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Abstract

Metabolomics is a potentially powerful tool for identification of biomarkers associated with 
lifestyle exposures and risk of various diseases. This is the rationale of the ‘meeting-in-the-middle’ 
concept, for which an analytical framework was developed in this study. In a nested case–control 
study on hepatocellular carcinoma (HCC) within the European Prospective Investigation into 
Cancer and nutrition (EPIC), serum 1H nuclear magnetic resonance (NMR) spectra (800 MHz) were 
acquired for 114 cases and 222 matched controls. Through partial least square (PLS) analysis, 
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21 lifestyle variables (the ‘predictors’, including information on diet, anthropometry and clinical 
characteristics) were linked to a set of 285 metabolic variables (the ‘responses’). The three resulting 
scores were related to HCC risk by means of conditional logistic regressions. The first PLS factor 
was not associated with HCC risk. The second PLS metabolomic factor was positively associated 
with tyrosine and glucose, and was related to a significantly increased HCC risk with OR = 1.11 
(95% CI: 1.02, 1.22, P = 0.02) for a 1SD change in the responses score, and a similar association was 
found for the corresponding lifestyle component of the factor. The third PLS lifestyle factor was 
associated with lifetime alcohol consumption, hepatitis and smoking, and had negative loadings on 
vegetables intake. Its metabolomic counterpart displayed positive loadings on ethanol, glutamate 
and phenylalanine. These factors were positively and statistically significantly associated with HCC 
risk, with 1.37 (1.05, 1.79, P = 0.02) and 1.22 (1.04, 1.44, P = 0.01), respectively. Evidence of mediation 
was found in both the second and third PLS factors, where the metabolomic signals mediated 
the relation between the lifestyle component and HCC outcome. This study devised a way to 
bridge lifestyle variables to HCC risk through NMR metabolomics data. This implementation of 
the ‘meeting-in-the-middle’ approach finds natural applications in settings characterised by high-
dimensional data, increasingly frequent in the omics generation.

Introduction

Metabolomic profiles from blood and other biological samples col-
lected from large-scale epidemiologic studies are increasingly being 
investigated (1), following recent developments in nuclear magnetic 
resonance (NMR) and mass spectrometry (MS) enabling the assess-
ment of metabolic profiles for large numbers of individuals. As a 
result, metabolomic data is gradually playing a key part in clinical 
and observational studies; and new statistical methodologies (2) are 
increasingly being sought to explore insights into pathological pro-
cesses that metabolomics may provide in order to better understand 
determinants of disease development. These approaches explore a 
variety of aetiological hypotheses; however, they usually focus on 
one aspect at a time, combining metabolomics with either epidemio-
logic/phenotypic data on lifestyle exposures (3) or with disease out-
comes (4,5). The main aim of this work is to jointly use all aspects 
that are potentially informative to apprehend the contrivances of 
disease development.

Metabolomic data offers the opportunity to identify signatures 
and biomarkers associated with environmental exposures and the 
risk of a disease. Prospective studies are conceptually suitable for this 
purpose, since they rely on biological samples collected before dis-
ease onset, and are thus marginally influenced by metabolic changes 
due to processes of disease development. In this scenario, the ‘meet-
ing-in-the-middle’ (MITM) approach (6) has been conceived as a 
research strategy to identify biomarkers that are related to specific 
exposures and that are, at the same time, predictive of disease out-
come. Finding this overlap between exposure and disease of ‘inter-
mediate’ biomarkers can potentially disclose useful information on 
the exposure-to-disease pathway, and may serve as an objective risk 
exposure measure, ultimately allowing the identification of a tar-
geted prevention scheme. The MITM was previously implemented 
as a proof of concept in a case–control study nested within a cohort 
of healthy individuals (7), where a list of putative intermediate 1H 
NMR biomarkers linking exposure to dietary compounds, mainly 
micro- and macronutrients, and disease outcomes (colon and breast 
cancer) were investigated.

In this study, we extend previous attempts to model the MITM 
by fully integrating metabolomics, lifestyle and disease risk in a sin-
gle analytical framework. A  strategy was developed to simultane-
ously investigate a broad range of metabolites and lifestyle variables 
with a partial least square (PLS) regression model (8). The resulting 
scores were related to the risk of hepatocellular carcinoma (HCC), 

in a case–control study nested within the European Prospective 
Investigation into Cancer and nutrition (EPIC). HCC is the most fre-
quent primary form of cancer affecting the liver, an organ that plays 
a critical role in many metabolic pathways (9). HCC is a disease 
with multifactorial origins embracing lifestyle and dietary exposures 
whose intersection may reveal metabolomic signals (10) relevant 
to cancer onset. The system of relationships between metabolomic 
profiles and lifestyle factors in relation to HCC was evaluated by 
means of mediation analysis. The methodological challenges charac-
terising the analysis of large and complex metabolomic datasets are 
described and discussed.

Methods

EPIC design
The European Prospective Investigation into Cancer and nutrition 
(EPIC) is a large cohort established to investigate the association 
of diet, lifestyle and environmental factors with cancer incidence 
and other chronic disease outcomes. Between 1992 and2000, over 
520 000 participants aged 20–85 years, were recruited from 23 cen-
tres in 10 Western European countries including Denmark, France, 
Germany, Greece, Italy, Norway, Spain, Sweden, the Netherlands 
and UK (11). The design, rationale and methods of the EPIC study 
including information on dietary assessment methodology, blood 
collection protocols and follow-up procedures were discussed previ-
ously (11).

Between 1992 and 1998, standardised lifestyle data, anthropo-
metric measures and biological samples were collected at recruit-
ment, prior to onset of any disease (11). Validated country-specific 
questionnaires ensuring high compliance were used to measure 
diet over the previous 12  months (12). Blood samples are stored 
at the International Agency for Research on Cancer (IARC, Lyon, 
France) in −196ºC liquid nitrogen for all countries, exceptions being 
Denmark (nitrogen vapour, −150ºC) and Sweden (freezers, −80ºC).

The nested case–control study
The present study focused on data with available sera samples 
from a nested case–control study in EPIC on HCC (13). Cases of 
HCC were identified from all participating EPIC centres except for 
Norway and France (n  =  117) from recruitment (1993–1998) up 
to 2007. Two controls (n = 232) were selected for each case from 
all cohort members alive and free of cancer (except non-melanoma 
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skin cancer) by incidence-density sampling and were matched on age 
at blood collection (±1 year), sex, study centre, date (±2 months), 
time of the day at blood collection (±3 h) and fasting status at blood 
collection (<3, 3–6, >6 h); among women, additional matching cri-
teria included menopausal status (pre-, peri-, post-menopausal) and 
hormone replacement therapy (HRT) use at time of blood collection 
(yes/no). In the present study, cases and controls were both included 
in the analyses as the subjects were all cancer-free at blood collection. 
Out of the total 349 subjects, 7 subjects (3 cases and 4 controls) had 
too little serum volume for NMR spectral acquisition with sufficient 
sensitivity; 6 additional control subjects were excluded following 
the exclusion of their corresponding case subject. The final analysis 
included 114 HCC cases and 222 matched controls of which 108 
case–control sets with two matched control subjects and 6 sets with 
one matched control subject.

NMR spectra acquisition
Sera were processed using standard procedure for 1H NMR meta-
bolic measurement and profiling protocols (14). Details on the sera 
sample preparation as well as NMR data acquisition and process-
ing have been described elsewhere (15). In brief, each spectrum was 
reduced to 8500 bins of 0.001 ppm width over the chemical shift 
range of 0.5–9 ppm. Spectra were normalised to total intensity, cen-
tred and Pareto scaled, and additionally normalised for batch effects 
using the batch profiling calibration method (16). After removal of 
the structured noise (characterised by a specific mean and standard 
deviation) located in a well-known noise region (8.5–9 ppm) and 
variables with identical characteristics, the statistical recoupling 
of variables (SRV) (17), a bucketing procedure, was applied to the 
metabolomic spectra. The SRV procedure identifies clusters of vari-
ables with respect to the ratio of covariance and correlation between 
consecutive variables along the chemical shift axis, allowing the res-
tauration of the spectral dependency and the recovery of complex 
NMR signals corresponding to potential physical, chemical or bio-
logical entities. More details on the SRV procedure are available in 
the Supplementary Appendix, available at Mutagenesis Online. This 
permitted a reduction of the number of NMR variables from 8500 
bins to 285 clusters of variables corresponding to reconstructed peak 
entities which constituted the Y-set of metabolic variables. All steps 
to obtain the data were done without knowledge of the case–control 
status of the subjects. Quality control (QC) samples were included to 
ensure reproducibility of the NMR data acquisition. 

Metabolite identification
The assignment of NMR signals observed in the 1H one-dimen-
sional fingerprints to metabolites has been achieved by the analy-
sis of additional 2D NMR experiments 1H–13C HSQC and 1H–1H 
TOCSY obtained on a subset of representative samples (one control 
and one case). The measured chemical shifts were compared to ref-
erence shifts of pure compounds using HMDB (18), MMCD (19) 
and ChenomX (ChenomX NMR suite, ChenomxInc, Edmonton, 
Canada) databases.

Lifestyle variables
The predictors (what will be referred to later on as the X-set) 
included 13 dietary variables from main EPIC food groups compiled 
from validated country-specific food frequency questionnaires (FFQ) 
(11,20) (potatoes and other tubers; vegetables; legumes; fruits, nuts 
and seeds; dairy products; cereal and cereal products; meat and meat 
products; fish and shellfish; egg and egg products; fat; sugar and 
confectionary; cakes and biscuits; non-alcoholic beverages), alcohol 

average lifetime intake (continuous, g/day), anthropometric measures 
including body mass index (continuous, kg/m2) and height (continu-
ous, cm) that were measured by trained interviewers in the majority 
of participants (11), highest level of education achieved (categorical: 
none or primary school completed, technical/professional school, 
secondary school, longer education (incl. university degree), unspeci-
fied), smoking status (categorical: never, former, current smoker, 
unknown), a measure of physical activity (continuous, metabolic 
equivalents of task (MET)/h), hepatitis status [yes/no, from biomarker 
measures of HBV and HCV seropositivity (ARCHITECT HBsAg and 
anti-HCV chemiluminescent microparticle  immunoassays; Abbott 
Diagnostics, France)] and baseline self-reported diabetes status (yes/
no). Descriptive information on these variables can be found in 
Supplementary Table 1, available at Mutagenesis Online.

Statistical analyses
PC-PR2 analysis
Principal component partial R-square (PC-PR2) was primarily used 
to identify and quantify sources of systematic variability within 
metabolomic data (15). PC-PR2 combines aspects of principal 
component analysis (PCA) and the R2

partial statistic in multiple lin-
ear regression, and allows for (some) intercorrelation between the 
explanatory variables under scrutiny (15). In short, PCA is performed 
on the 285 clusters of 1H NMR variables and a number of compo-
nents is retained explaining an amount of total variability above a 
designated threshold (here, 80%). Then, multiple linear regression 
models are fitted where each component’s variability is explained 
in terms of relevant covariates, e.g. specific characteristics of sam-
ples like country of origin, smoking status, laboratory treatment, 
etc. For each given component, the R2

partial statistic is computed for 
all covariates, quantifying the amount of variability each independ-
ent variable explains, conditional on all other covariates included 
in the model. Finally, an overall R2

partial is calculated as a weighted 
average for every covariate, using the eigenvalues as components’ 
weights. Mathematical details pertaining to the PC-PR2 method are 
described elsewhere (15).

In this study, PC-PR2 was applied to the 285 clusters of 
NMR variables, whereas the explanatory variables examined for 
systematic variability were NMR batch, country of origin, sex, 
age at blood collection, serum clot contact time (centrifugation 
at the day of blood collection d, or the following day, d + 1), 
length of freezing time (≤15 vs. >15 years), and fasting status at 
blood collection (< 3, 3–6, > 6 h). With the similar motivation of 
identifying sources of variability within lifestyle data, a similar 
PC-PR2 analysis was applied to the 21 lifestyle factors, the exam-
ined covariates for systematic variability were country of origin, 
sex and age at recruitment. For both metabolomics and lifestyle 
data, residuals on the variable accounting for most variability, 
identified through PC-PR2 analyses, were computed in a series 
of univariate linear regression models (21) and were used in the 
subsequent PLS.

PLS analysis
A PLS model was used to relate lifestyle variables to metabolomic 
profiles. PLS is a multivariate technique that generalises features of 
PCA and multiple linear regression. PLS iteratively extracts linear 
combinations of, in turn, predictors (the X-set) and responses (the 
Y-set), which in this study, were lifestyle variables and metabolomic 
profiles, respectively. First, components or latent factors are extracted 
allowing a simultaneous decomposition of the X- and Y-sets, in 
order to maximise their covariance (22). The factors extracted from 
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the predictors’ set are orthogonal. Computational details of PLS are 
described in the Supplementary Appendix, available at Mutagenesis 
Online. As a standard step for the PLS algorithm, the X- and Y-sets 
were centred and standardised for the analysis and a simple expec-
tation–maximisation (EM) algorithm, adapted from the PLS kernel 
algorithm (23,24), was used to compute covariance matrices when 
missing values were present in the lifestyle data. This was done as 
follows: a first pass of PLS was computed filling in the missing val-
ues by the average of the non-missing values for each corresponding 
variable. A  second pass was then performed whereby the missing 
data were assigned their predicted values based on the first model, 
and the PLS regression is recomputed.

Then, a 7-fold cross validation analysis was carried out to 
select the number h of significant PLS factors to retain (8) (see 
Supplementary Appendix, available at Mutagenesis Online). This 
was achieved by splitting the data into seven groups of observa-
tions. In turn, each group of observations was considered as the test 
set, while the other six were the training sets, used to perform PLS 
analysis. A measure of PLS performance was determined for each 
step through the predicted residual sum of squares (PRESS) statistic, 
whereby the predicted values in the test set, the Ỹh matrix, based 
on the X-components estimated through the model in the training 
set, were compared to the observed responses, the Y matrix. This 
comparison is quantified by the squared Euclidean distance between 
these two matrices. In turn for an increasing number h of compo-
nents, the process is iterated seven times, until each group of obser-
vations serves as a test set. Eventually, the number h of selected PLS 
factors is the one minimising the PRESS statistic.

For each PLS factor, loadings were computed for the lifestyle 
(X-set) and the NMR (Y-set) variables. The loadings, i.e. coefficients 
quantifying the contribution of each original variable to the PLS fac-
tor, were used to characterise the various factors. As the analysis 
involved many variables in the X-set and, particularly, in the Y-set, 
the interpretation focused primarily on variables with loading values 
lower than the 10th percentile and larger than the 90th percentile 
for the X variables, and lower than the 5th and larger than the 95th 
percentiles for the Y variables, that were deemed the most significant 
contributors to the PLS factor.

Logistic regression analysis
Last, scores of each PLS factor were related to HCC risk in conditional 
logistic regression models to compute HCC odds ratios (ORs) and 
associated 95% confidence intervals (95% CI) where ORs express 
the change in HCC risk associated to one standard deviation (1SD) 
increase in the score. Models were adjusted for C-reactive protein 
concentration, alpha-fetoprotein concentration and for a composite 
score indicative of liver damage. The score summarises the number 
of abnormal values of circulating enzymes measured in the hepatic 
tissue in six liver function tests (alanine aminotransferase >55 U/l, 
aspartate aminotransferase >34 U/l, gamma-glutamyltransferase: 
men>64 U/l and women>36 U/l, alkaline phosphatase >150 U/l, 
albumin<35 g/l, total bilirubin > 20.5 μmol/l; cut-points were pro-
vided by the clinical biochemistry laboratory that conducted the 
analyses and were based on assay specifications) (25). These bio-
markers were measured on the ARCHITECT c Systems™ and the 
AEROSET System (Abbott Diagnostics) using standard protocols. 
Laboratory analyses were performed at the Centre de Biologie 
République laboratory, Lyon, France. These adjustments were 
deemed necessary to address potential confounding stemming from 
metabolic disorders, inflammation or underlying liver dysfunction 
(25–28). Adjustments for total dietary fibre, vitamin D, calcium 

and iron intakes (continuous) were evaluated but not retained in 
the final models for lack of confounding exerted by these variables. 
The receiver operating characteristic (ROC) curve and the associ-
ated area under the curve (AUC) were determined from conditional 
logistic regressions to evaluate the predictive performance of PLS 
models. AUC values were computed for conditional logistic models 
including progressively the PLS scores, separately for lifestyle and 
metabolomic factors (as shown in Table 4, column 1). The sensi-
tivity, specificity and accuracy were calculated for a cut-off point, 
selected as the minimal distance between the ROC curve and the 
upper left corner of the diagram (29,30). The corrected positive 
predictive value (PPV), taking into account the nested case–control 
design (31,32) was computed by including the prevalence of HCC 
in the EPIC population (π = 0.0004), computed over a 7-year period 
(1992–2010) where 191 HCC cases were ascertained from a total of 
477 206 participants included for case identification after relevant 
exclusions. The AUC unavoidably increases with the number of 
covariates added to the conditional logistic model. To address this 
issue, a resampling scheme was devised to compute an objective/
unbiased estimate of the AUC, inspired by the work of Uno et al. 
(33) For each one of the 1000 drawn bootstrap samples, a 10-fold 
cross-validation was performed, repeated 10 times to remove vari-
ation due to random partitioning of data and to yield more stable 
estimates. The predicted values from each of the conditional logistic 
models in the training set were used to derive AUC values in the 
test set. The 2.5th and 97.5th percentile values made up the 95% 
confidence intervals.

Sensitivity analysis
A sensitivity analysis was performed by running PLS on data exclud-
ing sets where cases were diagnosed within the first 2 years of fol-
low-up. The model was conducted on 271 observations (92 cases, 
179 controls), to investigate the performance of the PLS model, 
ruling out potential reverse causation. The metabolomic profiles of 
HCC cases diagnosed within 2 years from enrollment could reflect 
the presence of the tumour rather than informing about tumour aeti-
ology. The variable importance in the projection (VIP) statistic was 
used to facilitate the comparison of the sensitivity analysis with the 
main analysis. The VIP expresses the explanatory power of a predic-
tor variable X across all response variables Y (see Supplementary 
Appendix, available at Mutagenesis Online).

Mediation analysis
The mediating role of the Y-scores in the association between 
lifestyle profiles and HCC risk was assessed. Separately for each 
extracted combination of lifestyle and metabolomic PLS factors, 
mediation analyses were performed with the ‘paramed’ Stata func-
tion that allows for exposure–mediator interaction based on Valeri 
and VanderWeele’s work (34). Briefly, mediation was computed 
using a Baron and Kenny approach adapted to dichotomous out-
comes (35), where two models were specified. In the mediator model, 
the mediator (the Y-score) was linearly regressed on the exposure 
(the X-score), while in the outcome model the exposure (X-score) 
and the mediator (Y-score) were related to the HCC indicator in 
unconditional logistic regressions. Both models accounted for the 
concentration of C-reactive protein, alpha-fetoprotein and the com-
posite score of liver damage and additionally accommodated the 
other extracted metabolic profiles (Y-scores) to control for mediator-
outcome confounders that may occur when estimating the natural 
indirect effect (NIE) (34). As the outcome (HCC) is rare, direct and 
indirect effects can be estimated taking into account the case–control 
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design. This is done by using the same formulas for the effects, while 
running the mediator regression only for the controls (35). As media-
tion packages do not yet accommodate conditional logistic models, 
the outcome and the mediator models, which were accommodated 
in unconditional logistic regressions, were adjusted for centre and 
age at blood collection for sake of consistency with previous steps 
of the analysis.

Statistical analyses were performed using R (36) and SAS (37) 
in general, with the following packages for specific purposes: 
PROC PLS in SAS 9.4 for PLS analyses, ‘paramed’ in Stata 12 (38) 
for mediation analyses, ‘OptimalCutpoints’ in R for ROC-related 
assessments.

The different steps of the analytical framework developed in this 
study to model the MITM are presented in Figure 1.

Results

In the PC-PR2 analyses, a total of 17 and 14 principal components 
were retained to explain an amount of total variability exceeding 
80% in metabolomics and lifestyle data, respectively. Figure 2 shows 
that the ensemble of explanatory variables accounted for 19.4 and 
26.7% of total variance, respectively, in metabolomics and lifestyle 
data, of which the highest contributor was ‘country of origin’ with 
consistently 8 and 22%. PLS analysis was carried controlling for 
this variable.

After a 7-fold cross-validation, three PLS factors were retained 
accounting for 21.7 and 8.5% of the overall variability observed 
in predictor and response variables, respectively (Table 1). Lifestyle 
variables and clusters of NMR variables contributing highly to 
PLS factors were identified using factor loading values (Table  2). 
The first PLS factor was predominantly positively associated with 
dairy products and cakes and biscuits intake, while lifetime alcohol 
intake, smoking status and diabetes displayed negative loadings for 
this lifestyle component (Table 2). On the same PLS factor, signals 
mainly associated with glucose and bonds of lipids with negative 
loading values, and with aspartate, glutamine and lysine with posi-
tive loadings emerged on the metabolomic profile (Table 2). Lifestyle 
variables characterising the second PLS factor included cereal prod-
ucts, height and education level with negative loadings, and hepati-
tis with positive loadings. The metabolic signature included NMR 
variables with positive loadings associated with aromatic amino 
acids (phenylalanine, tyrosine) and glucose; and those with negative 

loadings associated mainly with bonds of lipids, threonine and man-
nose (Table 2). The third PLS factor had a lifestyle pattern outlining 
intake of vegetables (high negative loadings values), lifetime alcohol 
consumption, smoking and hepatitis infection (positive loadings). 
Its counterpart NMR pattern highlighted signals of glucose and 
aspartate, with high negative loadings, along with signals of ethanol, 
myo-inositol, proline and glutamate as prominent metabolites with 
positive loadings (Table 2).

Conditional logistic regression models relating HCC risk with 
the X- and Y-scores are shown in Table 3. The first PLS factor was 
associated to a non-significant decreased HCC risk (23 and 4% in 
the X- and Y-scores, respectively), while the second and third fac-
tors were associated to a statistically significant increased HCC risk 
(54 and 11%; and 37 and 22% respectively). Results for the ROC 
curves parameters are reported in Table 4, including AUC, sensitiv-
ity, specificity, accuracy and PPV for different combinations of the 
X- and Y-scores. The AUC of the X-scores and Y-scores for all 3 
PLS factors, adjusted for C-reactive protein concentration, alpha-
fetoprotein concentration and the score of liver damage, was 0.859 
and 0.853, respectively. An increase in the resampled cross-validated 
AUC values was also observed for all three X- and Y-scores, albeit 
smaller, with 0.836 and 0.827, respectively. Results from the sensi-
tivity analysis conducted on data excluding sets where cases were 
diagnosed within the first 2 years of follow-up, showed similarities 
in terms of lifestyle variables’ and metabolites’ loadings on the PLS 
factors (Supplementary Table 2, available at Mutagenesis Online). 
Notable differences pertained to the identification of new signals 
for the first PLS factor including ethanol, histidine and an unknown 
compound. On the second lifestyle factor, body mass index (BMI) 
(positive loadings) replaced education level (negative loadings) while 
the reflected metabolomic profile was comparable to its counter-
part from the main analysis (Supplementary Table  2, available at 
Mutagenesis Online). On the third factor, smoking status and hepa-
titis (positive loadings) were replaced by sugar and confectionary 
intake (negative loadings); signals contributing to the associated 
metabolic profile remained the same but the direction of the associa-
tion was inversed as loadings had opposite signs as compared to the 
counterpart PLS factor of the main model (Supplementary Table 2, 
available at Mutagenesis Online). Corresponding ORs from condi-
tional logistic regression models relating the X- and Y-scores to HCC 
risk are available in Table 5. The scores showed a statistically signifi-
cant association in the second factor for both sets and in the third 

Figure 1. General scheme of the analytical framework developed in the study. A PC-PR2 analysis is carried out beforehand to identify relevant sources of 
variation. In the PLS model, the X- and Y-sets are related to each other, and scores are computed (1). X- and Y-scores are, in turn, associated to a case–control 
indicator of HCC status in conditional logistic regression models (2). A mediation analysis is carried out to explore the role of metabolomics in the association 
between lifestyle factors and risk of HCC (3). 
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factor for the Y-set. ROC-associated statistics for different models 
are presented in Supplementary Table  3, available at Mutagenesis 
Online. The VIP plot (Figure 3) displayed the results for the impor-
tance of the lifestyle variables in the prediction of the Y-set com-
puted for the main PLS model performed including all subjects (A) 
and for the sensitivity model (B). The results suggested a potential 
gain in stability as prominent lifestyle variables for prediction were 
maintained (hepatitis/diabetes/cakes and biscuits), the magnitude of 
the VIP was improved for some (fat/lifetime alcohol intake) and less 
emphasis was put on others (BMI/physical activity).

Finally, the NIE was assessed in the mediation analyses and the 
results are presented in Table 6. Overall, there was limited evidence 
that metabolomic signals mediated the association between lifestyle 
components and HCC risk in the first PLS factor. Evidence of a sig-
nificant mediated effect by the Y-scores was found in the second and 
third PLS factors when models were adjusted for exposure–mediator 
interaction (Table 6).

Discussion

In this work, an analytical strategy based on PLS analysis was con-
ceived to extract relevant information from sets of lifestyle and 
NMR metabolomic variables, and to relate the resulting components 
to the risk of disease. This offered a way to implement the MITM 
approach (6) in a nested case–control study on HCC within the EPIC 
study. MITM has been suggested as a way to link specific putative 
metabolites to lifestyle exposures and disease outcomes, thus leading 
to the identification of potential intermediate biomarkers (6).

An implementation of MITM was previously carried out in a 
nested case–control study in the Turin subcohort of EPIC (7) based 
on prospectively collected plasma samples from a pilot study on 
colon and breast cancers. In their work, a list of intermediate mark-
ers was identified by an in-parallel evaluation of the relationships 
between untargeted 1H NMR profiles with dietary exposures and 
risk of colon and breast cancers using correlation analysis and logis-
tic regression. In our study, a different analytical framework was 
developed, largely exploiting features of PLS analysis, a multivariate 

technique that iteratively extracts components capturing covariabil-
ity in sets of predictors and response variables (8,39). A set of life-
style predictor variables were related to NMR responses. In a second 
step, PLS predictors’ and responses’ scores were linked to the risk 
of HCC.

Another sensitive issue in this analysis was the choice of lifestyle 
variables. Two disease-indicator variables reflecting environmental 
exposures, diabetes and hepatitis, were included in the set of pre-
dictors, as they turned out to have an important role in the char-
acterisation of metabolomic signatures. In addition, diabetes is the 
main metabolic risk factor for HCC alongside with fatty liver disease 
(40,41), and chronic infection with hepatitis B (HBV) and particu-
larly hepatitis C (HCV) viruses were classified as class I carcinogens 
for HCC by IARC (42).

Other relevant biomarkers were not part of the list of predictors 
in PLS analysis, but were controlled for in logistic regression models. 
This included C-reactive protein, alpha-fetoprotein and a score for 
liver damage, an index of different circulating enzymes measured 
in the hepatic tissue indicating potential underlying liver function 
impairment (25). The alpha-fetoprotein was included as an adjust-
ment factor in the analyses not because of its established part as a 
serum marker for HCC diagnosis (26,43), but rather to account for 
it as a potential confounder that may cloud the relation between 
scores and HCC, both in conditional logistic regressions and in 
mediation analyses.

Similarly to other multivariate techniques, a key aspect of PLS 
analysis is the choice of the number of factors to retain, in an effort 
of exhaustively summarising data variability through a limited 
number of factors. Based on a 7-fold cross-validation, three linear 
combinations of variables were extracted in this work. A challeng-
ing aspect of this analysis is the interpretation of these factors, with 
respect to lifestyle and metabolomic variables. A subjective criterion 
based on the distribution of loading values was used throughout. 
The variables displaying the most extreme loading values (in abso-
lute terms) were the ones characterising each factor.

The first lifestyle factor highlighted a healthy pattern with nega-
tive loadings for diabetes status, smoking status and lifetime alcohol 
intake, and was not associated to HCC risk, similarly to its metab-
olomics counterpart. The lifestyle component of the second PLS 
factor, was reflective of a lifestyle pattern reflective of ‘higher-risk 
exposures’, and was related to a significant 54% increase in HCC 
risk. Likewise, its associated metabolic component displayed a sig-
nificant HCC risk augmentation by 11%. The lifestyle component 
of the third PLS factor described participants with lower vegetables 
intake, elevated lifetime alcohol consumption, more likely to be ever 
smokers and hepatitis positive; one standard deviation increase of 
this component was associated to a statistically significant 37% 
increase in HCC risk. Similarly, a 22% significant increase in HCC 

Figure 2. PC-PR2 analysis results* identifying the sources of variability in the NMR data (A) and in the lifestyle data (B). 
* 17 and 14 components were retained to account for 80% (threshold used) of total NMR (A) and lifestyle variability (B), respectively. The R2 value represents the 
amount of variability in NMR/lifestyle variable explained by the ensemble of investigated predictors.

Table 1. Individual and cumulative variation (%) explained by the 
first 3 PLS factors in 21 lifestyle (X-set) and 285 NMR (Y-set) vari-
ables

# of PLS Lifestyle variables NMR variables

Factors Individual Cumulative Individual Cumulative

1 6.17 – 5.51 –
2 6.23 12.40 2.38 7.89
3 9.27 21.67 0.59 8.48
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Table 2. Lifestyle and NMR cluster variables contributing to each of the 3 PLS factors (N = 336, X-set = 21, Y-set = 285)

PLS factor Lifestyle variablea Loading value CS (ppm)a,b Metabolitec Loading value

1 Dairy products 0.28 5.22 Glucose −0.06
Cakes and biscuits 0.32 3.88 −0.05
Lifetime alcohol consumption −0.25 3.82 −0.06
Smoking status −0.39 3.76 −0.06
Diabetes −0.63 3.71 −0.05

3.54 −0.05
3.50 −0.07
3.48 −0.07
3.44 Acetoacetate −0.07
3.23 Choline + glycerphosphocholine −0.04
3.01 Lysine 0.10
2.94 Albumin 0.10
2.65 Aspartate 0.10
2.42 Glutamine 0.10
2.28 Acetoacetate 0.10
2.22 CH2–CH2–COOC bond of lipids + acetone −0.04
1.86 Lysine 0.09
1.87 0.10
1.53 CH2–CH2–COOC bond of lipids −0.03

2 Cereal and cereal products −0.16 7.17 Tyrosine 0.13
Height −0.34 6.87 0.13
Education level −0.26 5.27 CH=CH bond of lipids −0.13
Hepatitis 0.49 5.22 Glucose 0.16

5.18 Mannose + lipid O–CH2 −0.12
4.27 Lipid O–CH2 −0.12
4.25 Threonine −0.14
4.07 Choline + lipid O–CH2 + myoinositol −0.12
4.05 Creatinine −0.14
3.88 Glucose 0.15
3.82 0.16
3.76 0.15
3.71 0.15
3.54 0.15
3.50 0.16
3.48 0.16
3.44 Acetoacetate 0.16
3.23 Choline + glycerophosphocholine 0.15
2.80 Aspartate −0.12
2.22 CH2–CH2–COOC bond of lipids + acetone −0.11
2.19 CH2–CH2–COOC bond of lipids −0.15
2.02 Proline + glutamate + CH2=C bonds of lipids −0.13
1.53 CH2–CH2–COOC bond of lipids −0.13
1.25 CH2 bond of lipids −0.12
0.86 Cholesterol + CH3 bond of lipids −0.12

3 Vegetables −0.42 7.32 Phenylalanine 0.11
Lifetime alcohol consumption 0.29 5.22 Glucose −0.13
Smoking status 0.25 4.28 Lipid O–CH2 0.11
Hepatitis 0.26 3.88 Glucose −0.11

3.82 −0.11
3.76 −0.12
3.71 −0.11
3.69 −0.11
3.63 Myoinositol 0.16
3.50 Glucose −0.13
3.48 −0.12
3.44 Acetoacetate −0.12
3.35 Proline 0.11
3.33 0.13
3.28 Myoinositol 0.12
3.23 Choline + glycerophosphocholine −0.12
2.80 Aspartate −0.13
2.76 part of =CH–CH2–CH= bond of lipids −0.13
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risk was observed for its metabolic counterpart, characterised by 
positive signals of ethanol and myoinositol, and displayed negative 
loadings for glucose.

The MITM is captured by the rationale of PLS analysis, in the 
sense that each set of lifestyle profiles and metabolic signatures of 
the extracted PLS factors mirrored one another. In addition, media-
tion was observed for the second and third PLS factors, whereby the 
metabolomic component mediated the relation between the lifestyle 
component and HCC, for which statistically significant associa-
tions with HCC risk were estimated, emphasising the presence of a 
MITM. Mediation analysis relies on the assumption that there is no 
mediator-outcome confounder that is affected by the exposure (34). 
In our study C-reactive protein, alpha-fetoprotein and liver damage 
score were weakly correlated to lifestyle factor score, thus introduc-
ing potential bias in the estimation of direct and indirect effects in 
our mediation analysis. Additionally, a number of background con-
founders (mediator-outcome and exposure-outcome confounders) 
were present that we have tried to control for, either by adjustments 
or by accounting for potential interactions, however some degree of 
bias can remain and caution should be employed when interpreting 
the results.

The predictive performance of PLS factors in relation to HCC 
occurrence was evaluated through an analysis of AUC values. 
The performance of the model improved progressively, with all 3 
X- and Y-scores added; after a bootstrapped cross-validation, the 
AUC estimates were lower but the increase in the performance was 

nevertheless present. The ROC methodology allows estimation of 
PPV, which expresses the risk of disease after a positive test (44). In a 
setting with low HCC prevalence (π = 0.0004), in line with Western 
populations (45), extremely low PPV estimates were observed. In the 
absence of a very specific test, many false positive tests arise from 
disease-free individuals (44), thus leading to a dilution of PPV.

A sensitivity analysis was carried out excluding the first 2 years 
of follow-up, but results were virtually unchanged, both in terms of 
relative risk estimates in logistic regression models, and of percent-
age of variability explained in PLS analysis. These findings suggest 
that reverse causation bias, if present, was minimal.

This study had the ambition of integrating in the same analytical 
framework study participants’ lifestyle characteristics with a large 
number of NMR metabolic profiles. These data pose a number of 
methodological challenges due to their size and the complexity of 
exhaustively capturing and interpreting the biological processes 
they reflect. To address these issues, techniques involving multivari-
ate statistics have been progressively revived in the recent years (2). 
Epidemiologic evaluations of metabolomic data frequently com-
bined PLS with discriminant analysis, such as PLS-DA or O-PLS-DA. 
The main objective of these methods is to identify a series of metabo-
lomic features distinguishing between two very distinct groups of 
study participants (46,47). In such strategies, only one set of vari-
ables is multidimensional and the response is one variable only. 
Similar multivariate techniques for pattern extraction, belonging 
to the family of regression methods, include reduced rank regres-
sion. This multivariate method relates an ensemble of response 
variables to a set of predictor variables where the estimated matrix 
of the regression coefficients is of reduced rank (48–50). In addi-
tion, canonical correlation analysis (CCA) (51) is a method applied 
to identify the optimum structure or dimensionality of each vari-
able set that maximises the relationship between two sets of multi-
dimensional variables. The main difference between CCA and PLS 
regression is that CCA maximises the correlation between the two 
new dimensions, i.e. extracted factors, whereas PLS maximises their 
covariance. PLS can be considered as a trade-off between CCA and 
PCA, since maximising the covariance corresponds to maximising 
the product of the correlation and standard deviation, given that cov
(X,Y) = cor(X,Y)*SD(X)*SD(Y).

Untargeted NMR was used in this work to acquire metabolomic 
signals. Prior to PLS analysis, a bucketing procedure, the SRV (17,52), 
was applied to reduce the number of NMR variables to 285 clus-
ters. This was done by aggregating consecutive NMR bins based on 
their covariance to correlation ratio. This allowed the identification 
of informative components of the spectra, thus acting as an efficient 
noise-removing filter. Subsequently the annotation effort remains chal-
lenging, for a number of reasons. The majority of published metabo-
lomics studies often identified a limited number of metabolites at a 

PLS factor Lifestyle variablea Loading value CS (ppm)a,b Metabolitec Loading value

2.35 Proline + glutamate 0.12
2.33 0.13
1.20 3-hydroxybutyrate + CH2 bond of lipids 0.11
1.16 Ethanol 0.15
0.66 Cholesterol 0.11

aRelevant lifestyle and NMR variables contributing to each PLS factor selected based on their associated loading values <10th percentile (pctl) and >90th pctl 
or <5th pctl and >95th pctl, respectively.

bCS: 1H chemical shift (ppm) of the cluster (centre value).
cSome of the identified clusters were found to be background noise during the annotation phase and were removed from this table.

Table 2. Continued

Table 3. HCC odds ratiosa and 95% confidence interval (OR, 95% 
CI) associated with the lifestyle (X-set) and the NMR clusters (Y-set) 
PLS scores in the main analysis (N = 336, X-set = 21, Y-set = 285)

PLS lifestyle variables X-scores PLS NMR Variables Y-scores

Factor ORb (95% CI) P-Waldc Factor ORb (95% CI) P-Waldc

1 0.77 (0.58, 1.02) 0.07 1 0.96 (0.91, 1.01) 0.09
2 1.54 (1.06, 2.25) 0.02 2 1.11 (1.02, 1.22) 0.02
3 1.37 (1.05, 1.79) 0.02 3 1.22 (1.04, 1.44) 0.01

aModels were adjusted for C-reactive protein concentration, alpha-fetopro-
tein concentration and a composite score for liver damage. Cases and controls 
were matched on age at blood collection (± 1 year), sex, study centre, date 
(± 2 months) and time of the day at blood collection (± 3 h), fasting status at 
blood collection (<3/3–6/>6 h); among women, additional matching criteria 
included menopausal status (pre-/peri-/postmenopausal) and hormone re-
placement therapy use at time of blood collection (yes/no).

bORs expressing the change in HCC risk associated to 1SD increase in the 
score.

cWald’s test was for continuous exposure compared with a Chi-square 
distribution with 1 degree of freedom (dof).
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time (53), and the Human Metabolome Database (HMDB) and other 
related resources (18,54), that offer richly annotated information 
continuously increasing the metabolite coverage for users, are mostly 
exploited through time consuming interactive procedures. In addi-
tion, individual metabolites often overlap in NMR signals, which can 
hinder annotations. These challenges, as well as large variability in 
metabolite concentrations, and disentangling informative signals from 
noise, are not specific to NMR and pertain to any type of untargeted 
technique. Such investigations may profit from complementary tar-
geted metabolomic analytical strategies (54).

Throughout the different steps of this work, the scaling prob-
lem was first tackled by normalising spectra to total intensity. NMR 
data were also centred and Pareto-scaled, together with correction 
for potential batch effects (16). The PC-PR2 method offered a way 
to investigate major sources of systematic variability in NMR and 
lifestyle data (15). The variable ‘country of origin’ emerged as the 
variable accounting for the largest proportion of total variability, 
and the residual method was used to control for this variable in 
the following steps of the analysis. While this may lead to remov-
ing regional gradients of dietary variability, this step is instrumental 
to avoid unwanted systematic regional-specific bias in the data in 
country-specific questionnaire assessments. In addition, technical 
aspects like storage and handling of biological samples, fasting status 

Table 4. Area under the curve (AUC), sensitivity, specificity, accuracy and positive predictive value (PPV) of ROC models (with 95% CI), from 
the main PLS analysis (N = 336, X-set = 21, Y-set = 285)

AUC AUCb
b Sensitivity Specificity Accuracy PPV

Adjustment covariates (ADJ)a 0.842 (0.794, 0.891) 0.821 (0.766, 0.868) 0.752 (0.662, 0.829) 0.802 (0.743, 0.852) 0.785 0.0015
X1 scores + ADJ 0.846 (0.797, 0.894) 0.825 (0.766, 0.875) 0.743 (0.653, 0.821) 0.838 (0.783, 0.884) 0.806 0.0018
X1 + X2 scores + ADJ 0.854 (0.808, 0.900) 0.831 (0.772, 0.881) 0.743 (0.653, 0.821) 0.824 (0.768, 0.872) 0.797 0.0017
X1 + X2 + X3 scores + ADJ 0.859 (0.811, 0.907) 0.836 (0.778, 0.887) 0.796 (0.710, 0.866) 0.788 (0.729, 0.840) 0.791 0.0015
Y1 scores + ADJ 0.841 (0.793, 0.890) 0.817 (0.760, 0.865) 0.735 (0.643, 0.813) 0.820 (0.763, 0.868) 0.791 0.0016
Y1 + Y2 scores + ADJ 0.845 (0.795, 0.894) 0.820 (0.762, 0.872) 0.735 (0.643, 0.813) 0.851 (0.798, 0.895) 0.812 0.0020
Y1 + Y2 + Y3 scores + ADJ 0.853 (0.804, 0.902) 0.827 (0.771, 0.877) 0.726 (0.634, 0.805) 0.883 (0.833, 0.922) 0.890 0.0025

aThe model is run on the ADJ including the C-reactive protein concentration, alpha-fetoprotein concentration and a composite score for liver damage.
bAUCb is the bootstrapped-cross validated estimate of the AUC. X1, X2 and X3 are the lifestyle component scores of the first, second and third PLS factors, 

respectively. Y1, Y2, and Y3 are the metabolomics component of the first, second and third PLS factors, respectively. 

Table  5. HCC odds ratiosa and 95% confidence intervals (OR, 
95%CI) associated with the lifestyle (X-set) and the NMR clusters 
(Y-set) PLS scores in the sensitivity analysis (N=271, 92 cases, 179 
controls)

PLS lifestyle variables X-scores PLS NMR variables Y-scores

Factor ORb (95% CI) P-Waldc Factor ORb (95% CI) P-Waldc

1 0.80 (0.60, 1.08) 0.15 1 0.96 (0.94, 1.04) 0.56
2 1.56 (1.02, 2.40) 0.04 2 1.18 (1.03, 1.36) 0.02
3 0.86 (0.67, 1.11) 0.26 3 0.86 (0.73, 0.99) <0.05

The sensitivity analysis was conducted excluding sets where cases were di-
agnosed within the first 2 years of follow-up (X-set = 21, Y-set = 285).

aModels were adjusted for C-reactive protein concentration, alpha-
fetoprotein concentration and a composite score for liver damage. Cases 
and controls were matched on age at blood collection (± 1 year), sex, study 
centre, date (± 2 months) and time of the day at blood collection (± 3 h), 
fasting status at blood collection (<3/3–6/>6 h); among women, additional 
matching criteria included menopausal status (pre-/peri-/postmenopausal) 
and hormone replacement therapy use at time of blood collection (yes/no).

bORs expressing the change in HCC risk associated to 1SD increase in the 
score.

cWald’s test was for continuous exposure compared with a Chi-square 
distribution with 1 degree of freedom (dof).

Figure 3. Variable importance plot (VIP) displaying the variable importance for projection statistic of the predictor variables for the PLS analyses. (A) Results 
from the main PLS model run on all observations (N = 336, X-set = 21, Y-set = 285). (B) Results from the PLS sensitivity analysis run on a subsample (N = 271, 92 
cases, 179 controls) excluding sets where cases were diagnosed within the first 2 years of follow-up (X-set = 21, Y-set = 285). The horizontal line corresponds to 
Wold’s criterion (0.8), the threshold used to rule if a variable has an important contribution to the construction of the Y variables (see Supplementary Appendix, 
available at Mutagenesis Online for further details).

A PLS model for the meeting-in-the-middle approach, 2015, Vol. 30, No. 6 751

http://mutage.oxfordjournals.org/lookup/suppl/doi:10.1093/mutage/gev045/-/DC1


at blood collection are specific to each country (15). In any case, 
variability due to ‘country of origin’ is not exploited in conditional 
logistic models, as cases and controls were also matched on centre.

One of the limitations of this study is the restricted sample size 
which raises concerns with regards to power to detect associations. 
While a larger sample size would possibly result in more statistically 
significant findings, we used the data that was available with NMR 
profiles measured. In this work, we have developed a framework to 
analyse complex data integrating lifestyle and metabolomics in relation 
to risk of disease. The approach described in this study has merits but 
also pitfalls among which it is worth mentioning that statistical meth-
ods are used repeatedly on the same set of data, notably the PLS model, 
the conditional logistic regression, the AUC estimation and mediation 
analysis. To partially address this, a cross-validation approach was 
devised for AUC estimation which involved conditional logistic regres-
sion, whereby PLS was done without knowledge of the case–control 
status. However, conditional logistic regression models and mediation 
analyses were implemented on the same data, and our analysis did not 
account for this limitation. This may have led to spuriously increase the 
nominal level of statistical significance of statistical tests.

Conclusion

The MITM emerged as a method for the identification of relevant 
biomarkers, with great potential to unravel utmost important steps in 
the aetiology of disease. The analytical strategy for MITM was devel-
oped to use all potentially informative aspects of high-throughput data 
by integrating metabolomic, dietary and lifestyle exposures together 
with disease indicators. While the framework was applied towards the 
investigation of HCC determinants, it can be easily extended to similar 
aetiological contexts and applied to other –omics settings.

Supplementary data
Supplementary Tables 1–3 and Appendix are available at 
Mutagenesis Online.
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