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Abstract

The global burden of peripheral artery disease (PAD) is significant. This has led to numerous 

recent advances in magnetic resonance imaging (MRI) techniques in PAD. Older techniques such 

as time of flight MRI or phase contrast MRI are burdened by long acquisition times and significant 

issues with artifacts. In addition, the most used MRI modality, contrast-enhanced MR angiography 

(CE-MRA) is limited by the use of gadolinium contrast and its potential toxicity. Novel MRI 

techniques such as arterial spin labeling (ASL), blood-oxygen-level dependent imaging (BOLD), 

and first-pass perfusion gadolinium enhancement are advancing the field by providing skeletal 

muscle perfusion/oxygenation data while maintaining excellent spatial and temporal resolution. 

Perfusion data can be critical to providing objective clinical data of a visualized stenosis. In 

addition, there are a number of new MRI sequences assessing plaque composition and lesion 

severity in the absence of contrast. These approaches used in combination can provide useful 

clinical and prognostic data and provide critical endpoints in PAD research.
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Introduction

The global burden of peripheral artery disease (PAD) is enormous, with an estimated 202 

million people afflicted by the disease worldwide.1 In the United States, approximately 8 

million people are affected by PAD, involving 12% to 20% of Americans >64 years of age.
2,3 The morbidity and mortality associated with PAD is well described. Pooled data from 11 

studies revealed an ankle–brachial index (ABI) of <0.9 was associated with increased risk of 

all-cause mortality, cardiovascular mortality, coronary artery disease, and stroke.4

The diagnosis of PAD can be established by an initial history and physical exam. However, 

non-invasive imaging is critical in determining the degree of disease or the lack of perfusion, 

in addition to providing anatomical detail of the atherosclerotic plaque.

Current non-invasive imaging methods

The ABI is a critical screening tool for suspected PAD. Its overall accuracy to diagnose PAD 

is well established and it is dependent on the severity of the lesion.5–7 For a stenosis of 

>50%, the ABI has a sensitivity and specificity of 91% and 86%, respectively.6,7 Pulse 

volume recordings (PVR), segmental pressures, and post-exercise ABIs can improve the 

ability to provide a generalized location of a stenosis, to evaluate the degree of symptoms, 

and to assess for small vessel disease. However, ABI is unable to specify exact lesion 

locations and can be limited by non-compressible arteries, such as in diabetic patients.5,8 In 

those patient populations, toe–brachial indices can be of significant benefit.8

Duplex ultrasonography is useful in determining the location and degree of stenosis. For a 

stenosis of >50%, duplex ultrasonography has a sensitivity and specificity of >90% when 

used with color doppler.9 There are technical difficulties with imaging iliac vessels due to 

bowel gas and tortuosity, and arterial calcification can cause shadowing artifact obscuring 

flow.10 Despite its limitations, duplex ultrasound is a safe and relatively inexpensive 

modality and is commonly used in post-intervention surveillance.

Computed tomography angiography (CTA) has improved spatial resolution compared to 

duplex sonography. The use of CTA has grown in recent years with the advent of 

multidetector scanners and the ability to obtain multiple cross-sectional images with faster 

acquisition times. Several small studies of multidetector scanning for PAD has shown 

sensitivities of 89% to 100% and specificities of 92% to 100% for lesions of >50% stenosis.
5,11,12 CTA still has issues regarding post-processing of raw data or severe calcifications that 

can lead to significant artifacts.13–16
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Current MRA techniques

Contrast-enhanced magnetic resonance angiography (MRA) is an excellent method for 

diagnosing the anatomic location and degree of stenosis in PAD.5 Many studies show 

significant correlation between MRA and catheter angiography when compared to other 

imaging modalities. Collins et al. performed a meta-analysis comparing contrast-enhanced 

magnetic resonance imaging (MRI), duplex sonography, and CTA and showed superior 

sensitivity and specificity with MRA for the detection of lesions of >50% stenosis.17 There 

is controversial evidence of MRA superiority to catheter angiography in identifying patent 

vessels, diseased pedal vessels, and vessel targets for bypass.18–22

The type of MRA technique used is critical in the evaluation of PAD as each technique 

differs in advantages and disadvantages and will affect the overall accuracy of the test 

(Tables 1 and 2). The general goal is to maximize spatial resolution and, at the same time, 

obtain dynamic data.23,24

Non-contrast techniques

Time of flight—Time of flight MRA (TOF-MRA) is a non-contrast MRI technique that 

creates vessel and background contrast by detecting flow in vessels. Fully magnetized (or 

unsaturated) blood flowing into a perpendicular imaging plane has relatively higher signal 

intensity than the stationary, progressively saturated background spins.23 The main 

disadvantage of TOF-MRA is prolonged imaging acquisition times making it difficult for 

patients, in addition to significant artifacts related to saturation bands, turbulent flow, patient 

motion, or ghosting artifacts, which can limit diagnostic accuracy.23 TOF-MRA is also not 

sensitive to flow in the in-plane direction and in situations of retrograde blood flow.

Phase contrast—Phase contrast MRA (PC-MRA) was one of the first MRA techniques 

utilized for peripheral arterial imaging.25 PC-MRA is a non-contrast technique that separates 

blood flow from the background stationary tissue by observing the phase difference between 

non-zero phase protons of blood and the zero phase protons of stationary background tissue 

(Figure 1).25,26 It has some advantages compared to TOF-MRA, such as reduced acquisition 

times and fewer saturation-related artifacts.23 Both TOF-MRA and PC-MRA are rarely used 

today with the availability of more advanced techniques. TOF-MRA is occasionally used in 

situations to image the very distal lower extremities while PC-MRA is primarily involved 

with obtaining dynamic flow data and quantifying arterial flow.27

3D half-Fourier fast spin echo—Electrocardiographic-triggered three-dimensional half-

Fourier fast spin echo (3D FSE) imaging is another non-contrast technique that acquires 

electrocardiographic (ECG) gated images.28 This technique contrasts the difference between 

fast flowing blood on the arterial side and slow moving blood on the venous side during 

systole. The systolic images are subtracted from diastolic images to separate the arteries 

from veins.29 The limitations of this technique are primarily related to gating. Arrhythmias, 

patient motion or various timing issues can cause significant artifacts and significantly 

disrupt image quality.29

Mathew and Kramer Page 3

Vasc Med. Author manuscript; available in PMC 2018 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Balanced steady state free procession MRA—Balanced steady state free procession 

MRA (b-SSFP) is another commonly used peripheral arterial imaging technique. It uses 

T2/T1 weighted imaging ratios to contrast blood from the surrounding tissue.30 This 

technique has an excellent signal to noise ratio particularly if fat is suppressed from the 

images or there is ECG gating.31 The technique has a few disadvantages, including 

prolonged acquisition times.32, 33 There can also be artifacts related to blood flow, tissue 

interference, metallic objects, or tissue homogeneity.32,33

Quiescent-interval single-shot MRA—Quiescent-interval single-shot (QISS) MRA is a 

non-contrast ECG gated b-SSFP that has been recently developed for the imaging of PAD.34 

QISS is a 2D technique that first uses a pre-saturation radio frequency pulse to suppress the 

stationary tissue in a slice followed by another pulse to suppress the venous signal. This is 

followed by the quiescent inflow period where magnetized blood enters into the imaging 

slice.35 Finally, data are acquired during diastole at the time of slow arterial flow using b-

SSFP sequences.34,35 This process is then repeated for every slice. Benefits of this method 

include shorter acquisition time and total imaging time compared to TOF-MRA sequences.
35 In addition, QISS uses non-subtractive single-shot image acquisition, which reduces 

sensitivity to patient motion.36–38

Contrast-enhanced technique

All the previous techniques described do not require contrast, but currently the most often 

used modality is contrast-enhanced MRA (CE-MRA). Older CE-MRA techniques had 

several limitations with complete imaging of the peripheral arteries.33 However, current 

methods have significantly reduced imaging times. Initially, scout images in multiple axes 

with the use of TOF-MRA or b-SSFP are obtained and reviewed to make sure all arterial 

structures are included in the imaging volume.23 Prior to contrast administration, accurate 

planning for image acquisition at peak arterial contrast enhancement needs to be determined, 

and can be tested by the use of a small test bolus. Real time bolus monitoring software on 

current magnets allow the operator or software to detect contrast signal enhancement in a 

target arterial bed that then triggers image acquisition.39 Pre and post-processing strategies 

are then employed to enhance arterial structures and suppress venous structures. Planning is 

critical to ensure best image quality (Figure 2B). A major issue with CE-MRA is the need 

for gadolinium-based contrast agents that have a rare association with nephrogenic systemic 

fibrosis (NSF) in patients with stage IV or V chronic kidney disease on dialysis. However, 

the incidence of NSF has declined dramatically due to avoidance in these patients as well as 

the use of cyclic rather than linear agents that reduce the possibility of the gadolinium 

becoming unchelated.39 Large studies of >20,000 patients show an acute adverse reaction 

rate of 0.76% with a reported severe acute reaction rate of 0.03%, which is less than that 

reported with iodinated contrast used in computed tomography.40

Recent advances in MRI techniques

Recent advances have maintained a focus on either non-contrast MRI techniques or hybrid 

approaches that use both CE-MRA and other non-contrast techniques. Current research 

continues to advance the principle goals in PAD imaging of improving spatial resolution, 

Mathew and Kramer Page 4

Vasc Med. Author manuscript; available in PMC 2018 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



limiting contrast use, obtaining accurate dynamic data, and performing analysis of skeletal 

muscle perfusion. The gold standard for skeletal muscle perfusion assessment is the highly 

invasive microsphere method which requires arterial and tissue sampling.41 Many of the 

recent advances in MRI techniques are advancements on previous MRI techniques or 

development of non-contrast image acquisition.

First-pass gadolinium enhanced skeletal muscle perfusion imaging

First-pass gadolinium enhanced MRI of skeletal muscle perfusion with use of a plantar 

flexion ergometer can be performed on patients with PAD (Figure 2C). The technique, 

which is analogous to MRI myocardial perfusion studies, is performed using T1-weighted 

sequences to visualize the gadolinium-based contrast agents’ uptake in tissue.42 The applied 

technique can be used along with the arterial input function to obtain a semi-quantitative 

peak calf perfusion index. This ratio correlated to the 6-minute-walk test and was able to 

diagnose mild to moderate PAD in patients.42,43 There are some limitations, including the 

requirement of semi-quantitation to correct for arterial input, which may be proximal to a 

stenosis, as well as the use of gadolinium-based contrast.42,43 Further improvements with 

absolute quantitation of perfusion may be possible in the future.

Arterial spin labeling

Arterial spin labeling (ASL) is a non-contrast technique.44,45 In ASL, the protons in arterial 

blood are imparted with a magnetic tag, which differs in magnetization from that of the 

surrounding soft tissue. Another ‘control’ scan is obtained without tagging of the arterial 

blood. This allows for measurement of the signal difference of the tagged blood flow from 

the untagged image.44,45 Recently, two forms of ASL have successfully demonstrated 

perfusion abnormalities in PAD patients: continuous ASL (cASL)46 and pulsed ASL 

(pASL).47 Perfusion can be measured after plantar flexion ergometry or with cuff occlusion 

hyperemia (Figure 3). The latter is more reproducible.48 The optimal method of ASL for this 

application remains to be determined and whether the best endpoint is peak perfusion or 

time to peak perfusion.

Blood-oxygen-level dependent MRI

Another novel method of PAD imaging is based on a relative measure of tissue oxygenation 

also called blood-oxygen-level dependent MRI (BOLD MRI).49 BOLD MRI has been used 

to assess brain activation and oxygenation of skeletal muscle and the kidneys in previous 

studies.50–53 Englund et al. performed a study on 96 patients with varying degrees of PAD 

and assessed perfusion using pASL, measuring mixed venous saturation (SVO2) using MRI 

susceptometry, and using BOLD MRI, calling the method PIVOT.54 They found 

abnormalities in the time to peak perfusion and time to peak BOLD MRI assessments in 

PAD patients compared to normal patients.53 It is likely that tissue oxygenation and 

perfusion are closely linked, although this has not been definitively demonstrated as of yet.

Phosphorus-31 magnetic resonance spectroscopy

Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) has been used to measure 

skeletal muscle metabolism and can be used to measure phosphocreatine (PCr) recovery 
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after exercise as an accurate measure of tissue ischemia and a surrogate for mitochondrial 

function.54–56 Prolonged recovery time is a proven and reproducible marker of skeletal 

muscle ischemia in PAD patients after exercise (Figure 2D).56 However, it is limited by the 

availability of this technology, prolonged acquisition times and poor spatial resolution.57

Creatine chemical exchange saturation transfer

A recent concept has been to use creatine chemical exchange saturation transfer (crCEST) as 

a non-spectroscopic imaging technique to measure localized creatine kinetics in skeletal 

muscle of PAD patients. This imaging method has been studied in myocardial tissue and 

skeletal muscle (Figure 4) and correlated with 31P-MRS in a handful of normal subjects and 

PAD patients.57,58 Further studies validating this technique are needed. Potential advantages 

are spatial localization to individual muscle groups and matching with perfusion studies.

MRI assessment of peripheral arterial plaque

There have been significant advances in improving visualization and characterization of 

atherosclerotic plaque by MRI (Figure 5). Accurate and reliable plaque assessment provides 

objective data for research applications. The assessment of plaque volume imaged by high 

resolution multi-slice turbo-spin-echo pulse sequences with fat presaturation and 

suppression of flowing blood has been proven to have excellent intra-observer (r=0.997), 

inter-observer (r=0.987), and test-retest (r=0.996) reliability and reproducibility.59 The use 

of statins and ezetimibe to lower low-density lipoprotein cholesterol (LDL-C) showed no 

progression of plaque volume in previously statin-naïve patients by using MRI plaque 

volume assessments as a primary endpoint.60

Plaque composition also plays a role in patient outcomes. Plaque calcification assessed by 

CT is associated with increased risk of amputations in PAD patients.61 The adverse effects 

of particular features related to plaque composition in coronary and carotid arteries have 

been well studied and include high risk plaque characteristics such as intra-plaque 

hemorrhage (IPH), lipid rich necrotic core (LRNC), or thinned fibrous caps.62–64 The 

clinical impact of these characteristics in the peripheral arteries is still being studied. 

Polonsky et al. assessed superficial femoral artery (SFA) plaque by MRI on 300 patients 

with PAD and found 22.4% to have LRNC.65 Also, plaque lesion eccentricity, defined as 

[(maximum wall thickness – minimum wall thickness)/maximum wall thickness] ≥ 0.5, 

shows increased high risk characteristics that include larger plaque burden, increased 

calcification, and more lipid content compared to concentric lesions.65 However the 

prognostic and clinical impact of these morphological features in PAD patients is not well 

understood. MRI visualization of SFA occlusion and SFA plaque burden (measured by 

increased plaque area and decreased percent luminal area) are associated with reduced ABIs 

and 6-minute walk distance.66–68 In addition, increased collateralization associated with 

SFA occlusion is associated with improved functional performance.68 However, LRNC and 

calcium were not associated with mobility loss in patients with PAD.69

An alternative 3D approach to plaque visualization is ‘sampling perfection with application 

optimized contrast using different flip angle evolution’ or SPACE. The latter is a 3D FSE, 

‘black blood’ T1 weighted imaging technique (3D-T1w SPACE) that improves efficiency 
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and allowed for imaging large vascular territories.70–74 Mihai et al. performed a feasibility 

study of 3D-T1w SPACE and compared the method to CE-MRA in the setting of PAD.75 

They found the technique to be comparable to CE-MRA in calculating luminal area. In 

addition, 3D-T1w SPACE compared to CE-MRA identified more significant lesions in 

patients due to improved visualization of the arterial wall and ability to assess vascular 

thickening and remodeling.74

Novel MRI and MRA techniques used in clinical studies

Combinations of novel MRI techniques are currently being used in PAD research (Figure 2). 

Anderson et al. performed first-pass gadolinium calf muscle perfusion and 31P-MRS on 85 

patients with mild to moderate PAD. Lesion severity was determined by MRA and 

symptoms were assessed by treadmill testing with VO2 max and a 6-minute walk test. They 

demonstrated multifactorial contributions to claudication. They found symptomatic PAD to 

be related to the severity of macrovascular obstruction along with atherosclerotic plaque 

burden, reduced tissue perfusion and abnormal energy metabolism.76 Interestingly, 31P-MRS 

measurement of prolonged phosphocreatine recovery time did not correlate with calf muscle 

perfusion but correlated with the 6-minute walk test,76 suggesting uncoupling of metabolism 

and perfusion in claudicants.

Furthermore, these techniques can be used to determine endpoints after medical 

intervention. Sixty-eight patients with mild to moderate PAD were treated with LDL 

lowering agents (i.e. statins and ezetimibe) for 2 years and assessed for improvements in 

plaque regression, perfusion, metabolism, and exercise capacity using CE-MRA, first-pass 

gadolinium perfusion, 31P-MRS, and exercise treadmill with the 6-minute walk test. Other 

than improvement in resting ABI, all other parameters did not improve with LDL lowering 

therapy.77 A pilot study of 10 patients with symptomatic PAD underwent similar imaging 

techniques 2 months prior and 10 months after percutaneous intervention of the lower 

extremity. Improvement in phosphocreatine recovery time and ABI was noted.78

Conclusion

Although catheter angiography still remains the gold standard for diagnosis, awareness of 

the impact of PAD has led to a growth in the role of non-invasive modalities.5 The goal of 

non-invasive imaging is to obtain images with excellent spatial resolution and to provide 

dynamic data in regards to anatomy and physiology. Though ABI and duplex sonography 

will always have some role in screening and diagnosis, their limitations will always lend 

favor to CTA, MRA, and catheter angiography for more accurate assessment of disease. 

Major advances have been made in recent years in MRI approaches that have the benefit of a 

lack of ionizing radiation. Current research is directed toward non-contrast techniques to 

avoid the risk of contrast. Novel approaches for measuring skeletal muscle tissue perfusion, 

oxygenation, and energetics are emerging. However, MRI still has some limitations such as 

prolonged acquisition times, limited availability of advanced MRI sequences and 

technology, and cost that will hopefully be overcome in the years to come.
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Figure 1. 
Left panel: Phase contrast MRI of the aortic arch. Note the coarctation and aneurysmal 

dilation. Right panel: Velocity encoding performed on phase contrast MRI. Post-processing 

analysis can be performed to determine velocities.
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Figure 2. 
(A) High resolution black blood magnetic resonance imaging (MRI) of the superficial 

femoral artery (SFA) in cross section. The vessel lumen is denoted by the gray arrow and the 

vessel wall by the black arrow. Note the large amount of atherosclerotic plaque in the vessel 

wall. (B) Magnetic resonance angiography (MRA) of the SFA. The arrow denotes a severe 

stenosis in the proximal left SFA, which corresponds to the vessel wall image in (A). (C) 

Post-exercise contrast-enhanced peak perfusion of the calf muscle in cross section. Note the 

heterogeneous signal intensity. The arrows depict the muscle groups (anterior tibialis and 

soleus muscles) with the greatest contrast enhancement (i.e. perfusion). (D) A plot of 

phosphocreatine recovery. The phosphocreatine recovery time constant (PCr) is calculated 

using a mono-exponential fit of these data. Reprinted from [76] with permission from 

Elsevier.
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Figure 3. 
Pulsed arterial spin-labeling of a calf in a normal patient (A) and patient with peripheral 

artery disease (B) after peak exercise. Flow is increased in the anterior tibialis (single arrow) 

and lateral gastrocnemius (double arrow) muscles of the normal patient. The patient with 

peripheral artery disease has the highest flow signal in the peroneus longus muscle (arrow). 

Reprinted from [48] with permission from Elsevier.
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Figure 4. 
Left panel: creatine chemical exchange saturation transfer (CrCEST) of the calf of a normal 

subject imaged immediately after exercise then 1, 3, and 5 minutes post-exercise. Right 
panel: crCEST of the calf of a patient with peripheral artery disease immediately after 

exercise with images 3, 7, and 10 minutes post-exercise. Note the delay in reaching baseline 

deep blue in the patient with peripheral artery disease compared to the normal subject.
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Figure 5. 
Representative sequential images (left to right) from the superficial femoral artery (arrow) of 

a subject with mild to moderate peripheral artery disease with both the luminal and 

adventitial border clearly delineated. Note the slice-to-slice variation in plaque morphology. 

The third slice from left demonstrates plaque with calcification (area of low signal).
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Table 1

Current MRA imaging techniques for peripheral artery disease.

Technique Contrast Advantages Limitations Clinically available

Time of flight MRA No High spatial resolution; 
imaging of distal pedal vessels

Prolonged imaging times; 
sensitive to turbulent flow, 
patient motion, in-plane flow 
direction, retrograde blood 
flow; artifacts

Yes

Phase contrast MRA No Reduced saturation-related 
artifacts; flow quantification

Difficult to image very slow 
flow and significant aliasing 
with very high flow

Yes

3D half Fourier spin echo No Excellent spatial resolution; 
gated imaging

Significant artifacts if unable 
to gate properly, such as poor 
ECG quality or arrhythmias

Yes

Balanced steady state free procession 
MRA

No Excellent signal to noise ratio; 
gated imaging

Artifacts related to tissue 
interference, metallic objects 
or tissue homogeneity; long 
acquisition times

Yes

Quiescent-interval single-shot MRA No Less acquisition time; excellent 
spatial resolution and image 
quality; reduced sensitivity to 
patient motion

Reduced image quality 
related to in-plane vessels

Yes

Contrast-enhanced MRA Yes Excellent image quality Contrast-related side effects; 
requires coordination 
between contrast bolus and 
image acquisition; limited 
use in kidney disease

Yes

MRA, magnetic resonance angiography; ECG, electrocardiography.
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Table 2

Novel MRI techniques for peripheral artery disease.

Technique Contrast Advantages Limitations Clinically available

First-pass gadolinium enhanced 
perfusion

Yes Semi-quantitative 
perfusion analysis; 
rapid imaging time

Use of contrast and contrast-
related adverse effects

Yes; primarily used for 
myocardial perfusion

Arterial spin labeling No Quantifiable 
perfusion; excellent 
spatial and temporal 
resolution

Low signal to noise ratio; 
affected by partial volume 
effects and arterial transit times

Yes; not widely available, 
used in brain imaging for 
cerebral blood flow

Blood-oxygen-level dependent MRI No High signal to noise 
ratio; high temporal 
resolution

Susceptibility artifacts Yes; not widely available, 
used in cerebral imaging

Phosphorus-31 magnetic resonance 
spectroscopy

No Reproducible and 
reliable; assessment 
of energetics

Lack of availability; not 
spatially localized; prolonged 
acquisition times

No

Creatinine chemical exchange 
saturation transfer

No Spatial localization; 
assessment of 
energetics

Lack of validation studies; not 
widely available

No

MRI, magnetic resonance imaging.
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