinal bacteria [1–3]. Disease pathogenesis is thought to reflect a complex interaction 

between genetic susceptibility, a defective immune system, host intestinal microbiota and 

environmental factors [4]. Despite substantial progress in our mechanistic understanding of 

chronic intestinal inflammation, including the integral role of enteric bacteria in disease 

pathogenesis, the precise cause of IBD is still unknown, and available treatment modalities 

for CD are not curative. Therefore, effective control of IBD, especially CD, is a realistic 

goal, and an ideal therapy is one that can alter the natural history of the disease in preventing 

complications while featuring a safe side effect profile and acceptable methods of delivery.

Intestinal bacteria are now considered to be a metabolically active ‘organ’ and the 

immunologic tone within the intestine should be that of tolerance towards the commensal 

bacteria, a balance maintained by the innate immune systems’ ability to recognize intestinal 

antigens and appropriately activate or suppress T cell reactivity to these antigens. It is now 

recognized that primary colonization of the gut begins in utero, via the umbilical cord, 

introducing members of the genera Enterocuccus, Streptococcus, Staphlococcus and 

Propinibacterium [5], and possibly also via the placenta, introducing maternally derived 

microbes [6]. Further colonization, associated with infant delivery (i.e. vaginal vs cesarean) 

[7], is followed by a rapid escalation in gut microbial diversity during infancy, consisting of 

bacteria, archaea, viruses and fungi [8, 9]. 16S rRNA and whole genome sequencing have 

revealed microbial succession during these early years is nonrandom, potentially implying 

that early colonization patterns set the stage for bacterial community structures later in life 

[9]. Age-related factors associated with microbiota composition are of particular interest in 

IBD, considering the variability in age of onset [10], the phenotypic differences noted 

between early and late onset [10, 11], and the reality that efficacy in terms of optimum 

timing for fecal microbiota transplantation (FMT) is not understood.

Despite the fact that over sixty bacterial phyla exist in the world, the gut microbiome of a 

healthy human primarily consists of bacterial members belonging to two phyla, Firmicutes 

(~65%) and Bacteroidetes (~25%), thus implying strong underlying constraints in patterns of 

microbial colonization and succession [8, 12]. The remaining bacterial species are typically 

distributed among the phyla Actinobacteria (e.g., Bifidobacterium spp.), Proteobacteria (e.g., 

Escherichia coli) and Verrucomicrobacteria (e.g., Akkermansia muciniphilia), with a 

possible smaller presence of Fusobacteria and Cyanobacteria [13]. Non-bacterial species, 

such as archaea, fungi (i.e. mycobiota) and viruses (i.e. virome) also inhabit the human 

intestinal tract [14], with the human virome largely consisting of bacteriophages, which are 
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numerous, and far more diverse than their bacterial counterparts [8]. Certain viral [15] and 

fungal species (e.g., Candida albicans) [16–19] identified within the human virome and 

mycobiota are shown to directly interact with the intestinal immune system and have been 

portrayed for their role in IBD pathogenesis [20]. Other species, such as the yeast 

Saccharomyces boulardii, appear protective against intestinal inflammation [21–24]. 

Notably, intestinal organisms survive in a community governed by a robustness of symbiotic 

and highly competitive relationships between, and within, host commensals and pathogenic 

populations. Current research to elucidate these mechanisms takes advantage of the 

significant, yet fairly recent, technological advancements in next-generation sequencing, 

synthetic biology, and genetic engineering techniques that are available.

Decades of literature have proposed the concept that gastrointestinal colonization, 

particularly early in life, plays a key role in development of immune systems and host 

tolerance to antigens, and it is only over recent years studies have revealed specific 

microorganisms can directly influence T cell development and maintenance, as well as 

downstream responses [25–29]. T regulatory cells (Tregs) play an essential role in 

maintaining gastrointestinal homeostasis through suppression of responses to pathogenic 

bacteria [30] and food antigens [31]. For example, specific bacterial members belonging to 

Clostridia [32, 33], and potentially Parabacteroides [34], have been identified to induce 

Tregs, possibly through production of the short chain fatty acid (SCFA) butyrate [35, 36]. 

There is also data demonstrating the induction of IL-10-producing Tregs, via polysaccharide 

A, a Bacteroides fragilis generated metabolite [37]. More recently, specific microbial 

populations Clostridium ramosum, Bacteroides thetaiotaomicron, Peptostreptococcus 
magnus and Bacteroides fragilis were identified to control expression of a distinct Rory 

expressing Treg subset population [38]. Animal studies have revealed segmented 

filamentous bacteria mediate dendritic cell activity (DCs), via production of serum amyloid 

A (SAA), leading to a downstream Th17 response [32, 39, 40]. At present, clinical 

application of microbiota modulation strategies that can target specific immune mechanisms 

remain forthcoming. Additional studies are essential to delineate the mechanisms by which 

specific microbiota and their metabolites affect immune cell subtypes, as well as the 

potential for other factors such as diet and medication to influence these intricate 

interactions.

COMPLEMENTARY AND ALTERNATIVE MEDICINE (CAM)

Complementary and alternative medicine (CAM) refers to health-care strategies developed 

separately to that of Western or conventional mainstream medicine, with the term 

‘complementary’ implying usage of these therapies in addition to conventional medicine 

[41]. In the past, many IBD professionals have avoided CAM because of a lack in 

supporting scientific evidence, despite reports indicating that upwards of 50% of IBD 

patients utilize non-conventional therapies (i.e. CAM) at some point during their disease 

course [42–45]. Over recent years however, the body of scientific and clinical evidence in 

support of CAM has increased dramatically, resulting in a high level of acceptance among 

medical professionals. Moreover, advanced research technologies are working to reshape the 

face of many CAM strategies (e.g., genetically engineered probiotics) into those of precise, 

next-generation CAM (NG-CAM) systems, designed for treatment of specific disease states, 
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including IBD. Still, the integration of CAM/NG-CAM into any medical management plan, 

whether intended as short- or long-term, should be tailored to each individual patient, and 

performed by an experienced practitioner capable of evaluating all facets of the available 

evidence with regard to benefits, safety and cost [41].

In terms of gut microbiota modulation, CAM/NG-CAM approaches can be classified into 

one of four major groups; 1) nutraceuticals, 2) mind-microbe balance, 3) dietetic 

management, and 4) microbiome-therapy. Nutraceuticals refers to an unsuccessfully 

regulated group of food products ranging from herbals, botanicals, phytochemicals and 

isolated nutrients, to certain foods and beverages (i.e. ‘functional foods’) stocking specific 

health benefits based on their ingredients. Recent efforts to overcome the issue of 

nutraceutical bioavailability have led to advanced microbiome-triggered delivery systems 

and development of nutraceutical-producing bio-organisms. A growing body of evidence 

suggests that stress profoundly impacts gut microbiota composition and that the converse is 

also true, intestinal microorganisms are capable of altering host behavior. Conventionally 

known as the ‘gut-brain axis’, the mind-microbe balance infers that, to achieve optimal host 

response from any therapeutic agent, necessitates full consideration of the intimate 

communication bond between both mind and microbe. Dietetic management encompasses a 

wide spectrum of dietary regimes characterized by their macronutrient profiles, the nutrient 

composition or origin of specific foods (e.g. fiber type, gluten-free, saturated vs unsaturated 

fatty acids), or a combination of these. For example, elimination diets, individual fatty acids, 

high-fat (HF) diets differing in fat source (animal vs plant), and a range of dietary plant 

fibers have all been shown to impact gut microbial communities. Microbiome-therapy is 

primarily gathered into three major paradigms: additive, transformative and subtractive. 

Additive therapy involves supplementing gut microbiota with individual, or combinations of 

bacterial strains (i.e. probiotics), whereas transformative therapy entails modulation of the 

gut microbial community as a whole through fecal microbiota transplantation (FMT). These 

strategies are now evolving toward genetically engineered probiotic strains designed for 

specific mechanisms of disease, and the use of ‘artificial’ stool products in FMT. Subtractive 

therapy refers to selective elimination of pathogenic members of the gut microbiome, with 

recent studies exploring bacteriophages, a viral species able to kill a precise gamut of 

bacteria with exquisite specificity, as a potential therapeutic modality for shaping microbiota 

populations in IBD. Notably, specific dietary compounds have been an important tool for 

managing activation and biosafety of engineered organisms. Since it is impossible to cover 

the spectrum of CAM therapies held within the aforementioned groups, this review will 

focus on CAM and recent NG-CAM that interact with the gut microbiota in context to IBD.

One of the challenges drawing particular attention in the current literature is that baseline 

(i.e. pretreatment) composition of host intestinal microbiota, namely bacterial diversity, 

abundance and their functionality, may in fact predict individual responsiveness to 

therapeutic interventions [46–49]. For instance, one study identified microbiota gene 

richness at baseline as predictive of inflammatory and metabolic response, following a low-

calorie diet intervention [50]. In another diet study involving caloric-restriction in obese 

individuals, pre-intervention abundance of Akkermansia muciniphila was found inversely 

related to degree of responsiveness for fasting glucose, body composition and subcutaneous 
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adipocyte diameter [51]. However, further studies are required before individual bacterial 

species (or microbiome profiles) can be applied as predictive tools for treatment success.

NUTRACEUTICALS

Nutraceuticals are foods, or food products, that provide health and medical benefits in the 

prevention or treatment of disease [52]. Chemically, nutraceuticals include a range of 

bioactive substances classified as polyphenolic compounds (e.g., curcumin, resveratrol, 

ellagitannins, flavenoids), isoprenoids (e.g., terpenoids, carotenoids), minerals (e.g., 

calcium, zinc), amino acid derivatives (e.g., indoles, choline), carbohydrate derivatives (e.g., 

oligosaccharides, polysaccharides), fatty acid and structural lipids (e.g., n-3 polyunsaturated 

fatty acids; PUFAs), and prebiotics [53]. In the United States, there is no specific regulatory 

framework for nutraceuticals or functional foods [54], and most marketed nutraceuticals do 

not require clinical trials to support efficacy claims [55, 56]. Although recognized as 

nutraceuticals, the probiotic arena of today has transcended as a NG-CAM in microbiome-

therapy through genetic engineering technology, and thus presented accordingly in this 

review.

Prebiotics

Prebiotics typically refer to selectively fermented non-digestible compounds that foster 

growth and activity of health-promoting intestinal microbiota [57]. A review of prebiotic 

fibers is available elsewhere [58]. Intestinal bacteria rapidly ferment these non-digestible 

fibers, producing metabolites central to gastrointestinal health such as n-3 fatty acids, 

metabolic derivatives of tryptophan, and the SCFAs acetate, butyrate and propionate [36, 

59]. Ingestion particularly favors growth of beneficial species Lactobacillus and 

Bifidobacterium, contributing to SCFAs [60, 61]. Gastrointestinal benefits associated with 

prebiotics have included enhanced mucosal immunity, gut barrier integrity, and epithelial 

protection from pathogenic bacteria and other metabolites [60, 61]. Bacteria-derived 

butyrate supports barrier function through two distinct mechanisms, namely, hypoxia-

inducible factor activity via increased colonic epithelial cell oxygen consumption [62, 63] 

and by suppression of histone deacetylases butyrate that can increase tight junction proteins 

[64].

Dietary components such as fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), 

soya-oligosaccharides, xylo-oligosaccharides, and pyrodextrins have been proposed to 

increase bacterial diversity [60, 65], as well as selectively enrich Bifidobacterium spp. in the 

gut [58]. During growth, intake of prebiotic fibers FOS, GOS and soluble corn fiber have 

been shown to increase absorption of calcium in humans and rats, enhancing bone properties 

through shifts in gut microbiota [66–69]. There is also evidence that soluble corn fiber 

increases calcium retention in older individuals who have reached peak bone mass [69], and 

is capable of altering functional pathways associated with macronutrient and vitamin 

metabolism [70]. This holds potential clinical utility in IBD considering the high prevalence 

of suboptimal bone density among patients [71–73]. Both animal and human studies 

demonstrate increased SCFAs with selective enrichment of Bifidobacterium following 

ingestion of resistant starches (RS), specifically RS1 and RS2 [74–76]. In humans, RS 
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appears to predominantly elicit colonization by R.bromii, and promote butyrogenic species 

F.prausnitzii and E.rectale [77, 78]. Another prebiotic dietary fiber, germinated barley 

foodstuff, provides a glutamine-rich insoluble protein [79] identified to effectively increase 

luminal butyrate, lactate and acetate production via expansion of Bifidobacterium and 

Lactobacillus [80]. Clinical studies suggest germinated barley foodstuff may exert 

therapeutic benefit in UC patients with mild to moderate disease activity, attenuating clinical 

activity index and mucosal damage, through promotion of Bifidobacterium and butyrate-

producing Eubacterium limosum [81–84].

Human prebiotic clinical intervention trials and effects on gut microbiota support the 

concept that prebiotic feeding increases abundance of certain bacteria and the production of 

various dietary metabolites. However, strong individuality in responsiveness is observed, 

underscoring the likelihood that initial composition of host microbiota can mediate effects of 

nutrition modulation [47]. There is also the possibility that, the structural variations found to 

exist between a single plant species [85], could prevent Bifidobacterium from degrading 

certain fiber structures, as bacterium may not possess the appropriate enzymes. Even so, 

considering the high capacity for microbial horizontal gene transfer in the human gut [86, 

87], inter-individual differences would likely persist. Recently, Bindels et al (2015) proposed 

that prebiotics be redefined as non-digestible compounds that through its metabolization by 

microorganisms in the gut, modulates composition and activity of the gut microbiota, thus 

conferring a beneficial physiological effect on the host [65, 88]

Polysaccharides

Polysaccharides refers to a heterogeneous group of structurally diverse carbohydrate 

molecules, many of which used by the food industry as additives to enhance viscosity and 

texture of foods. Carrageenans, one of the more widely used food additives, derive from 

several species of red seaweed (Rhodophyceae) and are unique in cellular structure. 

Microbial fermentation of carrageenans requires specific gut microbiome-encoded-enzymes, 

known as carbohydrate active enzymes (‘CAZymes’) [89]. CAZymes have been identified in 

genomes of marine microbes, but are absent in the human microbiome genome, thus humans 

are unable to digest carrageenan [86, 87, 90]. Interestingly, metagenomic studies have now 

uncovered bacterial members of the human gut belonging to the genus Bacteroides (e.g., B. 
plebeius) that possess CAZyme encoding genes, thus allowing breakdown of specific 

carbohydrates, and in turn, an additional energy source [87, 91]. This evolutionary 

adaptation is thought to reflect a natural horizontal gene transfer, in that, bacterial taxa, 

native to the human gut, have the ability to acquire genes from other microbes typically 

found outside of the human gut [86, 87]. The extent to which extrinsically acquired genes 

could influence microbial ecology of the human gut warrants further investigation, 

especially considering the rising consumption of various traditional seaweeds, such as nori 

(species of red algae genus Porphyra), traditionally used to prepare sushi throughout many 

nations outside of Asia.

Squid ink polysaccharide—Mouse models of chemotherapy have reported biological 

activities of squid ink polysaccharide to include anti-tumour, antioxidant, and anti-

coagulation effects, as well as enhancement of both IgA secretion and gut barrier integrity 

Basson et al. Page 6

Gastroenterol Clin North Am. Author manuscript; available in PMC 2018 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[92–96]. These models suggested that the polysaccharide induced beneficial effects through 

reversal of chemotherapy-related dysbiosis. One recent animal study reported squid ink 

polysaccharide decreased abundance of Ruminococcus, Bilophila, Oscillospira, Dorea and, 

Mucispirillum, bacterium known to thrive during early disruption of the colonic mucosal 

surface layer [97].

Casein glycomacropeptide

Glycomacropeptide (GMP), a sialic acid rich peptide, releases in whey during cheese 

making, and from bovine milk, releasing approximately 10-times higher amounts in the 

casein component of whey (i.e. casein GMP) [98]. Glycomacropeptide is significantly rich 

in amino acids proline, glutamine, serine, and threonine, as well as the branched chain 

amino acids (BCAA) isoleucine and valine. There is evidence that certain amino acids act as 

precursors to SCFA synthesis [99–103]. Specifically, anaerobic bacteria have the ability to 

metabolize glycine, threonine, glutamate, lysine, ornithine and aspartate, into acetate, which 

other gut microbiota utilize to generate butyrate [99]. Threonine appears to be the most 

versatile as it also used to generate propionate [104, 105].

Animal models of induced colitis suggest that casein GMP may attenuate intestinal damage 

(morphological/histological) via NF-KB/p65 pathway inhibition [106]. Animal models also 

indicate that Casein GMP could mediate intestinal inflammation via the gut microbiota 

[107–109], with administration associated with reductions in Proteobacteria, genera 

Desulfovibrio (from 30-35% to 7%), and increases in acetate, propionate and butyrate levels 

(cecum) [110]. Recent data proposed that GMP exerts anti-allergenic activity via modulation 

of gut microbiota [111]. Specifically, the GMP-induced increase in Lactobacillus, 

Bifidobacterium and Bacteroides, attributed to increased TGG-B production and reductions 

in mast cells [111]. Clinical trials for active distal colitis in UC patients have reported casein 

GMP is well-tolerated, exerting similar disease-modifying effects to that of mesalazine [112, 

113].

Mushroom Extracts

Mushrooms are recognized for their nutritional value and insoluble fiber content, with 

evidence supporting their unique range of bioactive metabolite substances [114]. Other 

compounds include mushroom polysaccharides, all of which with prebiotic properties, such 

as β-D-glucan polymers, polysaccharopeptides (PSP), polysaccharide proteins (e.g., PSK), 

chitin, mannans, galactans, and xylans [115]. Isolation of bioactive substances requires the 

young fruiting body (mycelium with primordia), thus extracted before the mushroom 

blooms [114], with triterpenes, lipids, and phenols depicted for their immunomodulatory 

properties [114, 116]. Mushroom bioactive metabolites are shown to stimulate different cells 

in the immune system, albeit that the ability of certain metabolites promote or suppress 

immune systems depends on dosage, route and timing of administration, as well as how the 

mushroom is cultivated (i.e. soil, harvesting, geography) [114]. Nevertheless, various 

bioactive metabolites are in use clinically [117, 118], and are available commercially 

worldwide in the form of capsules, food additives, syrups or teas [117].
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In a mouse model of diet-induced obesity, administration of a water extract of Ganoderma 
lucidum mycelium (WEGL) was found to reverse HF-diet induced gut dysbiosis, noted by 

decreased Firmicutes-to-Bacteroidetes ratio and Proteobacteria levels, with a 10-fold 

increase in butyrate-producing species Roseburia [119]. The anti-inflammatory and 

gastroprotective effects identified were recapitulated following FMT (WEGL microbiota 

inoculum) into WEGL naïve recipients fed a HF-diet [119]. In a recent report, 

administration of G. lucidum (100mg/kg rat body weight, as oral suspension) improved 

barrier function via upregulation of occludin expression and increased ileal IgA [120]. 

Change in immune function correlated with improved microbiota richness, decreased 

Firmicutes-to-Bacteroidetes ratio and reduced relative abundance of Proteobacteria (cecal 

content). However, a 2015 Cochrane review of randomized controlled clinical trials (5 trials, 

N=398) investigating effectiveness of WEGL (as anti-obesity) and G. lucidum for treatment 

of pharmacologically modifiable risk factors of cardiovascular disease (CVD), did not 

support use in CVD or type 2 diabetes [121]. In addition, participants who took G. lucidum 
for four months were 1.67 times (RR=1.67; 95%CI 0.86 to 3.24) more likely to experience 

an adverse event vs placebo. Adverse effects included nausea, diarrhea or constipation.

Phytochemicals

Phytochemicals are naturally occurring plant chemicals that provide plants with color, odor 

and flavor. Thousands of structurally heterogeneous phytochemical compounds have been 

identified thus far, many of which shown to influence chemical processes of the host, 

including several pathways related to IBD pathogenesis [122]. Supplementation strategies in 

animal models of IBD seem to ameliorate intestinal inflammation, with or without changes 

to gut microbiota, however, data has poorly reflected in human clinical trials [123]. 

Differences in study design, and reports of conflicting or harmful effects have limited 

generalization of findings. Details of this are outside the scope of the present review and are 

discussed extensively elsewhere [124–126].

Approximately 90-95% of total dietary polyphenols reach the colon unabsorbed [127]. 

Microbial modulation has been reported in animal or human studies, or both, by; 

epigallocatechin gallate (EGCG, main catechin of green tea) [128–131], ellagic acid and 

ellagitannis (pomegranate, raspberries, blackberries, strawberries and chestnuts) [132, 133], 

ginseng saponins (ginsenodises) [134, 135], and resveratrol (red wine) [136, 137]. In vitro 
evidence has shown that naringenin (a flavone) can inhibit growth and adhesion of Gram-

negative pathogen Salmonella typhimurium, yet enhance proliferation of the anti-

inflammatory probiotic strain L. rhamnosus [138, 139]. Recently, EGCG supplementation 

was shown to decrease DNA damage in mice fed a HF diet, with reversal of tissue-specific 

gene expression and methylation patterns of DNA methyltransferase 1 and MutL homologue 
1, implying potential for epigenetic consequences [140]. The ratio of Firmicutes to 

Bacteroidetes in supplemented mice was also significantly lower to that of controls.

The ability for phytochemicals to influence composition and metabolic activity of colonic 

bacteria definitely exists, but efficacy intimately reflects dosage, timing and route of 

administration. Bioavailability is also an important issue, and depends on phytochemical 

origin (whole food vs extract), overall diet composition [141], as well as host colonic 
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microbiome via bacterial metabolism of dietary polyphenols, in turn affecting bioavailability 

and derived metabolites [122, 142, 143]. While certain colonic bacteria can enhance 

bioavailability of dietary [124, 143–147], recent data revealed microbial metabolism of 

certain phytochemicals (e.g., quercetin), could indirectly influence the effects (enhance or 

suppress) of other dietary compounds, such as n-3 PUFAs [148].

Microbiome triggered delivery—In an effort to overcome bioavailability issues, several 

groups have focused on colon-targeted delivery systems, utilizing non-digestible fibers (e.g. 

resistant starch) degraded exclusively by colonic microbiota, for encapsulation and delivery 

of bioavailable nutraceuticals [149–151]. This method of encapsulation has proven clinically 

effective for delivery of 1, 25-dihydroxyvitamin D3-25-b-glucuronide (hormonally active 

vitamin D) in treating localized colonic inflammation, without risk of hypercalcemia or 

intestinal loss [152, 153]. In another study, mesalamine linked with L-glutamine via azo 

linkage, a bond specifically cleaved by the colonic microbiome, was reported to reach 84.7% 

targeted drug and nutraceutical delivery in the colon [154].

Colon-targeted drug delivery systems intended for IBD patients have implemented food 

grade materials including soy protein, β-lacto globulin (whey), chitosan and zein [126]. To 

improve encapsulation and pH controlled release of nutraceuticals, smart pH nanoparticles 

namely carboxymethyl chitosan and calcium pectinate cross-linked with PEI, have also been 

established [155]. The latter coating method is degraded only by pectinases in the colonic 

environment, and was reported to protect resveratrol activity until desired release into the 

lower bowel [156]. Other colon-targeted carrier systems of curcumin have proven successful 

in vivo [157–159]. Several groups have effectively implemented co-encapsulation, 

essentially, two nutraceuticals in a single carrier.

Nutraceutical co-encapsulations have comprised; curcumin/resveratrol [160], curcumin/

catechin [161], curcumin/piperine [162], gallic acid/curcumin co-administered with ascorbic 

acid/quercetin [163], curcumin/flax seed oil [164], and prebiotic/probiotic co-delivery [165]. 

Efforts to develop multilayered particulate drug delivery systems for controlled, sustained 

drug release, including co-encapsulation of drug and nutraceutical while preventing 

pharmacological cross-reactivity has shown immense promise as a NG-CAM approach in 

nutraceutical and drug delivery [126, 166].

Medical Cannabis

Cannabinoids, derived from the cannabis plant C.sativa, include over 60 aromatic 

hydrocarbons, of which Δ9-tetrahydrocannabinol (THC) is the primary psychoactive 

component. The endocannabinoid system is ubiquitously expressed throughout the human 

and rodent body, modulating intestinal peristalsis, gastric acid secretion, hunger (including 

fat-rich intake) [167–169], gut barrier integrity and intestinal inflammation, with gut 

microbiota interactions identified [170–175]. The inhibitory effects on gastrointestinal 

motility may benefit patients with diarrhea and intestinal inflammation, as activation of 

cannabinoid receptors appears to reduce inflammation-associated hyper-motility [67, 176, 

177]. Comprehensive reviews of these mechanisms are available elsewhere [41, 173].
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Epithelial cells, immune cells (B cells, NK cells, and mast cells) [178, 179], and the enteric 

nervous system are all cellular targets of the endocannabinoid system [169, 180–182]. 

Molecular targets include cannabinoid receptor (CBR) type 1 (CB1R) and CBR type 2 

(CB2R), as well as transient receptor potential vanilloid 1 receptors (TRPV1s, best known as 

the receptor for capsaicin), peroxisome proliferator-activated receptor alpha (PPARαs) and 

the orphan G-protein coupled receptors (GPCRs), GPR55 and GPR119 [169, 183].

Endogenously derived bioactive lipids that activate CBRs include members of the N-

acylethanolamine (NAE) family, namely 2-arachidonoylglycerol (2-AG), a promotor of gut 

barrier integrity, and N-arachidonoylethanolamine (AEA; also termed anandamide), a 

promotor of epithelial permeability [184], as well as N-palmitoylethanolamine (PEA), N-

oleoylethanolamine (OEA), N-stearoylethanolamine (SEA) and N‐linoleylethanolamine 

(LEA) [185]. These lipids can act as natural ligands for PPARα (OEA and PEA) [186, 187] 

TRPV1 (AEA and OEA) [169, 188, 189]. Other bioactive lipids belonging to the 

acylglycerol family, palmitoyl-glycerol (2-PG) and oleoylglycerol (2-OG), are also 

considered protective of barrier function [190–193].

Mechanistic studies (both in vitro experiments and animal models) have suggested 

endocannabinoids, namely CB1R and CB2R mediate gut barrier function, epithelial barrier 

permeability and inflammatory processes, and thus may offer protective effects in IBD 

[194–198]. Conversely, intestinal biopsies of UC and CD patients revealed enhanced 

endocannabinoid or bioactive lipid levels, with or without increased CB receptor expression, 

[189, 199–206] implying dysregulation of the endocannabinoid system plays a role in IBD 

pathogenesis. In addition, there is now evidence supporting a link between host intestinal 

microbiota and endocannabinoids in mediating intestinal integrity [207] .

Lactobacillus acidophilus was the first bacteria specifically shown to modulate the 

expression of CBRs and μ-opioid receptors in murine intestinal cells [208]. The effects of 

intestinal bacteria on CBR expression was well illustrated in an elaborate study 

implementing several models of gut microbiota modulation (HF-diet, prebiotics, probiotics 

or antibiotics), and mice bearing specific mutations involved in bacterial recognition (TLR, 

Myd88; myeloid differentiation primary response gene 88). Results indicated that gut 

microbiota modulation could activate colonic Cnr1 expression, the gene encoding for CB1R, 

which in turn influences gut permeability and plasma lipopolysaccharide (LPS) levels [207, 

209]. Everard et al. (2013) observed improvements in gut barrier function correlated with 

increased intestinal levels of 2-PG, 2-OG and 2-AG in genetically susceptible obese and type 

2 diabetic mice administered Akkermansia muciniphila and fed a HF-diet [207, 209]. More 

recently, the same group showed that intestinal epithelial Myd88 deletion in mice (IEC 

Myd99 KO) partially protected against inflammation and gut barrier disruption induced by a 

HF-diet via mechanisms directly involving gut microbiota, and that in the absence of IEC 

Myd88, levels of AEA decreased, whereas both 2-AG and 2-OG increased. The authors 

suggested that activation of GPR119 via 2-OG stimulates intestinal L-cell release of 

glucagon-like peptide-2, a peptide involved in barrier function [210]. Overall, crosstalk 

between the gut microbiota, endocannabinoid system and metabolism of the host appears 

capable of inducing specific changes in the intestinal innate immune system, and vise versa.
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In a 2011 survey conducted in Mount Sinai Hospital, Toronto Canada evaluating cannabis 

usage among IBD patients (N=291), 50% of CD and 33% of UC patients reported having 

used cannabis as a CAM method to relieve IBD-related symptoms such as pain, appetite loss 

and diarrhea, at some point during their disease course [211]. One retrospective study 

(N=30, CD) [212] and two prospective studies (N=13; IBD, N=21; CD) [213, 214] have 

reported beneficial effects of cannabis usage for IBD symptom control, although study 

limitations included lack of standardization, dosing inconsistency and diversity in cannabis 

plant strain. In addition, side effects ranged from addiction, dry mouth, drowsiness, 

increased appetite, to a sensation of “high”. To this end, authorities now forbid motor vehicle 

use of for at least 3-4 hours after smoking, and 6 hours post oral ingestion [215]. Studies 

evaluating pharmacological modulation of the endocannabinoid system are currently 

underway (experimental and clinical trials), but few of these account for the potential 

interaction between the gut microbiome or endogenous bioactive lipids [216].

Nutrition-based modulation of the endocannabinoid system tone by reducing ratio of n-6 to 

n-3 has proven effective in some obesity studies [217–219]. For example, docosahexaenoic 

acid (DHA, C22:0) administration was associated with decreased levels of AEA and 2-AG, 

and reductions in inflammation and fat mass in mice [220]. In obese individuals, daily 

supplementation with n-3 PUFAs from krill oil reduced plasma levels of 2-AG [217]. The 

implication of these findings in IBD is unclear considering the gastro-protective properties 

of 2-AG. Nutrition modulation of the endocannabinoid system, particularly in IBD, remains 

in the exploratory and discovery phase.

MIND-MICROBE BALANCE

Numerous studies advocate the neural, hormonal and immune-related communication 

pathways that exist between the gut and brain of the host [221–224]. In IBD patients, various 

inflammatory mechanisms affecting epithelial integrity and pro-inflammatory cytokine 

production [225] have been proposed in explanation of the long-reported correlation 

between stress and increased relapse of disease [226–230]. However, it is possible that some 

of these proposed mechanisms are in fact consequences of altered gut bacteria, as stress has 

now been discovered to profoundly influence gut microbial communities [231, 232]. Yet the 

converse is also true, with animal models showing that changes to intestinal microorganisms 

can indeed lead to alterations in behavior. (For review, refer to Abautret-Daly 2017).

Additional animal studies are required and should provide and invaluable first line approach 

to understanding the physiological changes that occur in the brain in response to intestinal 

microorganisms, in context to the internal and external milieu (host-specific) that constantly 

shapes both microbiome and brain. To this end, maintaining the host mind-microbe balance, 

via an ongoing consideration of this multifaceted communication pathway, could prove 

quintessential in attaining maximum efficacy of any treatment modality.

DIETETIC MANAGEMENT

Diet is recognized as one of the primary driving forces in shaping the composition of gut 

bacteria and metabolite production [233–235]. Notably, intestinal microbiota also play an 
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important role in the synthesis of several vitamins (B-vitamins, vitamin K, vitamin A) [236, 

237], and can affect the absorption of essential minerals such as iron, (Kau A 2011) 

magnesium and calcium in the host [238]. Literature supports dietary intervention as a 

means of promoting beneficial host-bacteria interactions [59, 216, 239], with new evidence 

revealing how single food ingredients (e.g., turmeric) can interact with functional traits of 

intestinal microbiota to regulate host physiology [240]. However, the potential interactions 

between dietary compounds and host-specific microbial communities have not been 

investigated in most human diet intervention studies performed to date. A recent review of 

the known interactions between mucosal immunity, host genetics, gut microbiome and diet 

is available [241].

Macronutrients

Even small dietary changes have the potential to alter the composition of gut microbiota, in 

as little as a day [242, 243]. Short-term dietary interventions, especially those devoid of 

carbohydrates appear to have the most profound effect [233], but taxonomic changes are not 

consistent among individuals [235], perhaps a reflection of baseline microbiota composition. 

Fungal abundance has been linked to a carbohydrate-rich diet, with candida abundance 

positively correlated with carbohydrate intake, and negatively correlated with total saturated 

fatty acids [244]. Long-term dietary changes tend to impact ratios of Bacteriodes, Prevotella, 

and Firmicutes, with the most profound change in microbiota composition and bacterial 

metabolites resulting from diets high in red meat and fat, namely PUFAs [235, 245, 246]. 

Studies have suggested dietary fiber promotes Prevotella, whereas higher protein and fat 

intakes promote Bacteroides dominance [235, 245, 246].

In IL-10−/− mice, significant blooms in the ‘pathobiont’ Bilophila wadsworthia correlated 

with feeding a HF-diet rich in saturated milk fat [25]. The sulfite-reducing properties of 

B.wadsworthia led to an abundance of hydrogen sulfide production, a molecule disruptive to 

epithelial barrier function [247, 248]. Other animal models have shown that a HF-diet, in 

combination with high sugar, increases adherent invasive E.coli (AIEC) [249], while others 

show that certain fibers (pectin, guar gum) can potentially mediate the pro-inflammatory 

effects of a dietary lipid [250]. Various IBD mouse models have suggested medium chain 

triglycerides (MCTs) can exert anti-inflammatory effects, thereby reducing intestinal 

inflammation [251–253]. In these studies, MCTs consisted of various saturated fatty acids 

sourced from coconut oil.

A predominantly meat-based diet was reported to decrease Clostridiales, a bacterium 

involved in plant-based fiber metabolism, while increasing abundance of bile-tolerant 

Alistipes [233]. In professional athletes, microbial diversity is markedly impacted by 

disproportionately high dietary intakes of protein, particularly within the genus Akkermansia 
[254]. Animal-based foods (i.e. red meat) deliver L-carnitine to certain gut bacteria 

producing trimethylamine N-oxide (TMAO) [255], a molecule identified to promote 

atherosclerosis in animal models (Lang 1998) and humans [256]. In mice, potato resistant-

starch appeared to attenuate detrimental effects of a meat-based diet, partly by promoting 

members the beneficial, Lactobacillus spp. [257, 258].

Basson et al. Page 12

Gastroenterol Clin North Am. Author manuscript; available in PMC 2018 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mediterranean diets, which are inherently low in red meat, has been suggested to 

beneficially impact gut microbiota [259], whereas an energy restricted diet, in combination 

with dietary fiber, was shown to increase microbial diversity an upwards of 25%, in 

individuals with low diversity [260]. Of interest, omnivores appear to produce more TMAO 

from dietary L-carnitine than that of vegans or vegetarians [256]. One plausible explanation 

could be archaeal lineages underlying the human gut microbiome. Certain strains of 

methanogens in the human gut, such as Methanomassiliicoccus luminyensis and 

Methanosarcina barkeri strictly use methyl-based compounds, including TMA, to enable 

their growth, thus could readily deplete TMA levels [261]. For instance, M.luminyensis 
encodes a rare proteinogenetic amino acid pyrrolysine (Pyl), a characteristic shared by few 

other bacteria [262]. This is a truly unique characteristic since methanogenesis of TMA (a 

methylated amine) is only possible in the presence of pyrrolysine in active catalytic site 

[263]. Notably, studies exploring the abundance and activity of archaeal taxa between human 

populations have identified significant differences in organism groups based on geographic 

location, as well as the consumption of specific food items such as salt-fermented seafood 

[262, 264–268].

B-Vitamins—The human gut microbiota supplies the host with B-vitamins, including 

niacin (B3), riboflavin (B2), cobalamin (B12), biotin (B8), folate (B9), thiamin (B1), 

pantothenate (B5) and pyridoxine (B7). The host relies largely on microbiota-derived B-

vitamins, as well as those obtained from dietary sources, as human cells alone do not 

produce sufficient quantities of B-vitamins [269]. A comprehensive genome assessment of 

256 common human gut bacteria revealed a diverse distribution in the presence and absence 

of B-vitamin biosynthesis pathways, as well as that gut microbes actively exchange B-

vitamins among each other, and in doing so, enable organisms which are deficient in any of 

these vital biosynthesis pathways, to survive [236]. Three distinct genome patterns, were 

identified, namely; 1) Actinobacteria are limited to niacin, pyridoxine and thiamin pathways, 

2) except for niacin, all pathways are lacking in six Firmicutes and two Actinobacteria 

genomes, and 3) five Firmicutes and three Proteobacteria genomes lack all pathways except 

for biotin and folate biosynthesis. Inverse patterns were also noted, implying complementary 

relationships between microbiota. For instance, the essential roles for folate metabolism 

were missing in all four F.prausnitzii genomes. Findings indicate that perturbations to gut 

microbiota may impact not only individual B-vitamin requirements, but that deficiency in 

one or more B-vitamin, can lead to unfavorable blooms in pro-inflammatory 

organisms[236]. On the other hand, supplementation strategies using single or various 

combinations of B-vitamins may provide a novel avenue for manipulating the gut 

microbiota.

Vitamin D—The vitamin D receptor (VDR) is abundantly expressed throughout the 

intestine and in all immune cells, and is both directly and indirectly targeted by the bioactive 

forms of vitamin D, 1,25-Dihydroxyvitamin D (1,25[OH]₂D and 1,25[OH]₂D₃) [270–272]. 

There is evidence to support the interaction between vitamin D, the VDR and gut microbial 

communities in immune-mediated disorders. For instance, compared to WT mice, VDR null 

mice have a depletion in Alistipes and Odoribacter with markedly increased levels of 

Clostridium, Bacteroides, and Eggerthella (cecum) [273], the latter bacterium implicated in 
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UC and CD [274]. In a model of colitis-induced colorectal cancer, increased VDR 

expression following administration of VSL#3 was associated with lower colon damage and 

decreased in richness and diversity of mucosally adherent bacteria [275]. Low vitamin D 

status is frequently observed in IBD, especially in CD patients [276]. One randomized 

controlled trial reported oral supplementation with Lactobacillus reuteri NCIMB 30242 

increased circulating 25(OH)D concentrations [277].

Elimination Diets

Elimination diets consist of an assortment of restrictive dietary regimens entailing the 

avoidance of specific foods or food groups that may, or may not, precede re-introduction of 

single food types for identification of those that initiate symptoms. Most elimination diets 

are not supported by gastroenterology organizations [278–280] although approximately 70% 

of IBD patients report implementing some form of elimination diet while in remission [281]. 

Often, these self-imposed diets are based on non-medical resources, such as the internet or 

IBD support groups, with long-term avoidance of major food groups resulting in severe 

nutrient deficiencies and malnutrition [125, 282]. Recent data shows malnutrition can alter 

microbial composition, and intraepithelial lymphocyte phenotype of the small intestine 

[283].

FODMAP—A low-FODMAP (acronym of “Fermentable Oligo-, Di-, Mono and Polyols”) 

diet encompasses the dietary restriction of fermentable oligosaccharides (many kinds of 

vegetables including ‘onion family’, legumes, wheat/rye), disaccharides (lactose-based 

dairy; milk, yoghurt, cheeses), monosaccharides (many kinds of fruits, dried fruit, fruit 

juice) and polyols (honey, corn syrup, fructose, sweeteners ending in ‘-ol’) [284]. In 

principal, the diet may reduce symptoms of bloating and abdominal pain through the 

avoidance of short-chain carbohydrates (insoluble fibers) which undergo rapid fermentation 

by colonic bacteria [284, 285]. In patients with existing disease or intestinal narrowing 

(strictures) avoidance of high-FODMAP foods (i.e. insoluble fiber) thus may be appropriate 

[281]. However, the majority of excluded FODMAP foods are indeed prebiotics, capable of 

beneficially modulating microbiota communities [286, 287]. In IBS patients, one 

randomized controlled trial reported a low-FODMAP diet to significantly reduce 

Bifidobacterium spp [287], with a second trial reporting greater bacterial diversity of 

butyrate-producing microbiota clusters in the high-FODMAP group, and reduced total 

bacterial abundance in the low-FODMAP group [286]. The high-FODMAP diet increased 

the relative abundance of anti-inflammatory Akkermansia muciniphila and the butyrate-

producing Clostridium cluster XIVa [286]. Oligosaccharides (soluble fiber) were reported to 

block adherence of pathogenic bacteria to epithelia in vitro, including mucosally associated 

AIEC, a bacterium frequently observed within the mucosa of CD patients [288, 289]. Of the 

soluble plant fibers, soluble plantain fiber was reported the most consistently effective, 

inhibiting adherence of Salmonella spp., Shigella spp, Enterotoxigenic E.coli and C.difficile 
[290, 291]. Many of the oligosaccharide-containing cruciferous vegetables excluded from 

the FODMAP diet (e.g., brussel sprouts, cabbage, collard greens, kale) are also rich in sulfur 

containing compounds called glucosinolates, converted by gut microbiota to biologically 

active, anti-inflammatory compounds such as indoles, nitriles and isothiocyanates [241, 

292].
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Specific Carbohydrate Diet (SCD)—The specific carbohydrate diet (SCD) involves 

elimination of most dietary carbohydrates, primarily grains, starches, dairy, and sugars/

sweeteners (except honey). Evidence to support effectiveness of SCD to induce or maintain 

remission in IBD is only available through small case series in CD and UC [293–296]. The 

proposed mechanisms underlying SCD beneficial effects include; altered macronutrient ratio 

(protein, fat), reduced dietary gluten intake, or reduced intake of food additives (e.g., 

emulsifiers), shown to influence gut microbiota and barrier function [249, 297, 298]. Animal 

models of gluten sensitivity support the modulatory role of gut microbiota in host responses 

to gluten [299], with non-celiac, gluten-sensitive IBD patients reporting improvement in 

clinical symptoms following a gluten-free diet [300].

Exclusive elemental nutrition (EEN)

Exclusive enteral nutrition (EEN) is a formula based therapy recommended as first line 

therapy for induction of remission in pediatric CD, with 85% efficacy rate [301]. Lower 

efficacy is noted in adult CD patients, possibly because of poor compliance or longer 

exposure to immunosuppressive treatments [239]. Some pediatric CD studies show EEN-

induced alterations to Bacteroides-Prevotella correlate with therapeutic response [302, 303] 

whereas less impressive changes are observed in samples of adult CD patients post-

treatment with enteral nutrition [303]. There is also literature suggesting that intestinal 

inflammation, relative to CD, may induce some changes in microbiota, such as reduced 

diversity and increased Proteobacteria [288]. Taken together, additional studies assessing the 

effects of EEN and enteral nutrition in adult CD patients are required.

MICROBIOME-THERAPY

Microbiome-therapy such as additive (e.g., probiotics), subtractive (e.g., selective 

antibiotics, nutraceuticals with anti-microbial properties), or transformative (i.e. FMT) are 

proving effective, although individual responsiveness varies substantially.

Subtractive therapy

Subtractive therapy is the removal of specific bacterial species, or groups of species, from 

the gut to correct gut disease-associated dysbiosis, thereby restoring host microbial 

homeostasis. Elimination of host pathogenic gut bacteria though conventional broad-

spectrum antibiotics or non-conventional nutraceutical products with anti-microbial activity 

[304], leads to a concomitant reduction in host commensals, possibly increasing host 

susceptibility to other infectious agents (e.g., C.difficile). Next-generation subtractive 

therapies have overturned the concept of therapeutic probiotics, to that of therapeutic 

bacteriocins, a bacterially derived antimicrobial peptide with toxic activity [305]. 

Metagenomic and in vivo efforts demonstrate bacteriocin producers have a strong 

competitive/fitness advantage and increased protection against pathogens [58, 306–309]. 

Subtractive therapy has also gone viral, via bacteriophage therapy, a subset of viral species 

with the potential to bind and kill a narrow range of bacteria with impeccable specificity 

[310–312]. Bacteriophages, or phages, are highly abundant, naturally occurring organic 

entities. Viral genomes have been identified in both healthy and diseased individuals [313–

315], with healthy humans harboring an estimated 1200 viral genotypes [316]. Some IBD 
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studies demonstrate reduced bacterial diversity with concomitant increase in bacteriophage 

richness, specifically in Caudovirales [314], whereas others have reported decreased overall 

diversity [317–319]. Intestinal virome populations seem to be unique to each individual 

[313, 315], and phage community structure is highly susceptible to diet [313], including 

other factors such as geographical location [314]. Evidence indicates that viromes are also 

acquired via diet [320], and it has been suggested that ingestion of viral communities occurs 

at a much higher rate than internal production [321].

Current efforts to enhance, or engineer bacteriophages, for host therapeutic benefit, have 

focused on; enzymatic dispersal of bacteria in protective biofilms [322], antibiotic resistance 

[322, 323], antimicrobial activity [324], and modulation of gut microbial communities via 

cell death [325–330]. Therapeutic deployment of bacteriophage therapy in IBD has utilized 

naturally occurring, or genetically engineered viral parasites [325]. Of interest, it now 

proposed that phages could exert immunogenic effects [331], with several studies 

demonstrating direct effects of intestinal phages on the immune system, inding pro- and anti-

inflammatory responses [316, 332–341]. Research exploring bacteriophage therapy remains 

in its early stages; however, the prospective that natural or engineered phages (i.e. 

augmented anti-bacterial capability) can intimately control microbial population structure, 

while mediating mucosal immunity, offers an intriguing prospect in the management of IBD 

patients.

Additive therapy

Additive therapy entails supplementation of host microbiota with either individual, or a 

combination of bacterial strains either natural (i.e.probiotics) or genetically engineered in 

origin, such as probiotic strains with enhanced function.

Probiotics

Probiotics are live microorganisms that exert health benefits to the host when administered 

in sufficient quantity, with strains isolated from the human intestine suggested as preferential 

[310]. Animals and humans investigations of various probiotic regimens in IBD have yielded 

controversial results, and animal data inconsistently reflecting in human IBD trials [305]. 

Two strains of probiotics Escherichia coli Nissle 1917 and VSL#3 have shown some efficacy 

in UC and pouchitis [307, 342–346]; however, no recommendations exist for probiotic 

administration in CD. Clinical intervention studies investigating their effects on the 

microbiota and human health have been limited by differences in probiotic formulation, 

timing of administration, and dosage, as well as variability in patient diet and medication use 

(For reviews see: Vindigni 2016, Uranga 2016, Abautret 2017, Yadav 2016) [125, 226, 347, 

348]. To date, no IBD focused research has explored the potential therapeutic benefit of 

probiotics in alleviating anxiety or depression, although this has been explored in other 

disorders [226].

Genetically Engineered Probiotics

Recent efforts are focusing on genetic modification of probiotic strains as a NG-CAM 

strategy. Advantages of enhanced bio-organisms can include stability of colonization (i.e. 

bioavailability, longevity) and dynamic correction of disease-dysbiosis related perturbations 
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to prevent or resolve inflammation [305]. Application of cellular engineering in 

augmentation of prophylactic probiotics such as E. coli Nissle 1917 and Lactobacillus 
jensenii has been successful in overcoming natural colonization resistance conferred by host 

resident gut microbiota [349]. Today, Lactococcus lactis is one of the most commonly 

applied bacterial chassis, a nonpathogenic, non-colonizing Gram-positive bacterium used 

extensively throughout the dairy industry [350]. In mice, L. lactis has been successfully 

engineered to secrete biologically active murine IL-10, a potent anti-inflammatory cytokine, 

relevant to IBD [350, 351]. In addition, when synthesized in vivo, lower doses of IL-10 were 

required compared to systemic IL-10 administration [351]. Phase I clinical trials using IL-10 

secreting L.lactis have been well tolerated in CD patients, although efficacy was modest 

[352]. A nanobody-secreting modified strain of L. lactis, delivering active anti-mTNF 

nanobodies locally to the colonic mucosa, has proven highly efficacious in DSS-induced 

colitis and established enterocolitis IL-10 null mice [353]. Described for its anti-

inflammatory properties, elafin is associated with restoring barrier function of damaged 

intestinal epithelia [354–356], with reduced expression and subsequent defective elastolytic 

activity reported in patients with IBD [357–359]. Two strains of elafin-secreting bacteria, 

L.lactis and L. casei, were shown to decrease intestinal inflammation in mice, and to protect 

cultured human epithelial cells from increased epithelial permeability [360]. Other 

modifications of L. lactis for treatment of diabetes and autoimmune disease [361, 362] have 

been investigated, namely strains-producing auto-antigen proinsulin [363] and glutamic acid 

[291]. Administration of NAEs directly to the intestinal lumen to promote endocannabinoid 

function is also under investigation. Using a genetically modified strain of E. coli Nissle 

1917 to produce NAPE-synthesizing enzymes, precursors to the NAE family of lipids, mice 

had lower food intake, insulin resistance, adiposity, and hepatosteatosis, with increases in 

hepatic NAE [364]. However, the effects on other bacterial members in the gut were not 

investigated.

To date, almost every type of known polyphenolic compound have been produced de novo or 

semi-de novo by genetically engineered strains of E.coli or Saccharomyces cerevisiae [365]. 

Modified strains have also been used to produce alkaloids (amino acid-derived compounds) 

[283, 366–370], polysaccharides [371], and various forms of terpenoids (e.g., lutein, 

lycopene, carotenes and carotenoids), a group of phytochemicals typically present in green 

foods and soy plants [372–376]. Recently, tryptophan-derived indolyguco-sinolate was 

produced in a strain of S.cerevisae after genome insertion with eight plant genes [377]. 

These remarkable progresses have also ensued development of novel or non-natural 

polyphenolic compounds [378, 379].

One of the drawbacks to genetically engineered therapies is the very real concern of 

biosafety and environmental contamination [351]. The fact is, when administering a live 

genetically modified organism, that organism is also released into the environment. Once 

released, there is a possibility of unintentional colonization of individuals, or food industries 

(e.g., dairy). Moreover, conditions in the human gastrointestinal tract favor natural 

horizontal gene transfer between bacterial members [380, 381]. Engineered bacterium 

should thus inherently include a biological containment system such as auxotrophy or other 

gene defect that necessitates supplementation with an essential metabolite or intact gene 

[382]. In addition, recombinant therapies designed on bacterial and probiotic strains 
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currently listed by the U.S. Food and Drug Administration as generally regarded as safe 

(GRAS) should be subject to strict reevaluation protocols via regulatory frameworks [351].

To address the important issues of environmental safety, a modified strain of Bacteriodes 
ovatus (human commensal) was developed to deliver human transforming growth factor beta 

(TGF-β1) but under the strict control dietary xylan (i.e. sole energy source) [353, 383, 384]. 

In a DSS model of colitis, xylan supplementation induced B. ovatus secretion of human 

TGF-β1, as well as significantly improved DSS-induced colitis, in some cases superior to 

that of steroid treatment [384]. Additional studies investigating specific dietary compounds 

and functional capacity as a means of controlling therapy delivery and biosafety of 

genetically modified bacteria are highly warranted.

Predicting probiotic-microbiota interactions in the host

In practice, a truly effective recombinant therapy would likely require long-term 

gastrointestinal colonization, and thus, should be capable of self-activation (or not) in 

response to specific environmental cues, over time in the host. This requires comprehensive 

understanding of the parameters governing competitive microbial colonization [385], 

preferred areas of local microbial colonization (i.e. small vs large bowel) [386], as well as 

how diet, environmental stimuli and mucosal immunity influence microbial ecosystems, or 

possible latent effects of stimulated immune pathways on microbiota composition. For 

instance, Bacteroides spp. appear to be resistant against antimicrobial peptides [387] and 

their abilities for colonization and resilience are largely determined by the presence of 

carbohydrates [388–390].

In order to predict the complex interactions between probiotic strains (natural or modified), 

mucosal immune systems, the gut microbiota (intestinal vs surface attached) [391–393] and 

host genetics, sophisticated in vitro systems, capable of dynamic, physiologically relevant 

environmental changes are essential [305, 394]. At present, various in and ex vitro models, 

testing inter-bacterial interactions have been applied, namely, single [395] and multi-stage 

chemostat models [394], synthetic 3-D tissue scaffolds with villous features [396], mouse 

ileal organoids [397] and a human gut-on-a-chip microdevice [218]. Assessment of 

recombinant therapies in gene circuits allows for detection of disease biomarkers and 

sometimes drug production, but are shown to result in high cellular burden and in turn, their 

condensed timeframes (i.e. 24 hours) may not adequately gage evolutionary stability of a 

recombinant therapy [305]. Stability of engineered therapies is a noted limitation as in vitro 
evolution experiments have shown bacteriophage functionality can reduce rapidly over time 

[398, 399]. Moving forward, efforts to enhance both robustness and long-term durability of 

engineered therapies and their testing models should help in the realization of an 

environmentally autonomous ‘intelligent’ engineered bio-organism as a NG-CAM strategy.

Transformative therapy

Representing a somewhat more intrusive form of additive-type therapy, FMT focuses on 

changing intestinal microbiota communities as a whole. Procedures encompass infusion of 

fecal material sourced from a healthy donor, into the gut of an individual (i.e. the recipient) 

for the treatment of disease-specific dysbiosis, with the aim of restoring microbial balance. 
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Fecal microbiota inoculum is delivered either to the upper gastrointestinal tract via 

nasogastric/nasojejunal tube or upper endoscopy, or to the lower intestinal area via enema or 

colonoscopy [400]. For treatment of recurrent C.difficile infections, FMT boasts 90% 

clinical success, proving twice as effective as antibiotic therapy alone [401]. Mechanisms as 

to exactly why FMT is effective are not fully understood, although abundance of butyrate-

producing species Lachnospiraceae in donor microbiota was recently proposed [28, 402].

FMT

Cumulative evidence seems to indicate that FMT-induced remission is possible in a subset of 

both UC and CD patients [403–405], although only two randomized controlled studies, 

bearing conflicting results, have evaluated FMT efficacy in UC patients, and no randomized 

controlled trial data is published for CD to date [347, 348, 403, 406]. In a 2014 meta-

analysis of nine studies (included 79 UC and 39 CD patients), a remission rate of 36.2% in 

UC patients (pooled proportion) and 60.5% in CD patients (pooled estimate on subgroup 

analysis) was reported [406, 407]. These effects however, are not universal, nor are they 

sustained in either of the two IBD groups.

Failure of FMT in clinical studies may be attributed to various factors including, patient 

population (severe vs medically refractory), mechanism of action, stool donors, 

administration route and dosage, or other confounding factors such as smoking, diet and 

medication use [404, 406–409]. A recent study comparing lyophilized FMT product with 

fresh or frozen products (using same donors) revealed lyophilized product had slightly lower 

efficacy (vs fresh), whereas no difference between fresh and frozen fecal product was 

identified [410]. The hygiene hypothesis, one of the longest standing theoretical frameworks 

associated with the pathogenesis of IBD [4, 411–414], also happens to underpin the single 

most unexplored aspects of FMT administration, namely optimum timing for microbiota 

modulation. It is plausible that, remarkable efficacy may be observed if administered early in 

life, during certain key windows of plasticity in immune development. Equally, manipulation 

of microbial communities, perhaps early in diagnosis, could greatly improve long-term 

outcomes by attenuating disease progression.

One decidedly important issue concerning FMT therapy is the overall safety. The gut 

microbiome is a dynamic and living organism that constantly evolves over time, and a vast 

number of human-associated microbial and non-microbial (viruses, fungi) species remain 

undiscovered [415]. While short-term infectious risks of FMT appear to be definable and 

quantifiable, the theoretical risk of introducing pathogenic organisms that could later 

exacerbate disease conditions [407, 416], or the potential for unknown long-term 

consequences [408], are two caveats that continue to dampen enthusiasm in FMT clinical 

treatment. In an effort to mitigate these risks, several groups are currently investigating use 

of an ‘artificial’, synthetic stool mixture, designed to contain clinically active microbes [417, 

418]. The stool substitute appears capable of curing antibiotic resistant C.difficile colitis 

[417] and should be pursued as a feasible alternative. Overall, the concept of FMT holds 

strong potential within the repertoire of CAM and NG-CAM for management of IBD. In the 

future, the most effective FMT modalities will like encompass defined microbial 
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communities [419] infused into pre-characterized IBD recipients, pertaining to their gut 

microbiota community, diet, lifestyle and medication intake.
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KEY POINTS

The human gut microbiome exerts a major impact on human health and disease, and 

therapeutic gut microbiota modulation is now a well-advocated strategy in the 

management of many diseases, including inflammatory bowel disease (IBD).

Scientific and clinical evidence in support of complementary and alternative medicine 

(CAM), in targeting intestinal dysbiosis among patients with IBD, or other disorders, has 

increased dramatically over past years. The more recent scientific investigations have 

excelled through advancements in research technologies to allow redesign of many CAM 

strategies into that of precision, next-generation CAM (NG-CAM) systems, intended for 

the treatment of specific disease states.

Intriguing NG-CAM strategies, showing promise in IBD, include; 1) nutraceutical-

producing bio-organisms, 2) genetically enhanced probiotic strains and usage of dietary 

compounds for controlling activation and biosafety, 3) microbiome-triggered 

encapsulation of bioavailable nutraceuticals (or drugs) for targeted, stepwise delivery, 4) 

‘artificial’ stool for fecal material transplantation (FMT), and 5) bacteriophage delivery 

for precise elimination of specific microorganisms to reshape microbial populations. 

While the majority presently exist in their experimental and discovery phases, these 

envisioned NG-CAM strategies offer an intriguing prospect to the future management of 

IBD patients.

Delivery of ‘artificial’ stool replacements for FMT could provide an effective, safer 

alternative to that of human donor stool. Nevertheless, optimum timing of FMT 

administration in IBD remains unexplored, and future investigations to this end are 

essential.

As a prerequisite, future studies must consider host initial microbiome, as baseline 

composition of gut microbiota plays a key role in an individual responsiveness to 

nutrition modulation.

Animal and human studies continue to uncover the Pandora of interactions that endure 

between members of gut microbiome, their associated metabolites, dietary compounds, 

as well as the neurological and immune systems of the host, all of which characteristic to 

each individual. Exploitation of the communication bond between mind and microbe (i.e. 

mind-microbe balance) may prove to be a quintessential component for development of a 

truly effective therapeutic agent in IBD.
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Figure 1. 
Conventional and Alternative Medicine Strategies.
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