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Abstract

Advancements in measurement technologies and modeling capabilities continue to result in an 

abundance of exposure information, adding to that currently in existence. However, fragmentation 

within the exposure science community acts as an obstacle for realizing the vision set forth in the 

National Research Council’s report on Exposure Science in the 21st century to consider exposures 

from source to dose, on multiple levels of integration, and to multiple stressors. The concept of an 

Aggregate Exposure Pathway (AEP) was proposed as a framework for organizing and integrating 

diverse exposure information that exists across numerous repositories and among multiple 

scientific fields. A workshop held in May 2016 followed introduction of the AEP concept, 

allowing members of the exposure science community to provide extensive evaluation and 

feedback regarding the framework’s structure, key components, and applications. The current 

work briefly introduces topics discussed at the workshop and attempts to address key challenges 

involved in refining this framework. The resulting evolution in the AEP framework’s features 

allows for facilitating acquisition, integration, organization, and transparent application and 

communication of exposure knowledge in a manner that is independent of its ultimate use, thereby 

enabling reuse of such information in many applications.

Recognizing the complexity of exposure studies

For several decades, many fields in the biological sciences have recognized the complex 

nature of networks that regulate essential biological processes leading to beneficial or 

tan.cecilia@epa.gov; Tel: +1-919-541-2542.
†These authors contributed equally to this work.

Disclaimer
The U.S. Environmental Protection Agency has provided administrative review and has approved this paper for publication. The views 
expressed in this paper are those of the authors and do not necessarily reflect the views of the U.S. Environmental Protection Agency.

Conflicts of interest
The authors have no conflicts of interest to declare.

EPA Public Access
Author manuscript
Environ Sci Process Impacts. Author manuscript; available in PMC 2019 March 01.

About author manuscripts | Submit a manuscript
Published in final edited form as:

Environ Sci Process Impacts. 2018 March 01; 20(3): 428–436. doi:10.1039/c8em00018b.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



adverse health outcomes. In toxicology, the Adverse Outcome Pathway (AOP) framework 

acts as a means for assembling and organizing biological knowledge to facilitate the 

prioritization of research and to apply research results in support of human health and 

ecosystem risk assessment.1–4 The National Academies acknowledge that a similar 

framework is also necessary for exposure science. For instance, due to the complex nature of 

exposure data, such as spatial and temporal fragmentation, in addition to challenges 

associated with generation of data and knowledge across numerous disciplines, an 

organizational framework that works towards bridging that knowledge and data would 

greatly strengthen the field of exposure science.5

Fragmentation within exposure science arises from many aspects of its goals and practices. 

Exposure data are gathered at multiple levels of biological organization (e.g., population, 

individual, or test system) and in a variety of media (e.g., air, soil, water, food, biological 

specimens, consumer products, and cell culture) in space and time.5–7 Individuals and 

research groups involved in collecting exposure data are similarly diverse, spanning the 

breadth from Tribal Community institutions8 to cities, state and federal agencies, academic 

laboratories, industries, and non-governmental institutions.9 Finally, these assorted data are 

used in multiple disciplines, such as environmental chemistry, geographic spatial analyses, 

dosimetry analysis, and human health risk assessment. The complex nature of fragmentation 

in exposure data results in this data being scattered across various repositories and 

institutions,5 thus impeding the ability to make most data “findable, accessible, 

interoperable, and reproducible (FAIR Guiding Principles)”.10 It is often the case that data 

are used only once for the specific purpose of the study generating that data, thus limiting 

the full potential the data might offer if incorporated into other studies. Even when data are 

readily available to investigators, diverging structural schemas, data dictionaries, and code 

sets often hinder their practical use in other applications.11

In addition to recognizing the need for a framework for organizing disparate data, the 

National Academies also refers to a lack of an infrastructure that has the potential to better 

organize and coordinate the existing and rapidly evolving components of exposure science.5 

Currently, numerous tools and databases exist that predict or store specific exposure 

information, from environmental media (e.g., soil, dust, water) to biological media (e.g., 
blood, cell, gill surface).12–17 There are also guidance documents on integrating exposure 

information into risk assessment. However, no infrastructure exists that organizes existing 

exposure measurements and predictions to allow for a holistic dissemination of exposure 

information, regardless of the type of stressor. As investigators continue to advance their 

respective fields through progression of monitoring, analytical, and modeling 

methodologies, such an infrastructure would enable data collected for a specific purpose to 

be applied and integrated to other relevant areas of research, enhancing the benefits beyond 

the original purposes for which those data were collected. Over time, a broader coverage of 

exposure knowledge will become apparent to investigators across multiple disciplines, 

allowing them to design new studies that might not otherwise be possible without such a 

holistic perspective.
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A framework for exposure science

Just as ontologies have previously formalized descriptions of biology and toxicology,18–20 

development of an exposure ontology has acted as an initial step towards addressing the 

need for an infrastructure within the exposure science community.21 An exposure ontology 

allows exposure events to be described in a systematic manner that supports both inter-

operability and, eventually, computational reasoning. Also needed is a framework able to 

explicitly capture both the specific attributes of an exposure event, as a complement to 

exposure ontology, and the inter-relationships among exposure events.

This exposure science framework, designed to support the public health objectives outlined 

in the National Academies report,5 is proposed as the Aggregate Exposure Pathway (AEP) 

concept.22 An AEP is defined as “the assemblage of existing knowledge concerning 

biologically, chemically, and physically plausible, empirically supported links between the 

introduction of a chemical or other stressor into the environment and its concentration at 

asite of action, or target site exposure (TSE)”.22 Within the AEP framework, a specific 

emphasis has been placed on allowing for dissemination and reuse of measured or predicted 

data across a variety of scientific disciplines in order to inform a more comprehensive 

exposure overview for stressors. Additionally, a simple terminology used in the AEP 

framework allows it to remain generic, consistent, and interoperable for use across multiple 

disciplines and for all stressors.

At first glance, the AEP framework closely shares many features with existing exposure 

constructs such as exposure ontology, conceptual site models (CSMs),23 fate and transport 

models, and exposure models. The AEP framework and its terminology are neither intended 

to replace existing constructs and traditional exposure science methods, nor to alter current 

risk assessment practices. Rather, the AEP framework can facilitate integration among 

existing disciplines, constructs, and models by making fragmented exposure information 

readily available. One such example of an existing tool is MERLIN-Expo, which is an 

integrated modeling system that contains a library of exposure models for simulating 

concentrations of stressors in a wide range of environmental and biological media.13 Each 

model within this tool is the result of a concerted effort to achieve exposure predictions 

under a specific scenario, such as simulating the distribution of organic contaminants and 

metals in abiotic media of river systems. This effort requires an understanding of the 

mechanisms in advance, as well as an investment in time and resources, to model the system 

and to generate de nova predictions.

While the AEP framework can and should incorporate more advanced knowledge of the 

system, its scope is much broader. By systematically capturing exposure information without 

the effort involved in modeling underlying mechanisms, the AEP framework can highlight 

emergent properties of the system and facilitate the development and expansion of modeling 

efforts. As an example, consider two disjointed models that capture different points along an 

exposure continuum. If these models report input and output exposure data as it relates to an 

AEP, then additional information found within that AEP could offer clues into how these 

two models might be connected. While establishing this connection would be possible 

without the AEP framework in some cases, it may not be as efficient. In cases where the 
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models fall into different fields of study, it is possible no inherent connection between the 

two would be recognized in the absence of a comprehensive, systematic framework that 

assembles data and relationships among those data in an organized manner. Therefore, the 

AEP should serve as this unifying framework that strengthens communication of exposure 

measurements, predictions, and data-gaps to the public health community in a manner that 

allows for data generated from one study to be reused and repurposed, and that enables 

humans and computers to more efficiently organize and analyze these data.

A major motivating factor for the AEP framework involves its complementation to the AOP 

framework, thereby allowing hazard information to be interpreted at the relevant level of 

biological organization (e.g., molecular level, external exposures).22 AOPs are chemical 

agnostic by design, and thus the only link between stressors and an AOP lies at the 

molecular initiating event (MIE), which is the initial interaction between a molecule and a 

biomolecule or biosystem.24 With an AEP providing available stressor-specific exposure 

information for a biological target, and an AOP linking molecular perturbations at that target 

site with adverse outcomes of regulatory concern, dose–response results generated from 

toxicity testing can be interpreted from a mechanistically-based context, greatly 

strengthening confidence in the risk assessment process. For example, the lowest effective 

dose measured from an in vitro assay, which relates to an MIE, can be compared to cellular 

or tissue concentrations derived from real world exposure data organized in AEPs. When 

considering multiple chemicals that induce activity within the same in vitro assay, exposure 

at the most relevant site of action for each of those chemicals may be estimated from 

exposure data organized in their individual AEPs, or perhaps even through use of exposure 

data obtained from AEPs of similar chemicals. Exposures from individual chemicals can 

then be converted into exposure equivalents of an index chemical based on relative potency, 

to estimate the cumulative effect from dose addition of those chemicals. Finally, a survey of 

available exposure data could be used to prioritize chemicals for high throughput toxicity 

screening, such that the coverage for toxicity information is more extensive where exposures 

are known to be higher. These examples do not imply that all AEPs should have 

corresponding AOPs. Rather, the AEP framework facilitates more efficient connections 

between exposure and hazard information in order to encourage systems-based approaches 

that generate measurements or estimates of exposure that better inform the source-to-

outcome continuum.

Refining the elements of the aggregate exposure pathway framework

Overview

Recognizing that successful refinement of the AEP framework requires continuing dialogue 

and collaboration amongst experts in exposure science, a two-day workshop (May 9–11, 

2016, Durham, NC) was organized to assemble a small group of participants from 

government, academia, and industry to address several key topics. These topics included 

definition, development, and applications of AEPs, along with conceptual design of an 

infrastructure. The workshop consisted of small group breakout sessions, followed by larger 

group discussions among participants. Reception of the AEP concept has been mixed; some 

envision great potential for the framework to enhance exposure science, and others question 
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the distinction between AEPs and existing exposure science tools. A summary of the 

presentations and discussions is available in the workshop proceedings.25 This manuscript 

attempts to address several concerns and inquiries emerging from the workshop, especially 

in regards to the definition and development of an AEP. Other topics, including 

recommendations for infrastructure design, applications of AEPs, and integration of 

ecological and human exposures, will be included in future publications. Additionally, case 

studies demonstrating the integration of the AEP and AOP frameworks are underway and 

will be presented in separate publications.

One critical issue arising from the workshop is whether an AEP is required to be stressor 

specific or if it can incorporate information from multiple stressors sharing common 

exposure characteristics (e.g., an AEP specifically for DDT vs. a generic chemical-agnostic 

AEP that might be applied to all endocrine disruptors). A general consensus among 

workshop participants is that attempting to define one AEP in terms of more than one 

stressor is nearly an impossible task. Additionally, reducing AEPs to generic fate, transport, 

and transformation processes is not the original intent for proposing such a framework. 

There is considerable difficulty in determining the approach and resolution for grouping 

together stressors into a single AEP when these stressors share characteristics for one part of 

the pathway but not others. For example, both DDT and bisphenol A are found in surface 

water, but the latter is unstable in soil while DDT binds strongly to soil. In this example, it 

becomes problematic to decide whether a hypothetical AEP for endocrine disruptors should 

include soil as a medium of interest. Furthermore, a single concentration value cannot be 

established for multiple stressors within the same grouping (e.g., disinfection by-products). 

Rather, only concentrations for individual stressors within that grouping can be reported 

(e.g., chloroform, bromate, chloramine). Thus, an individual AEP continues to be defined as 

stressor specific, but this definition should not be a barrier to the broader use of the 

framework, such as applying a network of individual AEPs to investigate co-exposures to 

multiple chemicals. Also, although examples provided herein focus on chemicals, the 

ultimate intent is for the framework to encompass the full range of stressors, i.e., those 

entities that are not only chemical, but also biological, biomechanical, and physical agents.

The workshop participants also suggested that the terminology in the AEP framework, 

originally adopted from the AOP framework, required revision. Rather than adopting “key 

event” and “key event relationship” from AOPs for use as the elements in AEPs, the more 

appropriate terms conforming to the unique characteristics inherent within exposure 

information are now listed as “key exposure state” (KES) and “key transitional relationship” 

(KTR). Describing an AEP using this revised terminology provides a uniform and easily 

understood format for intuitively reporting, sharing, communicating, and applying exposure 

data. Refinement of these two elements is discussed further below.

Key exposure state

A KES is represented as a node in an AEP framework and is defined as the state of a stressor 

in space and time. A KES is either a qualitative (i.e., detected) or quantitative (i.e., 
concentration) state of a specific stressor measured or predicted within an environmental or a 

biological medium, or within a manufactured product. The state of a stressor within a 
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medium is driven by physicochemical properties of that particular stressor, such as in the 

case with a highly volatile chemical found primarily in media types pertaining to air. In 

addition to stressor-specific properties, each KES also reflects general characteristics 

associated with the respective environmental, biological, or manufactured medium. For 

example, ozone levels are influenced by the composition of nitrogen oxides, volatile organic 

compounds, and amount of sunlight, all of which constitute characteristics of the outdoor air 

in which ozone levels are measured. Finally, the number of KESs within an AEP for a 

stressor can also be influenced by its commercial use and release or mode of entry to the 

environment.26

An AEP is anchored by two specialized KESs at both ends: a source and a TSE (Fig. 1). 

Unlike other KESs that are solely databased, source(s) and TSE(s) are implicitly included in 

an AEP even when measurements or predictions are not available. As defined in the Agency 

for Toxic Substances and Disease Registry’s (ATSDR) Public Health Assessment Guidance 

Manual,27 a source is the state of a stressor at its introduction or conception. For chemicals 

in commerce, the source could be production volume at a manufacturing plant. The source in 

an AEP for a metabolite originating from environmental or biological processes (e.g., 
photolysis, hydrolysis, or biodegradation/biotransformation) is its state in the medium in 

which the transformation process is occurring (e.g., blood or soil). While source information 

may not always be obtainable, one can be certain that an origin does exist for any stressor. 

Additionally, source information, particularly whether the source is far-field (e.g., emissions 

of waste perfluorinated surfactants into a river) or near-field (e.g., spraying of surfactant-

containing cleaners onto a kitchen counter), is critical for risk management or remediation 

purposes.

On the other end, the term TSE has been taken from the National Academies report on 

Exposure Science in the 21st century,6 and is defined here as the state of a stressor at a site of 

action (e.g., tissue or organ). Within the context of the purpose of a study applying an AEP, 

any KES has the potential to be considered a TSE, provided that exposure information for 

that KES is relevant to a specific target or its surrogate. The TSE may be ostensibly external 

to an organism (e.g., skin, gill, or plant surface), or internal (e.g., organ, tissue, cell, or 

enzyme).28 A TSE for one organism of interest might also act as an intermediate KES that 

links to another KES, source, or TSE (Fig. 1 and 2a). For example, a TSE that represents 

mercury concentrations measured in fish tissue can also be a KES that leads to a TSE 

representing mercury measured in human blood, through human consumption of 

contaminated fish tissues. Such a capability also allows for a natural integration among 

humans and wildlife, as both entities affect each other in a reciprocal manner. It is important 

to recognize that while both source(s) and TSE(s) are implied in an AEP, it is the specific 

purpose of the study that determines whether a source or TSE is needed for that study. For 

example, a study that compares an established guidance level for a given stressor (e.g., 
annual standard for PM2.5 is 12 μg m−3) to environmental measurements or a study that 

analyzes the temporal trends of exposures does not require explicit linkage to a biological 

target. Thus, a TSE is not needed for these types of studies, but source data can be useful for 

interpreting the study ndings. On the other hand, an epidemiological study, which 

investigates the association between exposure to a stressor and adisease outcome, rarely use 

source data as exposure metrics.
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Key transitional relationship

The connection between two KESs in the AEP framework is described by the term KTR, 

which represents either the movement of a stressor within one AEP (Fig. 1; black arrows) or 

transformation from one stressor to another stressor across two different AEPs (Fig. 1; red 

arrows). Some stressors might only be generated within a biological system through 

biotransformation of one or more parent compounds, as in the case with 5-hydroxy-

monoethylhexyl phthalate (Fig. 1). In this case, the KTR links the parent compound to the 

source of the metabolite within the same biological medium. In other cases, a stressor may 

originate from transformation of its precursor in both environmental and biological media, 

as illustrated with mono(2-ethylhexyl) phthalate (MEHP) (Fig. 1).

While a KES is always associated with a measurement or prediction, a KTR that connects 

any two KESs is often a general description of a mechanistic process based upon scientific 

principles or professional judgment. KTRs can also be quantitative (i.e., rate) or qualitative. 

For example, a predicted perchlorate intake rate of 0.015 μg per kg per day at the 95th 

percentile among women of reproductive age in the U.S.29 is a quantitative KTR; 

microsomal degradation of bis(2-ethylhexyl) phthalate (DEHP) into MEHP in soil30 is a 

qualitative KTR. KTRs are often subjective, in that different investigators may have 

alternative views on whether two KESs are related or how they are related. Therefore, it is 

up to the discretion of the investigator to decide which KES(s) and associated KTR(s) are 

most relevant and should be included within a particular study.

Similar to a KES, a KTR is influenced by the physicochemical properties of stressors in 

addition to general characteristics of the media, and thus mediates the concentrations of the 

stressor(s) in two connected KESs. These general characteristics are often expressed as 

parameters in mathematical models to predict the dynamic transition from one KES to 

another, e.g., estradiol transport between sediment and overlying riverine surface water (Fig. 

2a). Throughout most of the year, estradiol is adsorbed easily onto the sediment due to its 

high lipophilicity, resulting in lower concentrations of estradiol in overlying water (Fig. 2b). 

However, during warm summer months, algal blooms can cause a rise in surface water pH 

above that of the pKa value for estradiol,31 resulting in a significantly reduced adsorption 

capacity32 and lower estradiol concentrations in sediment (Fig. 2b), and subsequently higher 

water concentrations. In the above example, algal population growth rate and resulting 

bloom decay can be incorporated into a mathematical model to predict changes in surface 

water pH level and the subsequent impact on estradiol concentrations in surface water and in 

sediment.

Levels of organization

Within the first AEP manuscript22 and during the May 2016 workshop, the diagrams of 

AEPs were presented with each key event (now KES) grouped within specific 

compartments, such as environmental media, external exposure, or internal exposure. This 

earlier diagram of the AEP intentionally adopted a visual representation similar to that of the 

AOP framework. In the case of an AOP, assigning key events into one of various scales of 

biological organization (e.g., molecular, organ) is warranted because the biological markers 

being measured clearly determine the most relevant biological level (e.g., survival rate at the 
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population level, cytotoxicity at the cellular level). In the case of an AEP, the object being 

measured is always the potential stressor, and the distinction among exposure compartments 

is not as straightforward as with biological organization. For example, assigning outdoor air 

to “environmental media” and indoor air to “external exposure” is arbitrary and defeats the 

purpose of the AEP being an interoperable and universal framework. Consequently, the 

updated diagram of AEPs (Fig. 1) now shows KESs that are connected by their associated 

KTRs in no specific compartmentalized format, as the KESs themselves capture spatial, 

temporal, and organism-specific characteristics in their description. The refined definition of 

a KES also addresses the need for specificity when recording the concentration of a stressor 

measured or predicted at a given place and time, which can be visualized by the stacks of 

individual KESs under a given medium (Fig. 1 and 2). For example, the AEP for estradiol 

may contain four KESs related to its measurement in waste water treatment plant (WWTP) 

influent that represent four distinct measurements, which are likely contributed by different 

studies.

The levels of biological organization originally defined for the AOP can be useful in 

determining whether a TSE under consideration provides sufficient linkage to an AOP. The 

TSE coincides with the site of a target whose perturbation can lead to an adverse outcome. 

As the levels of biological organization range from the molecular to the population level, a 

TSE can be defined at any level. Internal dosimetry is not required to be addressed if an 

investigator determines that evaluation of an external TSE is sufficient for the purpose of the 

study. In other cases, it would be perfectly reasonable to define multiple TSEs in series 

within a given AEP to highlight the different levels of biological organization at which 

exposure can be determined for that particular stressor. For example, if effects of interest 

were based on epidemiological data, then the most appropriate level of resolution for the 

TSE would likely be at the individual level. In contrast, when effects of interest are based on 

in vitro assay that ties to a MIE within an AOP, then the most appropriate level of resolution 

for the TSE would be at the cellular or tissue level. If a stressor is not measurable at the 

cellular or tissue level (e.g., concentration in brain), then its measurement at a biological 

level further upstream (e.g., concentration in plasma) could act as a TSE. Once 

measurements of that stressor within a cell or tissue are made possible, as through 

technological advancements, then that original upstream TSE becomes an intermediate KES.

Developing aggregate exposure pathways

The advantages of the AEP framework can only be fully realized if a concerted effort is 

made to facilitate information exchange within and beyond the exposure science community. 

The broad acceptance of the AOP framework is a result of collaborative effort among an 

international community of developers and users, as well as a central hub for sharing and 

storing AOP-related information (http://aopkb.org). While the AEP framework will also 

benefit from the creation of a data infrastructure that supports a communal effort for 

developing and populating individual AEPs, it also enjoys the advantage of being able to 

exploit decades of research leading to the development of environmental and exposure 

models. For example, multimedia environmental fate models33 can serve as repositories of 

knowledge and conceptual understanding about the interactions between chemicals and 

environmental systems; about chemical-specific properties that determine behaviors such as 
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partitioning, mass transfer, and chemical reactions; and about the properties of the systems 

that enable the behaviors. These numerous exposure tools provide a wealth of data that can 

complement AEP development. An information exchange platform may be suitable for 

integrating decentralized information from existing data sources, by indexing these data in a 

manner that renders them more searchable. The effort to develop such an infrastructure is 

non-trivial, and this decision will be best made after a thorough review of existing resources 

and needs of applications and tools most likely to benefit from AEPs.

The concept of incremental development is employed in the AOP framework through 

incorporation of new information as it is discovered, thus allowing AOPs to be qualitatively 

or quantitatively applied regardless of their stages of completion. The same holds true with 

development and application of AEPs. Monitoring studies can contribute to individual KESs 

or a small number of directly-linked KESs. In addition, non-targeted studies and many 

targeted monitoring studies analyze multiple stressors collected within the same media.34,35 

Not only do these studies contribute individual KESs for their respective AEPs, but they also 

generate co-occurrence information that can contribute to networks of AEPs. Information on 

current KESs and KTR mechanisms organized in an AEP can also inform the development 

or refinement of computational models, for predicting downstream KESs and conducting a 
priori exposure assessment. As more KESs are generated over time, either through 

measurements or predictions, existing and new models can be coupled to enable a more 

robust transition across multiple KESs. For example, estradiol concentrations measured in 

WWTP influent and effluent from New Orleans municipal facilities and in Mississippi River 

water can contribute to an AEP for estradiol (Fig. 2c),36 and these data can also inform the 

development of a wastewater process model to predict estradiol concentrations in other 

water bodies. As an AEP continues to evolve into an ever-expanding interconnected network 

of exposure information, data gaps are more easily identified, thus enabling prioritization of 

research efforts and the emergence of new applications and tools that can advance the 

current state of exposure knowledge.

Characterization of variability and uncertainty, while critical to each stage of the risk-

assessment process, has remained a particular challenge in exposure assessment.6,37,38 

Variability refers to the heterogeneity of values in a system and can be better characterized 

but not reduced through additional measurements. Uncertainty, on the other hand, typically 

arises from incomplete information on the components of a system (e.g., KESs) or 

relationships among components (e.g., KTRs). Although not captured as explicit 

components of the AEP, the addition of a broad range of measurements or predictions for 

both KESs and KTRs gathered from disparate sources throughout AEP development can aid 

in addressing variability and uncertainty. As more information is collected for a particular 

media type or mechanism, AEPs can help capture and characterize variability; moreover, by 

drawing attention to and helping to elucidate the complexities in the exposure pathways, 

AEPs can also assist in generating new hypotheses to reduce uncertainty.

Application of the aggregate exposure pathway framework

The AEP framework serves as a mechanism to universally organize and integrate exposure 

measurements and predictions, which can then subsequently be used in a variety of 
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applications. In the 2016 workshop, the participants introduced several potential 

applications, some of which are listed below. Additional recommended applications can be 

found in the workshop proceedings.25

• Organizing exposure data to support risk-based screening

• Standardizing data reporting and sharing

• Describing potential pathways to test new hypotheses

• Supporting life-cycle assessment

• Informing the exposome

• Developing read-across approaches to estimate exposures for data-poor 

chemicals

• Refining and increasing confidence in exposure assessment

• Reducing uncertainty in risk assessment

• Identifying and prioritizing data gaps for research and funding needs

• Improving communications with decision makers and stakeholders

The details regarding use of these and other applications of AEPs will be provided in a later 

publication.

Finally, AEPs may be used to underscore the interdependence between human and 

ecosystem health. The methodologies for human health and ecological risk assessment were 

developed independently,39–41 and it was soon realized that both should be integrated in a 

holistic approach that views humans as a component of an ecosystem to address real-life 

(i.e., non-idealized) scenarios of multi-stressor, multimedia, and multi-species exposures. As 

Suter and colleagues note, exposures to environmental chemicals by human and nonhuman 

organisms result from the same sources, the same transportation and transformation 

processes, and often in the same media.42 Thus, a common multimedia fate and transport 

model can be used to estimate the time course of media-specic concentrations for all 

organisms. Such a model can be populated using information organized in an AEP that 

encompasses the relevant terrestrial and aquatic components of the ecosystem. Moreover, an 

assembly of AEPs into a network can facilitate moving beyond a stressor-by-stressor 

approach that focuses on a single media, a single source, and a single toxic endpoint, into 

decision-making that considers the overall risks to human and nonhuman organisms, 

populations, and ecosystems.

Conclusions

The concept of the AEP framework has seen significant criticism, feedback, and suggestions 

regarding its refinement since its introduction.22 The content within this current work 

reflects the perspectives of the authors after considering feedback from participants of the 

May 2016 workshop, and presents possible avenues on addressing key issues arising from 

that workshop and initiating continued dialogue among experts in the fields of exposure 

science, ecological modeling, and risk assessment. As more data are collected within the 
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AEP framework, users will benefit from better-organized and integrated exposure 

information, regardless of the uses for those data. In addition, future research can be tailored 

to address known data gaps and modeling needs highlighted by the comprehensive 

integration of exposure information. Furthermore, the coupling of the AEP and AOP 

frameworks will support the interpretation of in vitro dose–response data so that health 

effects can be more efficiently assessed for exposures to multiple chemical and non-

chemical stressors. The examples considered herein do not capture the full potential offered 

by the AEP framework, and additional case studies are underway to further highlight its 

value. While there are certain similarities between AEPs and existing exposure science 

resources, the potential applications listed herein and ability to complement existing tools 

and models stand as a testament to the significant contributions such a framework might 

provide for 21st century exposure science.
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Environmental significance

The environmental health sciences community has seen numerous benefits arising from 

the broad applicability of science-based frameworks for organizing toxicological and 

biological information. The field of exposure science is poised to reap similar benefits 

from a complementary framework capable of organizing, sharing, and integrating 

exposure data and knowledge. The Aggregate Exposure Pathway seeks to characterize 

those chemical and non-chemical stressors that are found throughout the environment and 

within biological systems. This framework will promote more efficient data integration to 

support modeling efforts, and to make exposure information more readily accessible for a 

variety of applications. This framework will also aid in the assessment and minimization 

of health risks posed by stressors to humans and ecological systems through its data 

dissemination capabilities.
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Fig. 1. 
The two elements of the Aggregate Exposure Pathway (AEP) framework are key exposure 

states (KESs; rectangles) and key transitional relationships (KTRs; arrows). Each KES 

captures spatial, temporal, and organism-specific exposure information. There are two 

specialized KESs: a source (orange rectangle) and a target site of exposure (TSE; green 

rectangle). In some cases, a TSE for one stressor can also act as an intermediate KES for 

another stressor depending on a user’s preferred target of interest (shown as blue-green 

rectangles). In other cases, a source for one stressor can also act as an intermediate KES for 

another stressor when there are multiple generations of metabolites (shown as blue-orange 

rectangles). There are also two types of key transitional relationships: processes that 

describe the movement of a stressor between media within an AEP (black arrows) and 

processes that describe the conversion of one stressor to another across two AEPs (red 

arrows). Here, a hypothetical AEP for diethylhexyl phthalate (DEHP) is presented with 

inclusion of several known media types in which it is found, along with hypothetical AEPs 

for two metabolites of DEHP, monoethylhexyl phthalate (MEHP) and 5-hydroxy-

monoethylhexyl phthalate (5-OH-MEHP). Each media type is represented by stacks of KESs 

associated with that medium, with each KES representing exposure data from an individual 

study.
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Fig. 2. 
(A) The full Aggregate Exposure Pathway (AEP) for estradiol is presented here for two 

primary biological targets – humans and fish can act as both as a target site of exposure 

(TSE) as well as an intermediate key exposure state (KES). This full AEP is used as an inset 

(top-left) for (B) and (C), with the KESs (rectangles) and key transitional relationships 

(KTRs) of interest highlighted in red and remaining as dark arrows, respectively. (B) 

Concentrations of estradiol are higher in riverine sediment when adsorption is greater under 

cool weather conditions, as sparse algal populations during this period result in pH levels 

below the pKa value for estradiol in water (left panel). During periods of warm temperature, 

algal blooms can cause pH levels to rise above estradiol’s pKa value and lead to lower 

adsorption into sediment (right panel) and higher estradiol concentrations in overlying water. 

(C) The reciprocal nature of AEP development is demonstrated here. A partial AEP for a 

stressor is provided through data generated from individual studies and can contribute KESs 

and/or KTRs to a full AEP. A partial AEP can be extracted from a full AEP for specific 

applications, such as developing an exposure model. In this example, KESs that represent 

estradiol concentrations in wastewater treatment plant (WWTP) influent and effluent from 

New Orleans municipal facilities and in Mississippi River Water were obtained from 

published literature (Wang, et al., 2012).
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