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Abstract

The pedagogical modelling of everyday classroom practice is an interesting kind of evidence, both 

for educational research and teachers’ own professional development. This paper explores the 

usage of wearable sensors and machine learning techniques to automatically extract orchestration 

graphs (teaching activities and their social plane over time), on a dataset of 12 classroom sessions 

enacted by two different teachers in different classroom settings. The dataset included mobile eye-

tracking as well as audiovisual and accelerometry data from sensors worn by the teacher. We 

evaluated both time-independent and time-aware models, achieving median F1 scores of about 

0.7-0.8 on leave-one-session-out k-fold cross-validation. Although these results show the 

feasibility of this approach, they also highlight the need for larger datasets, recorded in a wider 

variety of classroom settings, to provide automated tagging of classroom practice that can be used 

in everyday practice across multiple teachers.
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Introduction

Teacher facilitation is a crucial element in the learning outcomes of many technology-

enhanced learning (TEL) situations in formal settings. This importance has been highlighted 

by educational research efforts in naturalistic settings, including inquiry-based learning 

experiences (e.g., Kirschner et al. 2006), computer-supported collaborative writing (e.g., 

Onrubia & Engel 2012), and many others. Indeed, the understanding of specific problems 

and phenomena that arise in the implementation of educational innovations in authentic 
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settings (also known as ‘orchestration’) is considered one of the foremost challenges in the 

field of TEL (Fischer et al. 2014; Roschelle et al. 2013).

The inquiry into classroom practice and classroom management (regardless of whether it is 

for research, or for practitioners’ own professional development) is known to be difficult, 

due to classrooms’ immediacy and unpredictability (even in settings without a technological 

component, see Doyle 1977). Even today, this investigation requires either the observation or 

recording of real classroom situations, often followed by manual coding of the recordings 

(Cortina et al. 2015; Wolff et al. 2015). However, this kind of approaches have obvious 

limitations in terms of the scale and frequency at which they can be applied. This can also be 

seen as a cause for the reported lack of evidence used in reflection-based teacher 

professional development approaches (Marcos et al. 2011).

However, recent advances and affordability of sensor and computation technologies may 

help in the automation of some of this tasks (as shown by, e.g., Donnelly et al. 2017; ref. 

anonymized for review) in ecologically valid conditions and in unobtrusive ways, leading to 

multimodal approaches to teaching analytics (Vatrapu 2012).

In this paper, we build upon previous preliminary work on the feasibility of using wearable 

sensors to extract both the moment-to-moment teaching activity and the social plane of 

interaction (ref. anonymized for review). More concretely, we recorded a multimodal dataset 

of 12 classroom lessons performed by two different teachers, in a variety of situations. We 

then used different machine learning models (both time-independent and with an emphasis 

on time structure), to explore more deeply the possibilities of this kind of approach. To 

understand the potential generalizability of our findings, we trained and evaluated both 

personalized (i.e., trained on just one specific teacher) and general models (aimed at working 

across teachers).

The next section offers an overview of related work in the field of multimodal teaching 

analytics, followed by the description of our study’s context, methodology and results. 

Finally, we discuss several implications of the study in terms of tradeoffs and guidelines for 

future research and technology design in the area.

Related Work

Teaching Analytics for Research and Reflection

Teacher facilitation is considered a challenging and critical aspect for effective learning 

(Fischer et al. 2014). Both educational researchers and practitioners have paid special 

attention to this process, using different data gathering methods such as classroom 

observations, audio and video recordings, student feedback, or teacher self-reflections. 

These methods, however, present obvious limitations in terms of scalability, since they often 

require manual processing which is time-consuming and error-prone (Cortina et al. 2015; 

Marcos et al. 2011; Wolff et al. 2015). In that sense, the application of automated analytics 

to these tasks could be tremendously beneficial, even if they also require a certain amount of 

manual labeling of data to kick-start such automation (see initial prototypes in this direction, 

like Fong et al. 2016).
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Teaching analytics is often conceived as the subset of learning analytics (LA) devoted to 

help teachers understand learning and teaching processes (Vatrapu 2012). Although this 

definition considers both learning and teaching processes as objects of analysis, most 

research in this area collects data about the student learning/behavior, to provide feedback to 

the teacher. This is apparent, for instance, from the “Towards Theory and Practice of 

Teaching Analytics workshop” and the “International Workshop on Teaching Analytics” 

organized in 2012–2016.

Most of the research focusing on teaching practice analyses teacher-generated artifacts, such 

as the lesson plans. These proposals make use of digital representations of the plan, e.g., in 

the shape of a learning design (Mor et al. 2015; Sergis & Sampson 2017), or based on 

learning environment structure (Rebholz et al. 2012; Vozniuk et al. 2015). However, 

sometimes the lesson plan is not followed as envisioned, or details of the plan influencing 

the learning process may have not been described (if the plan is ever formalized at all). 

Fewer studies follow a bottom-up approach, attempting the characterization of the actual 

enactment of the lesson, often in very specific kinds of settings, e.g., examining teachers’ 

tool usage patterns (Xu & Recker 2012), through explicit audience-provided feedback 

during lectures (Rivera-Pelayo et al. 2013), or through the analysis of the reasoning behind 

expert teacher assessments (Gauthier 2013).

As it often happens in other LA areas, most current teaching analytics research focuses 

exclusively on data available in a virtual environment, or provided ad-hoc by participants 

(e.g., questionnaires) (Rodríguez-Triana et al. 2015). This reveals a common limitation of 

our field: we tend to focus on spaces where there is an abundance of data, not where most of 

the learning actually occurs (also known as the “streetlamp effect”, Freedman 2010).

To address this limitation in face-to face learning scenarios, recent works use alternative data 

sources (e.g., audio recordings in live classrooms) to characterize automatically teachers’ 

instructional strategies. For instance, Donnelly et al. (2016) use such audio data to recognize 

among five different kinds of teaching activities. The same authors (2017) used similar data 

to distinguish questions from non-questions in teacher classroom discourse.

Multimodal Analytics and Professional Activity Detection

This emergent trend to complement easily available digital traces with data captured from 

the physical world has been labeled multimodal learning analytics (MMLA). Typical 

examples of MMLA include text-based and graphic-based content, speech, gesture and 

electro-dermal activation (Blikstein & Worsley 2016; Ochoa & Worsley 2016). For instance, 

Ochoa et al. (2013) used video, audio and pen stroke information to discriminate between 

expert and non-expert students solving mathematical problems. In the area of professional 

development there is also room for MMLA solutions, by using sensors in the workplace 

(e.g., inserted in patient manikins used for healthcare training, see Martinez-Maldonado et 

al. 2017).

In terms of data processing, the initial forays into MMLA used relatively simple machine 

learning algorithms to build models of the phenomena under study (Ochoa et al. 2013). 

However, more recently deep and recurrent neural networks have shown promising 
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capabilities, outperforming previous results in dealing with rich multimodal data in areas 

like facial expression recognition (Kim et al. 2015) or speech recognition, both in lab 

settings and even in the wild (Dhall et al. 2015).

Modelling Classroom Events: Orchestration Graphs

Multimodal approaches to analyze teaching or learning processes in the physical world are 

not yet widespread. Isolated examples include the iKlassroom conceptual proposal (Vatrapu 

et al. 2013), which features a map of the classroom to help contextualize real-time data 

about the learners in a lecture. Also in university settings, unobtrusive computer vision 

approaches to assess student attention from their posture and other behavioral cues have 

been applied (Raca & Dillenbourg 2013). Albeit solutions that model student actions and 

information exist, studies that characterize teacher practice in the classroom using MMLA 

are scarce, and novel ways of meaningfully characterizing teacher practice are needed. But, 

why is such modeling of teaching beneficial from an educational perspective, and what 

pedagogically-meaningful aspects can be modeled automatically?

Reviews of literature about teacher reflection in professional development highlight that very 

often such reflection is insufficiently based on actual evidence about daily practice (Marcos 

et al. 2011). The observation and characterization of teaching activities (e.g., Flanders 1970; 

Fogarty et al. 1983; Prieto et al. 2011) and the specification of social planes of teacher-

student interaction (Vygotsky 1978; Richards & Farrell 2011) are two of the most aspects 

examined, and they are also the focus in instructional design practice (especially, of 

collaborative learning, see Dillenbourg & Jermann 2007). Hence, it can be especially useful 

to track deviations between the intended instruction and the actual classroom enactment (see 

Lockyer et al. 2013 and other work on the value of aligning learning design and learning 

analytics), as the focus not only of educational research, but also teacher professional 

development.

These two aspects (teaching activites and social levels) are also present in the notion of 

teaching practice as an orchestration process, i.e., “productively coordinating supportive 

interventions across multiple learning activities occurring at multiple social levels” 

(Dillenbourg et al. 2009). Graphical and computational representations of a lesson’s 

orchestration can be made, sometimes named ‘orchestration graphs’ (Dillenbourg 2015). 

This kind of graph, representing activities over time horizontally, and social plane 

(individual, group, or whole-class) vertically, can be used to express instructional designs 

(Dillenbourg 2015) or even the improvised actions during lesson enactment (Prieto et al. 

2011).

Following this same formalism (the orchestration graph), in our previous work (ref. 

anonymized for review) we explored the automatic extraction of orchestration graphs from a 

multimodal dataset gathered from only one teacher, classroom space and a single 

instructional design. In this paper, we apply more advanced machine learning techniques to 

an extended version of this dataset. In particular, we focus on the fact that classroom practice 

(and its orchestration graph representation) is sequential in nature, and that the events 

occurring at different points in a lesson are not likely to be independent of each other. We 

aim to explore these temporal relationships (as captured by multiple data sources) in 
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different ways, an aspect seldom explored in multimodal learning and teaching analytics 

literature, which often uses time-independent machine learning models (e.g., the decision 

trees used by Ochoa et al. 2013).

Modelling Orchestration Graphs of Using a Multimodal Dataset

Study Context

The current study is part of a long-term collaboration between a local school and our 

research lab, with the aim of modelling and supporting teacher orchestration in technology-

enhanced classrooms. As part of our exploration of how multimodal sensor data could be 

used for teacher reflection in professional development, we recorded eight lessons from a 

single school teacher, and two of her cohorts of students aged 11–12 years old. These eight 

sessions covered four different kinds of mathematics lessons, from the taking of a math test, 

to a collaborative investigation of certain properties of numbers (situations 2-5, see Table 1). 

Each of these four kinds of lessons was enacted with the two cohorts (hence, pairs of 

sessions shared a common instructional design, but differed in the students involved and the 

concrete classroom events).

To complement these recordings made in the same classroom space with a single teacher, we 

recorded four additional math lessons with a different teacher in a completely different space 

(see Figure 1), during the course of an open doors day in our lab. Four different cohorts of 

local school children went over the activities of a game-based lesson using tangible tabletop 

computers, facilitated by a novice teacher-researcher (situation 1 in Table 1).

Methodology

Data gathering—During each of the aforementioned twelve sessions, the teacher was 

equipped with eye-tracking glasses and a smartphone. The SMI eye-tracking glasses 

collected gaze data at 60 Hz (binocular gaze). They also recorded the teacher’s subjective 

video (24 FPS, HD resolution) and audio streams. The smartphone included an application 

that recorded 3-axis accelerometer signals, thus tracking the teacher’s movement in the 

classroom.

We hypothesized that, by combining the features extracted from these four sources (eye-

tracking, video, audio and accelerometer), we would be able to model the simple yet 

pedagogically-meaningful formalism of the orchestration graph (Dillenbourg 2015), thus 

proving the feasibility of this approach to support future teacher reflection and researcher 

tools.

Data pre-processing and feature extraction—The four aforementioned data sources 

were manually aligned. Then, in order to bring these data sources with different sampling 

rates into a common level of granularity, we partitioned each of them into 10-second 

episodes using a sliding windows with an overlap of 5 seconds. Such window length was 

chosen on the basis of our initial work in orchestration graph extraction (ref. anonymized for 

review), in which 10-second windows lead to better model performance, and also was more 

adequate for the manual coding of episodes (as it is often hard to assign a single activity or 

social plane to a 1-second piece of video, especially when transitioning between actions, or 
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to assign a single label to a 30-second-long piece of teacher action). From each of these 10-

second windows (or episodes, from now on), features were extracted:

• From the eye-tracking data, 10 commonly-used features were extracted, 

including pupillary data (e.g., pupil diameter mean and standard deviation in 

each episode) and eye movement data (e.g., saccade speed or fixation duration).

• From the accelerometer data, 140 features were extracted, including means, 

variations and 30-coefficient FFT spectrum of the three accelerometer axes, as 

well as means, variations and FFT of the accelerometer jerk (related to the 

energy spent in the movement).

• From the audio data, 6405 features were extracted using the openSMILE audio 

processing toolkit (http://audeering.com/technology/opensmile/). The features 

extracted included both high-level constructs (e.g., emotion detection 

predictions) as well as low-level features of the spectrum, energy, etc. of each 

episode (commonly used in audio data mining and machine learning challenges).

• From the video data, 1000 features were extracted, using a pre-trained deep 

convolutional neural network. More concretely, one frame extracted from each 

episode was input to a the VGG-19 network (Simonyan & Zisserman 2014). The 

output prediction vector was taken as video-related features. The network output 

can be considered as a semantic summary of what the teacher was seeing.

Aside from these extracted features, the audio/video of the session was manually video-

coded to obtain the ground truth of the orchestration graph. More concretely, each episode 

was tagged with one of five mutually-exclusive teaching activities, according to the teacher’s 

most immediate intent during the episode (in upper case, the labels used in Figure 5):

• EXPlanation, that is, the teacher delivering content in lecture style,

• MONitoring, checking around the classroom while students work on a task,

• REPairs, in which the teacher answers to a student question or doubt,

• QUEstioning, in which it is the teacher who tries to assess the student(s) 

knowledge orally, and

• Other activities not included above.

This categorization schema was derived from previous observational studies of classroom 

activities and routines (such as Fogarty et al. 1983; Prieto et al. 2011), as well as classroom 

observation schemas (concretely, the Flanders Interaction Analysis Categories, see Flanders 

1970). These initial literature-driven categories were then refined with the help of participant 

teachers (i.e., what kinds of classroom activities were interesting for them) during a 

participatory preparation phase of the experiments.

Similarly, each episode was tagged as containing interactions at INDividual, small-GRouP 

or CLaSs-wide social planes, or other plane of interaction (i.e., not socially relevant, or no 

social interaction). As mentioned before, these social plane categories were derived from 

Vygotsky’s socio-constructivist theories (1978), and is often included in instructional design 
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(Dillenbourg & Jermann 2007) and classroom observation schemes (e.g., Richards & Farrell 

2011).

It is also important to note that the inclusion of an ‘other’ category (i.e., the episode is not 

interesting) in both orchestration graph dimensions makes the accurate automatic extraction 

much more difficult, but has great practical importance: our models and potential future 

applications should be able to tell the interesting episodes from the non-interesting ones, 

which may cover a wide array of events and occurrences (this code is not present in most 

previous work such as ref. anonymized for review).

Hence, at the end of this process we had a dataset comprising a total of 5561 episodes from 

the twelve sessions, and each episode was characterized by a total of 7555 features from four 

data sources. Furthermore, each episode had been assigned a teaching activity and a social 

plane of interaction code, thus forming the target orchestration graph to be extracted. Figure 

2 shows the distribution of codes for both target variables, including a noticeable class 

imbalance.

Model training and evaluation—From a machine learning point of view, we can express 

the automatic extraction of orchestration graphs as two parallel classification tasks (one to 

deduce the teaching activity, another to guess the social plane of interaction), to be predicted 

for each episode from the same pool of features. We trained different kinds of machine 

learning models: a) personalized models, trained and tuned for use by a single teacher; and 

b) general models, aimed at working across multiple teachers. In order to assess how well 

these models perform in circumstances different than those in which they were trained, we 

performed k-fold cross validations (in which data is partitioned in k contiguous segments, 

training the model with k-1 segments and testing its performance on the remaining one - 

repeating the process k times). We took each classroom session as the basic, natural unit for 

partition (as every session, even ones with a similar instructional design, had different 

students and different classroom events):

• To evaluate personalized models, we trained the model on N-1 sessions of a 
single teacher (N being 4 for the novice teacher T1, and 8 for the expert teacher 

T2, see Table 1), and tested the model on the remaining session (leave-one-

session-out).

• On the other hand, general models were tested using a similar leave-one-session-

out schema (i.e., training on 11 of the sessions available from both teachers, and 

testing on the remaining session).

The motivation behind such an evaluation framework to position different models within the 

bias-variance spectrum (see Kidzinski et al. 2016 for a similar discussion in the context of 

MOOC learning analytics). We can either aim at very general features and a generalizable 

model across the population, or very specific features and a model that only generalizes to 

the same individuals. Given our limited dataset, in this study we explore more exhaustively 

the bias side of the spectrum, and only provide initial indications of how much our models 

can generalize across the population. In order to compare models against each other, we 

have used the median F1 scores (to avoid misleading results that using plain accuracy would 
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provide, due to the ground truth’s class imbalance; also, to more easily place ourselves 

within similar related work on teaching activity extraction, such as Donnelly et al. 2016).

Following our initial exploration of this approach (ref. anonymized for review), we have 

trained and evaluated different kinds of models, including both time-independent (i.e., that 

considers and classifies each episode in isolation) and time-aware models that account for 

the ordered sequence of events/episodes in time. Among the different models we explored, 

we chose to prime performance over interpretability, leading to the use of several ‘black 

box’ models (like random forests or neural networks). This was motivated by the fact that 

we aim at automating a task that is relatively easy to perform by a human (deciding what is 

the teacher’s immediate intent at a certain point in the lesson), rather than deepening our 

understanding of classroom orchestration or how such extraction is performed per se.

Finally, as it is common in many MMLA efforts (e.g., Ochoa et al. 2013), we also explore 

the added value of different data sources (and data source combinations) or types of features, 

in order to guide future research and technology design in this area. However, for brevity’s 

sake, in the results below we do not detail all the models and combinations of data sources 

explored; only the most effective or interesting ones are mentioned.

Technical implementation details—The aligning and pre-processing of the data, 

accelerometer and eye-tracking feature extraction, as well as most of the data models and 

their evaluation have been implemented in R, using standard packages such as 

‘randomForest’ or ‘e1071’ (for support vector machines). The video feature extraction has 

been performed using the Lua implementation of VGG-19, while the audio feature 

extraction has been done using the openSMILE toolkit. The neural network models 

described below have been implemented using the Keras library (in Python). The source 

code for the aforementioned processing and modelling is available at <<to be released upon 

paper acceptance>>.

Personalized Models for Orchestration Graph Extraction

One potential scenario for future applications of orchestration graphs extraction, is the 

personal use by practitioners (e.g., for reflection-based teacher professional development). 

These models could be trained and tuned over long periods of time for a single teacher, for 

increased accuracy. With the machine learning models described below, we explore the 

following questions: “how effective can be a model trained/tuned for a single teacher?” and 

“what are the most informative data sources and features when building this kind of 

models?”

Time-independent Models—Several families of time-independent classification 

algorithms were tested with the present dataset. Among those, random forests proved to have 

the most robust performance, both on predicting the teaching activity and the social plane of 

interaction. Random forests also performed comparatively well with different combinations 

of data sources. As an alternative to this relatively complex ensemble model acting on a 

high-dimensional dataset, we tried also lower-complexity ones, like support vector machines 

(SVMs) with a radial kernel, operating on a selection of the 100 uncorrelated features that 

most varied across the target variable. To perform this feature ranking, we used Cohen’s d (a 
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metric of effect size, see Cohen 1977) against the target variable (teaching activity or social 

plane) as a proxy for the potential predictive value of the feature.

As we can see in Figure 3, the random forest model achieved median F1 scores of around 

0.7 in extracting the teaching activity, reaching F1=0.8 for the social plane of interaction. 

Interestingly, the lower-complexity SVM alternative also performed at similar levels, even 

outperforming the random forest in predicting both the teaching activity and social plane 

(median F1=0.72 and 0.813, respectively).

As for the relative value of the different data sources and their features, audio was the most 

informative source across the board (average F1=0.702 and 0.787, respectively), with a 

combination of audio/accelerometer features ranking among the best time-independent 

models to predict teaching activity (avg. F1=0.717).

Despite being considered a ‘black box’ algorithm, random forests also can provide a 

measure of the relative importance of features. As we can see in Table 2, certain eye-

tracking and accelerometer features are often ranked among the most influential, although 

the rest of the table is largely dominated by the (much more numerous) audio features.

Modelling Time Using Look-back—As a first (rather naive) approach to exploiting the 

time structure of classroom events, we can use the features in the immediately previous 

episodes as additional inputs for our models, accounting for the fact that what happens right 

now is partially determined by what happened some moments ago. We trained random forest 

models by feeding them with both the current features and those from the previous nine 

episodes (‘look-back’ strategy). In order to avert the curse of dimensionality (we would have 

10 times more features than in the original model, while the number of training samples 

would remain the same), a principal component analysis (PCA) was performed to reduce the 

number of features to 100, before the look-back. As an alternative, and to avoid the over-

representation of audio features in this PCA, we also performed an even more drastic 

dimensionality reduction separately to each data source, to a total of 45 features before the 

look-back.

Figure 3 summarizes the results: we can see that this naive time-aware model in fact 

outperforms the time-independent ones in both extraction tasks, performing especially well 

regarding the prediction of social planes (F1=0.843).

Although the features after the PCA transformation are even harder to interpret than the 

original ones, we can use the random forests’ variable importance to explore the relative 

value of the different data sources and the look-back (time) component, in the models’ 

predictions. Table 3 shows that not only the current audio features are important in the 

predictions; also, the same component up to 3 episodes before (i.e., 15 seconds before), and 

previous eye-tracking data, have a large influence in the models’ predictions.

Modelling Time Using Markov Chains—Another approach to modelling the time 

structure of the classroom orchestration graphs can be made by modelling the transitions 

between the different teaching activities and social planes of interaction, as two different 

Markov processes. We can thus train Markov Chains to calculate the probability of the 
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teacher transitioning from one teaching activity (or social plane) to a different one (or to 

keep doing the same one). These transition probabilities can then be used to tune the results 

of a time-independent model to make them more similar to the observed classroom behavior 

(e.g., making the stay in the same teaching activity or social plane more probable than other 

transitions).

As we can see in Figure 3, the personalized models that used this approach outperformed all 

other models in the prediction of teaching activity (median F1=0.741), even if they failed to 

beat the performance of the look-back strategy for social plane of interaction.

Modelling Time Using Recurrent Neural Networks (RNNs)—Although the look-

back and Markov Chain approaches to modelling time already provided a certain boost in 

performance, they failed to account for longer-term (or more sophisticated) dependences 

between the data at different moments in time. For instance, if the teacher is lecturing, 

momentarily jumps to a repair activity prompted by a student question, but later comes back 

to the explanation. To capture these long-term dependences, we can train models that are 

able to learn when to remember/forget past data, such as recurrent neural networks (RNNs). 

Concretely, long short-term memory networks (LSTMs) are especially designed for this 

purpose, and have been used successfully in many machine learning challenges recently.

We trained LSTMs with different architectures, ranging from 1-3 layers and different 

amounts of cells per layer (32-200), as well as dropout regularization to avoid overfitting 

(given the relatively small dataset available). However, as we can see in the example of 

Figure 3, these personalized models did not perform as well as the previously presented ones 

(median F1 scores around 0.4-0.5).

General Models for Orchestration Graph Extraction

The previous section illustrated how machine learning models can be built to extract the 

orchestration graph for the classroom practice of a single teacher. However, can we also 

build models that are able to extract an orchestration graph reliably across the radically 

different classroom realities of multiple teachers? This question is explored below, also 

using a leave-one-session-out k-fold cross-validation schema.

Time-independent Models—Machine learning algorithms from multiple families were 

trained for the extraction of orchestration graphs, including random forests and SVMs 

applied on a selection of features, and using different combinations of data sources. The 

results of evaluating these general models are summarized in Figure 4.

The performance of these general time-independent models on leave-one-session-out 

evaluations is inferior to that of the personalized models, as expected (e.g., for a random 

forest, median F1=0.707 and 0.799, respectively). Regarding the predictive value of the 

different data sources and features, again audio was the most predictive one (mean F1=0.702 

and 0.765, respectively), even if the random forests’ variable importance also feature very 

often the mean pupil diameter as a top variable (not shown here for brevity).
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Modelling Time Using Look-back—We can again try to model the short-term time 

dependences between different features by using look-back, over the dataset whose 

dimensionality has been reduced using PCA. In this case (Figure 4), the performance is only 

improved in the case of predicting teaching activity using separate PCA per data source 

(median F1=0.711). The importance of the different PCA components and their previous 

states also showed predominance of audio features and their previous states, as well as 

certain eye-tracking components (not shown for brevity).

Modelling Time Using Markov Chains—We can also try the same Markov Chain 

enhancement to calculate the probability of transitioning from one teaching activity or social 

plane to another (this time across multiple teachers), in order to enhance the predictions of 

our time-independent general models.

As we can see in Figure 4, the general models that used this approach outperformed all other 

general models in the prediction of teaching activity (even if only slightly, median 

F1=0.716), achieving a noticeable gain in performance for the prediction of social plane of 

interaction across teachers (median F1=0.837).

Modelling Time using Recurrent Neural Networks (RNNs)—Finally, we also tried 

to model longer-term time structure and relationships between features in general models 

through LSTM recurrent neural networks. As we can see in Figure 4, such models were not 

very successful either, performing quite poorly under the leave-one-session-out evaluation 

schema (F1 in the range of 0.4-0.5).

Discussion

In summary, the results from our evaluation of personalized and general models to 

automatically extract orchestration graphs highlight the fact that machine learning models 

can be successfully trained with such multimodal sensor data, using relatively low-level 

features. Our results show a comparable or superior performance to recent related work in 

the automatic tagging of classroom events, like Donnelly et al.’s (2016; 2017), which report 

F1 scores around 0.6-0.7 in similar tasks (although such performance values cannot be 

compared directly due to the differences in the tasks and datasets used).

Our results underline the current state of multimodal learning and teaching analytics: the 

reported accuracies when working with sensor and other unstructured sources of data 

(around 60-80%, see Morency et al. 2013; Chahuara et al. 2016; Dhall et al. 2015) 

represents considerable progress in the latest years, but is still far from the performance that 

end users would expect from commercially-deployable solutions. To illustrate this point, we 

can see the graphical comparison between human-labeled and automatically-extracted 

orchestration graphs in Figure 5: albeit the overall balance of teaching activities and social 

planes may be preserved, noticeable differences are visible to the naked eye. This is in part 

due to the fact that this graph represents two simultaneous classification tasks and hence, 

even with relatively high F1 scores, there is a fair chance that at any point in time either the 

teaching activity or the social plane will have been misclassified.
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Our results also illustrate the different tradeoffs that researchers and technology designers in 

this area need to take into account:

• Bias vs. variance tradeoff: in this paper we illustrate two kinds of models that can 

be built across the bias-variance spectrum, ones more specific and others more 

generalizable. The range of best model performances reported here (F1 scores 

between 0.44 and 0.84) give an idea of what we can expect from current 

multimodal teaching analytics models, which in turn may condition the kinds of 

applications and usage dynamics that are feasible for these models (e.g., in long-

term personalization vs. generally ready-to-use).

• Computational cost and latency vs. performance: we have explored models with 

varying levels of complexity, both in terms of training and prediction. Although 

the most common usages of the presented models in research and professional 

development are performed post-hoc without strict time limitations, our results 

with simpler feature sets and comparatively “cheap” SVM models, also open the 

door to real-time applications of these models, with little reduction in model 

performance.

• Data gathering costs vs. benefits: the gathering of the dataset used in the present 

paper was rather costly, in terms of hardware, setup time and researcher effort. 

Although this arrangement provided us with higher-quality data, we could also 

observe how less costly data sources (like audio or accelerometer) are already 

quite effective by themselves. This tradeoff, together with the issue of data 

ownership and the handling of potentially sensitive personal data (e.g., video 

recordings), have prompted researchers to recently propose approaches in which 

students or teachers collect and own the multimodal data (Domínguez et al. 

2015).

• High- vs. low-interpretability models and features (and the curse of 

dimensionality): in this paper, contrary to other works in the area (e.g., Donnelly 

et al. 2017), we have chosen to use multimodal features with relatively low 

interpretability (as opposed to, e.g., analyzing the automated transcription of 

what the teacher says, which can be easily interpreted). This is again a tradeoff: 

highly interpretable features may enable higher performance levels and more 

advanced analyses, but also make the approach more fragile in terms of what 

languages or local cultures it is applicable to. Related to this issue is the “curse 

of dimensionality” (e.g., the fact that we had more low-level audio features than 

we had samples in the dataset), which can be a problem when training many 

machine learning models. Our use of ensemble models (e.g., random forests that 

include 500 decision trees using 86 features each), or explicit strategies like PCA 

or simple feature ranking/selection enabled us to deal with this problem with 

relatively little impact on the performance of the models.

• Efficiency vs. effectiveness in measuring model performance: our choice of F1 as 

the scoring metric to compare and judge the models is not the only possible 

choice, although it is an efficient one favored by many researchers in the area (as 

it is also more impervious to class imbalances in the dataset). Other target users 
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(such as teachers) may find more effective the use of other metrics like accuracy, 

which are easier to grasp and visualize.

• Data fusion and tooling: the data fusion strategy used (at the feature extraction 

level) is not the only possible one when dealing with disparate sources of data, 

and such choice may also impact the performance of the resulting models 

(Worsley 2014). This choice is also limited by the tooling available to the 

multimodal analytics researcher, as there is still no widely accepted standard or 

toolkit for convenient data fusion and pre-processing.

Aside from these tradeoffs (ubiquitous in current multimodal analytics), our results are 

mainly constrained by the limitations in the scale and variety of the dataset used, especially 

in terms of the number of teachers and classroom settings covered. Other, more rigorous 

kinds of evaluation could also be possible (e.g., leave-one-kind-of-situation-out, or leave-

one-teacher-out), and would give a better idea of the real-world performance of these 

approaches. However, our current dataset (with only two teachers and five different kinds of 

classroom situations) is too limited to apply these evaluation schemes effectively. Indeed, 

our current results should not be understood as blanket statements (e.g., that LSTMs perform 

worse than look-back random forests), as such comparisons depend largely on the selected 

feature set, model hyperparameters and architectures, but very especially on the size of the 

(human-labeled) training dataset. In this paper we have tried to explore the machine learning 

space for the problem at hand in multiple directions, rather than greedily striving for the 

smallest fraction of F1 score (e.g., by ensembling some of the most successful models 

presented here).

These limitations and tradeoffs also illuminate the most promising paths for future work in 

this research direction, which include the collection of a larger and more varied multimodal 

classroom dataset, using more cost-effective, predictive and privacy-friendly sources (e.g., 

accelerometer and audio, or even others like indoor location or depth sensors). This data 

gathering effort should be made eventually available to (or jointly gathered with) the MMLA 

research community.
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Figure 1. 
The two different classroom spaces where the dataset was recorded. School classroom 

(teacher T2, right) and open doors day multi-tabletop classroom (teacher T1, left).
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Figure 2. 
Distribution of codes for the (human-labeled) ground truth used to detect teaching activities 

and social planes of interaction. The two colors denote the participant teacher that generated 

them.
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Figure 3. 
Boxplot representation (median and inter-quartile range) of the evaluation results (F1 scores) 

for the top personalized models trained, in a leave-one-session-out k-fold cross-validation. 

Numbers to the right of the boxplots indicate the exact median value of the F1 scores.
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Figure 4. 
Boxplot representation (median and inter-quartile range) of the evaluation results (F1 scores) 

for the top generalized models trained, in a leave-one-session-out k-fold cross-validation. 

Numbers to the right of the boxplots indicate the exact median value of the F1 scores.
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Figure 5. 
Example graphical representation of the human-labeled and automatically-extracted 

orchestration graphs of a session, resulting from the personalized Markov Chain-enhanced 

random forest models for teaching activity and social plane (median F1 scores of 0.74 and 

0.83, respectively).
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Table 2

Feature importance of the multimodal dataset: features most often appearing among the 10 most important 

variables in the (time-independent) random forest model, trained using all data sources’ features

Target variable Activity Social

Feature Data source Nr. appearances (out of 16) Nr. appearances (out of 16)

Mean pupil diameter eyetracking 15 13

Mean x-axis value accelerometer 3 7

Median jerk value accelerometer 0 8

audSpec_Rfilt_sma.21._flatness audio 4 2

audSpec_Rfilt_sma.19._percentile1.0 audio 3 3

audspec_lengthL1norm_sma_flatness audio 2 4
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Table 3

Feature importance of the multimodal dataset: features most often appearing among the 10 most important 

variables in the (time-aware) personalized look-back random forest model, trained from all data sources (using 

separate PCA components per data source)

Target variable Activity Social

Feature Data source Nr. appearances (out of 16) Nr. appearances (out of 16)

PCA comp.1 (curr) audio 16 16

PCA comp.1 (t-1) audio 16 16

PCA comp.1 (t-2) audio 16 14

PCA comp.3 (t-1) audio 12 16

PCA comp.1 (t-3) audio 16 7

PCA comp.2 (t-1) eyetracking 2 10
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