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Abstract

To improve patients’ access to safe and effective biological medicines, abbreviated licensure 

pathways for biosimilar and interchangeable biological products have been established in the US, 

Europe, and other countries around the world. The US Food and Drug Administration and 

European Medicines Agency have published various guidance documents on the development and 

approval of biosimilars, which recommend a “totality-of-the-evidence” approach with a stepwise 

process to demonstrate biosimilarity. The approach relies on comprehensive comparability studies 

ranging from analytical and nonclinical studies to clinical pharmacokinetic/pharmacodynamic 

(PK/PD) and efficacy studies. A clinical efficacy study may be necessary to address residual 

uncertainty about the biosimilarity of the proposed product to the reference product and support a 

demonstration that there are no clinically meaningful differences. In this article, we propose a 

statistical strategy that takes into account the similarity evidence from analytical assessments and 

PK studies in the design and analysis of the clinical efficacy study in order to address residual 

uncertainty and enhance statistical power and precision. We assume that if the proposed biosimilar 

product and the reference product are shown to be highly similar with respect to the analytical and 

PK parameters, then they should also be similar with respect to the efficacy parameters. We show 

that the proposed methods provide correct control of the type I error and improve the power and 

precision of the efficacy study upon the standard analysis that disregards the prior evidence. We 

confirm and illustrate the theoretical results through simulation studies based on the biosimilars 

development experience of many different products.
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1. Introduction

A biological medicine is a large molecule derived from living cells (Dranitsaris et al., 2013). 

As the patents for a large number of biological products have already expired or are due to 

expire, there is an increasing interest from both the biopharmaceutical industry and the 

regulatory agencies in the development and approval of biosimilars (Noaiseh and Moreland, 

2013; Ventola, 2013). The US Food and Drug Administration (FDA) defines a biosimilar as 

a product that is highly similar to the reference innovator product notwithstanding minor 

differences in clinically inactive components and with no clinically meaningful differences 

between the proposed biosimilar and the reference innovator product (US Food and Drug 

Administration, 2015a). Differences in cell lines and manufacturing processes make it 

impossible for biological products to be replicated exactly. Thus, the requirements to 

demonstrate similarity of biological products are different from those of demonstrating 

bioequivalence for generic small-molecule drug products that have an identical chemical 

structure.

To improve patients’ access to safe and effective biological medicines, an abbreviated 

licensure pathway for biosimilar and interchangeable biological products was established 

under section 351 (k) of the Public Health Service Act in the US. Similar legal pathways for 

approval of biosimilars were established in the European and other countries around the 

world. Various guidance documents have been published by health authorities regarding the 

development and approval of biosimilars. The FDA (2015a, 2015b, 2015c, 2016a) and 

European Medicines Agency (2014) issued guidance documents that recommend a “totality-

of-evidence” approach to assess biosimilarity with a stepwise process. The approach relies 

on comprehensive comparability studies with the reference product, progressing from 

analytical and nonclinical studies to clinical pharmacokinetic (PK) and pharmacodynamic 

(PD) studies (if there are relevant PD measures), and then to clinical efficacy studies. The 

analytical studies compare structural and functional characterization between the proposed 

biosimilar and the reference product. This serves as the foundation for a demonstration of 

biosimilarity. If there is residual uncertainty about biosimilarity after conducting analytical 

studies, animal testing, and clinical PK/PD studies, then clinical efficacy studies may be 

needed to adequately address that uncertainty, so as to support a demonstration that there are 

no clinically meaningful differences.

In light of the regulatory guidelines, it is strongly desirable to incorporate the prior 

knowledge of similarity or degree of uncertainty directly into the design and analysis of the 

clinical efficacy study. In general, the more similar the analytical and particularly the 

functional evaluations of the proposed biosimilar to the reference product are, the less 

residual uncertainty about biosimilarity there is to be addressed through the clinical studies. 

In addition, it is useful to incorporate PK similarity evidence to further reduce residual 

uncertainty and support a demonstration of no clinically meaningful differences.

In this article, we propose a statistical strategy that uses the analytical and PK similarity 

evidence from structural and functional characterization and phase 1 PK studies to reduce 

the sample size and enhance the power for a Phase 3 biosimilar efficacy study. Our 

assumption is that if the proposed biosimilar product and the reference product are highly 
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similar with respect to the analytical and phase 1 PK parameters, then they should also be 

similar with respect to the Phase 3 efficacy parameter. This strategy is in line with the FDA’s 

guidance on the stepwise process and the totality-of-the-evidence approach to establish 

similarity. No such methods have been published, although there is a large body of literature 

on bioequivalence (e.g., Chow and Liu, 2008).

The rest of this article is organized as follows. In Section 2, we describe the proposed 

methods to incorporate the prior evidence of similarity (e.g., analytical and PK similarity) to 

improve the power of equivalence test and the precision of parameter estimation for a Phase 

3 efficacy similarity study. We consider both the scenarios of a single source and multiple 

sources of prior similarity evidence. In Section 3, we conduct simulation studies to evaluate 

the proposed methods in realistic settings. Specifically, we show that the proposed methods 

preserve the type I error and enhance the power and estimation precision as opposed to 

disregarding the prior evidence when designing and analyzing the biosimilar clinical efficacy 

study. We also investigate the impact of the strength of analytical similarity on the proposed 

methods and show that combining the evidence from analytical and PK similarity can boost 

the power in the Phase 3 study. We provide some concluding remarks in Section 4.We 

relegate all theoretical details to appendices.

2. Methods

2.1. Incorporating single source of prior similarity evidence

Suppose that the parameter of interest in the prior evidence is θ, which may be a functional 

assessment for the mechanism of action, such as the primary receptor binding (particularly, 

tumor necrosis factor or TNF α binding) and antibody-dependent cellular cytotoxicity, in 

analytical studies or the logarithm of area under the curve (AUC) in the PK study. Suppose 

also that the parameter of interest in the Phase 3 trial is p, which is typically the response 

rate. Let (θT, pT) and (θR, pR) denote the values of (θ, p) for the biosimilar product to be 

tested and the reference product, respectively.

In the prior study, we test the null hypothesis

H0
(1):θT − θR < L′ or θT − θR > U′

against the alternative hypothesis

Ha
(1):L′ ≤ θT − θR ≤ U′,

where L′ ≤ 0 ≤ U′ are two specific margins. If, for example, θ is the logarithm of AUC, 

then L′ = −U′ = log(0.8). In the Phase 3 efficacy trial, we test the null hypothesis
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H0
(3): log

pT
pR

< L or log
pT
pR

> U

against the alternative hypothesis

Ha
(3):L ≤ log

pT
pR

≤ U,

where L ≤ 0 ≤ U are two specific margins. Typically, U and L are symmetric around 0, i.e., 

U = −L.

If there is strong empirical evidence that θT and θR are similar, then we wish to leverage this 

information when demonstrating the similarity between pT and pR in the Phase 3 trial. There 

are several challenges in formalizing this strategy. First, the parameters θ and p have 

different scales of measurement. Secondly, it is unclear how to efficiently incorporate the 

evidence about similarity from the prior study into the design and analysis of the Phase 3 

study without making strong assumptions about the relationship between the parameters of 

the two studies. Lastly, because the prior evidence is empirical, we need to account for its 

randomness when incorporating it into the design and analysis of the Phase 3 study in order 

to control the overall type I error.

To address the first challenge, we rescale the parameters in the prior study and the Phase 3 

study by defining a relative similarity measurement (RSM), which is the ratio between the 

absolute difference of the proposed biosimilar product and the reference product and the 

range of the margins. That is, the RSMs for the prior study and the Phase 3 study are defined 

as

RSM1 =
∣ θT − θR ∣
∣ U′ − L′ ∣ , RSM3 =

∣ log pT − log pR ∣
∣ U − L ∣ ,

respectively. Because RSM is a relative difference and thus has no unit, RSM1 and RSM3 

are comparable. Furthermore, if the two products are similar within the margin, then RSM 

takes a value in [0, 1].

To address the second challenge, we impose a structural assumption on the relationship 

between RSM1 and RSM3, under which there exists a known positive constant c1 such that

i f RSM1 < c1, then RSM3 < max { ∣ L ∣ , ∣ U ∣ }
∣ U − L ∣ . (1)

Thus, if the relative similarity in the prior study is within the bound c1, then the difference 

between the two products in the Phase 3 study should be within the margins. In other words, 
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very similar performance between the two products in the parameter of the prior study 

renders evidence that the two products perform similarly with respect to the Phase 3 

parameter. However, we do not specify any functional relationship between RSM1 and 

RSM3 but rather how the alternative hypothesis in the Phase 3 study is related to a bound for 

the relative similarity in the prior study. This structural assumption is minimal for the 

purpose of hypothesis testing. Clearly, the constant c1 governs how much information is 

borrowed from the prior study. Specifying a reasonable c1 requires some biological 

knowledge about the relationship between RSM1 and RSM3. For example, if we believe that 

RSM1 is proportional to RSM3, then for the case that L = −U, the structural assumption 

holds with c1 = RSM1/(2RSM3).

To address the last challenge, we must take into account the fact that there is some positive 

probability that the similarity evidence of RSM1 < c1 can be wrong when we construct the 

rejection region for hypothesis testing in the Phase 3 study. We propose to appropriately 

allocate the type I error as follows. Suppose that the overall type I error is set to α and that 

the null hypothesis that the two products are not similar holds for the Phase 3 study. We can 

reject the null hypothesis under one of two scenarios: (1) the empirical evidence in the prior 

study concludes that RSM1 < c1, such that the structural assumption leads to the conclusion 

that the two products are similar with respect to the Phase 3 parameter; and (2) the empirical 

evidence in the Phase 3 study indicates that the two products are similar. Thus, to control the 

overall type I error at α, we will control the error for case (1) to be under α1 (0 ≤ α1 ≤ α) 

while controlling the error for case (2) to be under (α − α1). We provide a formal derivation 

and justification in Appendix A.

Note that, in the design stage, α1 in the type I error spending needs to be specified before the 

Phase 3 study. We propose to search for the optimal α1 such that the power under the 

alternative hypothesis in the Phase 3 study is maximized at the design stage. We show in 

Appendix B how to find this optimal α1. After the Phase 3 study is completed, the ideas for 

using the structural assumption and error spending can be used to refine the confidence 

interval in the Phase 3 study at the analysis stage, where the error of using the prior evidence 

can be either fixed beforehand or determined in a data-adaptive manner. The details are 

provided in Appendix C.

2.2. Incorporating multiple sources of prior similarity evidence

We now extend the proposed methods to combine multiple sources of similarity evidence 

from, for example, analytical assessments and phase 1 PK studies. Suppose that there are K 
sources of similarity evidence. For k = 1, …, K, the parameters for the proposed biosimilar 

product and the reference product in the kth source of evidence are denoted by θTk and θRk, 

respectively, and the corresponding margins are denoted by Lk′  and Uk′ . To combine the K 

sources of evidence, we define a weighted similarity metric

RSM1 = ∑
k = 1

K
wk

θTk − θRk
U′k − L′k

,
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where w1, …, wK are pre-specified weights such that ∑k = 1
K wk = 1. With this definition of 

RSM1, the structural assumption is again given in (1).

If we define

θT = ∑
k = 1

K
wkθTk /(Uk′ − Lk′ ), θR = ∑

k = 1

K
wkθRk /(Uk′ − Lk′ )

and set L′ = ≤0.5 and U′ = 0.5, then RSM1 = |θT − θR|/|U′ − L′|. Thus, the design and 

analysis procedures described in section “Incorporating single source of prior similarity 

evidence” can be applied to multiple sources of prior evidence by treating θT and θR as the 

single parameter for the prior evidence. The implementation requires knowledge of the 

covariances between the estimators of (θT1, …, θTK)T and (θR1, …, θRK)T if the parameters 

are estimated from the same study. If the two sets of parameters pertain to analytical 

assessments and the PK study, then the covariance is zero.

The weights wk reflect the importance of each source of prior evidence. If one of the wk is 1 

and the rest are 0, then we recover the set-up of one source of similarity evidence described 

in section “Incorporating single source of prior similarity evidence”. The weights should be 

chosen on the basis of scientific knowledge, such as the extent of similarity in primary and 

secondary functions, together with overall structural/functional similarity. As functional tests 

are considered to be highly correlated with efficacy, more weights should be given to 

analytical similarity results than to PK similarity results. It is desirable to explore a range of 

values for the weights.

3 Numerical studies

3.1 Type I error and power

We conducted simulation studies to examine the performance of the proposed methods in 

practical situations. The first simulation study was designed to assess the type I error when 

the Phase 3 null hypothesis holds, and the second simulation study was designed to assess 

the power gain of the proposed method over the standard method that does not use the prior 

information. In both simulation studies, we simulated n1 = 50 subjects from each treatment 

arm in the prior study and n3 = 300 from each treatment arm in the Phase 3 study. We varied 

the threshold c1 from 0.1 to 0.8 in a grid size 0.1. For each combination of simulation 

parameters, we set the number of replicates to 10,000.

In the first simulation study, we set the parameter value for the reference product in the prior 

study as θR = 5 and set the two margins as L′ = −U′ = log(0.8). In addition, we set the 

response rates for the two products in Phase 3 as pR = 0.4 and pT = 0.75pR. We let the two 

margins for Phase 3 be L = −U = log(0.75), such that the Phase 3 null hypothesis holds. 

Since the structural assumption must hold, the parameter value for the proposed biosimilar 

product, θT, should satisfy RSM1 ≥ c1. We particularly chose RSM1 = 1.25c1 by setting θT = 

1.25c1(U′ − L′) + θR. Thus, we generated n1 measurements from N(θR, 0.112) for the 
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reference product and from N(θT, 0.12) for the proposed biosimilar product. In Phase 3, we 

generated n3 binary responses from Bernoulli(pR) for the reference product and from 

Bernoulli(pT) for the proposed biosimilar product.

In the second simulation study, we adopted the same simulation set-up but let pT = pR = 0.4 

and θT be 0.75c1(U′ − L′) + θR. The latter condition guarantees that the structural 

assumption is satisfied under the alternative hypothesis Ha
(3). With n3 = 300, the power of the 

Phase 3 trial is 80% at α = 0.05.

For each simulated data set, we applied the method described in Appendix A to obtain the 

rejection region at the significance level of α = 5%. We set α1/α to 0, 0.2, or 0.4. Clearly, α1 

= 0 is equivalent to using the Phase 3 data only. We also applied the method described in 

Appendix B with 1 million Monte Carlo samples to obtain the optimal type I error for using 

the prior evidence, α1
opt. Finally, we used the method described in Appendix C to construct 

the 90% confidence intervals for log(pT/pR) corresponding to different choices of α1.

Figure 1 displays the results from the first simulation study, including the empirical type I 

error at the 5% significance level, the coverage probability of the 90% confidence interval, 

and the relative width of the 90% confidence interval based on different α1 over that of using 

the Phase 3 data only. Clearly, the type I error rates for all the methods are below the 

nominal significance level for all values of c1, and the coverage probabilities of the 

confidence intervals are all above the nominal level of 90%. Using a pre-specified value of 

α1 tends to yield conservative type I error and wider confidence intervals. By contrast, the 

proposed method based on the optimal choice of α1 provides accurate control of the type I 

error and the tightest confidence intervals. For the particular parameter set-up in this 

simulation, the method based on αopt performs very similarly to the method using the Phase 

3 data only because the value of αopt turns out to be close to 0. This is due to the fact that pT 

= pR, such that the Phase 3 data almost possess sufficient power to reject the null hypothesis.

Figure 2 displays the results from the second simulation study. The proposed method based 

on αopt has the highest power and the shortest confidence intervals for all choices of c1. The 

power increases and the confidence interval becomes narrower as c1 increases. Thus, using 

the prior evidence through the structural assumption in an optimal way leads to higher power 

and more accurate estimation for the Phase 3 study.

3.2 Impact of the strength of analytical similarity evidence

It is worthwhile to investigate how the strength of the prior evidence may impact the Phase 3 

study in our approach. The strength mostly depends on the extent of similarity in the prior 

study. Thus, we conducted a simulation study to evaluate the power and estimation results 

for the Phase 3 study after incorporating the evidence from analytical assessments, where the 

extent of similarity varies in terms of the variability or the difference pertaining to a 

functional test (e.g., TNFα binding affinity) between the proposed biosimilar product and 

the reference product. Specifically, we generated 10 measurements from N(1.08 + δ, σ2) for 

the reference product and 10 measurements from N(1.08, σ2) for the proposed biosimilar 

product. Clearly, the larger the value of δ or σ is, the weaker the evidence is. We let L′ = −U
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′ = −0.1497. For Phase 3, we set pT = pR = 0.85 and set the margins for pT − pR as L = −U = 

−0.15. We set the type I error at 0.05 and restricted α1 to be less than 0.01 so as to avoid the 

situation in which the analytical evidence is sufficient to conclude the success of Phase 3. 

We first fixed δ = 0.04 and varied σ in order to assess the impact of the variability of the 

measurements. We then fixed σ = 0.09 and varied δ in order to assess the impact of the 

actual product difference in analytical assessments.

If the prior evidence is not used, then the sample size of 98 per arm is required to achieve the 

power of 80%. Figure 3(a) displays the ratio of the sample size for using the analytical 

evidence to the sample size for not using the prior evidence (i.e., 98) under five different 

values of σ. To determine the sample size, we searched over a wide range of sample sizes to 

obtain the smallest sample size such that the power calculated in Appendix B was at least 

80%. Figure 3(b) displays the power of the proposed method for analyzing the Phase 3 data. 

The strength of the analytical evidence, characterized by σ, has strong impact on the results. 

For example, under c1 = 0.4, the value of σ = 0.07 reduces the sample size from 98 to about 

69, and even with the reduced sample size, the average power is increased from 80% to 87%. 

Figure 3(c) and (d) show the ratio of the sample sizes and the power when the difference 

between the two products, δ, changes. The conclusion is similar: the smaller the value of δ is 

(i.e., the stronger the analytical similarity is), the more gain we achieve for both the design 

and the analysis of the Phase 3 study.

3.3 Impact of analytical and PK similarity evidence

In this simulation study, we combined two sources of similarity evidence, one from 

analytical assessments and one from a phase 1 PK study, and evaluated their impact on the 

sample size and power of a future Phase 3 efficacy study. For the first source, we generated 

comparative measurements from N(1.08, 0.0892) for the proposed biosimilar product and 

from N(1.12, 0.12) for the reference product based on the established functional similarity 

(US Food and Drug Administration, 2016b). The corresponding margins were 

L1′ = − U1′ = − 0.1497. The parameter in the second source is the logarithm of the AUC in a 

PK study (Yoo et al., 2017). We generated 45 observation on the logarithm of the AUC for 

the reference product from N(8.9099, 0.32) and 96 observations for the proposed biosimilar 

product from N(8.9668, 0.32), and we set L2′ = − U2′ = log (0.8). For the Phase 3 study, we 

set pT = pR = 0.85, and the margins of their equivalence were L = −U = −0.15. We used the 

proposed method to combine these two sources of similarity evidence. The two sources were 

derived from independent studies, so the parameter estimators are uncorrelated. We varied 

the weight for the analytic evidence, i.e., w1, from 1 to 0, in order to examine the impact of 

the contribution from each evidence. Again, we set α1 to be at most 0.01. As shown in 

Figure 4, adding PK similarity evidence (i.e., setting w1 < 1) further reduces the sample size 

and increases the study power as compared to using analytical similarity evidence alone (i.e., 

w1 = 1). When c1 = 0.4 and the desired power is 0.85, the candidate values of w1 are 0.25, 

0.5, and 0.75. Since the analytic similarity is deemed the most relevant to the clinical 

outcome, the best choice of the weight would be w1 = 0.75.
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4 Discussion

We have developed a simple and effective strategy to reduce the sample size and improve the 

power and estimation for the Phase 3 efficacy trial of biosimilars by leveraging the prior 

similarity evidence from multiple sources such as analytical assessments and PK studies. 

Our approach hinges on the structural assumption, under which strong evidence for 

similarity in the parameters of prior studies implies similarity in the Phase 3 parameter. This 

assumption is a qualitative rather than a functional relationship between the two similarity 

measures.

From a Bayesian point of view, the structural assumption can be regarded as a prior 

distribution for the two similarity measures. The corresponding prior is qualitative. We may 

use a more continuous prior distribution by assuming that RSM3/RSM1 − 1~N(0, σ2), which 

is equivalent to a ridge penalty for (RSM3/RSM1 − 1)2. The hyperparameter σ2 plays the 

role of c1 to govern how much prior similarity evidence is used to reinforce the Phase 3 trial. 

The continuous prior/penalty is computationally easier to handle than the discrete prior. 

However, it is not desirable to constrain the parameters when RSM3 is far from RSM1.

The choice of c1 is a critical aspect of the proposed methods. We recommend to determine 

c1 using the evidence on related products with approved indications. For example, for an 

infliximab biosimilar product approved by the FDA in 2016, the analytical similarity (as 

measured by TNFα binding affinity) yields the difference between the reference and test 

products as 2.59% with the margins of −7.04% and 7.04%, and the clinical similarity as 

measured by ACR20 yields the difference of 2% with the margins of −15% and 15% (Yoo et 

al., 2017). For a biosimilar later approved by the FDA for similar indications, the analytical 

similarity is −3.6% with the margins of −14.97% and 14.97%, and the clinical similarity is 

−0.4% with the margins of −12% and 12% (US Food and Drug Administration, 2016b). 

Thus, the ratio RSM1/RSM3 is estimated at 2.76 for the first study and at 7.46 for the second 

study. This empirical evidence suggests that c1, which is chosen as half of this ratio to satisfy 

the structural assumption, can be as large as 1.3. In addition to empirical evidence, it is 

worthwhile to conduct sensitivity analysis to examine the power over a range of values for c1 

when designing a new Phase 3 study and when analyzing data after the study is completed.

If the prespecified value of c1 is not small, the prior evidence may be strong enough to reject 

the Phase 3 null hypothesis, such that there is no need to run the Phase 3 study. To reduce 

the likelihood of this scenario, we may, as in the numerical studies, restrict α1 to be within a 

certain threshold, such that we will use only the prior evidence when RSM1 < c1 is 

supported by prior studies with very high probability. The optimal error spending may be 

different between the design stage and the analysis stage, as the former aims to maximize 

power whereas the latter aims to construct the narrowest confidence interval that depends on 

the empirical data in the Phase 3 study. This difference was observed in our numerical 

studies.

We have assumed that the endpoint for the Phase 3 efficacy study is a binary response. We 

can easily extend our methods to a time-to-event endpoint. The null hypothesis will then 

pertain to the hazard ratio instead of the ratio of the two response rates.
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The FDA recommended a tier approach to statistical analysis based on a critically risk 

ranking as described by Tsong et al. (2017). For the attributes with the highest risk to 

clinical outcomes (Tier 1), which include assays that evaluate clinically relevant mechanisms 

of action of the product, a demonstration of statistical equivalence is required. Specifically, 

the equivalence is demonstrated if the confidence interval for the difference in the mean 

between the proposed biosimilar product and the reference product is fully contained within 

the equivalence acceptance region. For the quality attributes with lower risk ranking (Tier 2), 

the similarity is assessed by comparing the individual results of the proposed biosimilar 

product with a quality range based on the mean and standard deviation of the reference 

product dataset. Finally, for the quality attributes with the lowest risk ranking and those that 

do not deliver quantitative results (Tier 3), the similarity is assessed qualitatively by using 

raw data and graphical comparisons.

The methods proposed in this article can be applied directly to the quantitative similarity 

evidence from Tier 1 quality attributes, as illustrated in sections “Impact of the strength of 

analytical similarity evidence” and “Impact of analytical and PK similarity evidence”. The 

proposed methods can also be applied to the similarity evidence from Tier 2 attributes by 

treating the quality range as the margin. However, the requirement to show similarity for 

Tier 2 quality attributes is different from the rigorous bio-equivalence test described in this 

article, so the use of the proposed methods to incorporate the similarity evidence from Tier 2 

attributes may require further consideration. For Tier 3 quality attributes whose similarity 

evidence is qualitative, the proposed methods cannot be directly applied. Since Tier 2 and 

Tier 3 quality attributes have low or no risk to patients, the proposed methods remain a 

viable approach to efficiently leverage the prior analytical similarity information from Tier 1 

attributes for the design and analysis of a biosimilar clinical study.

In the proposed methods, weights are introduced to combine multiple sources of similarity 

evidence. As with any weighted statistical methods, the choice of the weights is challenging, 

and the weights should reflect the importance of each source of the prior evidence. Since 

functional attributes are most relevant to clinical outcomes, we recommend that more 

weights be given to the functional similarity evidence, especially the Tier 1 functional 

attributes. In addition, the weights should be reference-drug specific and be determined 

according to the scientific knowledge about the relevance of the prior evidence (from 

structural, functional, and PK studies) on the clinical outcomes for the reference product. 

Ultimately, the acceptable values for weights become a negotiating point between the 

sponsor and regulatory agencies, and it will be up to regulatory agencies to decide whether 

the same approach to design a clinical similarity study should be implemented by different 

biosimilar applicants.
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Appendix A. Rejection Region for Hypothesis Testing in the Phase 3 Study

First, we construct a rejection region based on the prior evidence data such that the type I 

error to reject the null hypothesis H0
∗: RSM1 ≥ c1 is controlled at α1. Specifically, let θ̂T and 

θ̂R denote the estimators of θT and θR, and let σT
2  and σR

2  denote the corresponding variance 

estimators. Write δ1 = θT − θR and δ̂1 = θ̂T − θ̂R. Then δ̂1 is approximately normal with 

mean δ1 and variance v1
2 = σT

2 + σR
2 . Thus,

P δ1 − v1z1 − α1/2 ≤ δ1 ≤ δ1 + v1z1 − α1/2 = 1 − α1,

where zp is the 100p th percentile of the standard normal distribution. It follows that
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P( ∣ δ1 ∣ ≤ Zα1
) ≥ 1 − α1,

where

Zα1
= max δ1 − v1z1 − α1/2 ∣, ∣ δ1 + v1z1 − α1/2 . (2)

That is, [0, Ẑα1/|U′ − L′|] is a (1 − α1)100% confidence interval for RSM1. Hence, we 

reject H0
∗ when c1 is within this interval, i.e., Ẑα1 ≤ c1|U′ ≤ L′|. This rejection region has the 

type I error of α1.

Second, we construct a rejection region based on the Phase 3 data such that the type I error 

is controlled at α3. This can be achieved by using the standard equivalence test. Define δ3 = 

log pT/pR and δ̂3 = log p̂T/p̂R. We estimate the variance of δ̂3 by 

v3
2 = pT(1 − pT)/(nT pT

2 ) + pR(1 − pR)/(nRpR
2 ), where nT and nR are the sample sizes for the 

proposed biosimilar product and the reference product, respectively, in the Phase 3 study. 

Clearly, δ̂3 is approximately normal with mean δ3 and variance v3
2. Thus, a (1 − 2α3)100% 

confidence interval for δ3 is[L̂α3, Ûα3], where

Lα3
= δ3 − v3z1 − α3

, Uα3
= δ3 + v3z1 − α3

.

Hence, we reject H0
(3) if [L̂α3, Ûα3] is contained in [L,U]. This rejection region controls the 

type I error at the level of α3. Combining the above two regions and setting α3 = α − α1, we 

obtain the overall rejection rule for H0
(3)

Aα1
= I([Lα − α1

, Uα − α1
] ⊂ [L, U] or Zα1

≤ c1 ∣ U′ − L′ ∣) .

Suppose that the null hypothesis H0
(3) holds. Then the structural assumption implies that the 

null hypothesis H0
∗ also holds. Thus,

P(Aα1
= 1) ≤ P([Lα − α1

, Uα − α1
] ⊂ [L, U]) + P(Zα1

≤ c1 ∣ U′ − L′ ∣ )

≤ (α − α1) + α1 = α .

In other words, the overall probability of rejection is no larger than α under H0
(3).
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Appendix B. Optimal Type I Error Spending

Under the alternative hypothesis Ha
(3), the probability of no rejection is

P(L > Lα − α1
or Uα − α1

> U)P(Zα1
≥ c1 ∣ U′ − L′ ∣ )

≤ Φ
L − δ3

v3
− zα − α1

+ Φ −
U − δ3

v3
− zα − α1

× P max N(0, 1) − z1 − α1/2 +
δ1
v1

, N(0, 1) + z1 − α1/2 +
δ1
v1

≥
c1 ∣ U′ − L′ ∣

v1
,

where N(0, 1) denotes a standard normal random variable, Φ is the standard-normal 

distribution function, and ν1 and ν3 are obtained from ν̂
1 and ν̂

3, respectively, by replacing 

the parameter estimators with the true parameter values. Denote the right side of the above 

inequality by G(α1). We then search over α1 ∈ [0, α] such that the power 1 − G(α1) is 

maximized. Note that 1 − G(0) is the power without using the prior evidence.

We construct the optimal rejection region as follows:

Step 1. We obtain θT̂, θ̂R and (δ̂1, ν̂
1) using the prior study data.

Step 2. We obtain δ3 = log pT/pR and ν3 under Ha
(3).

Step 3. We search over a grid of α1 in [0, α] to evaluate G(α1), where δ1 and ν1 are 

replaced by δ̂1 and ν1̂, respectively. In particular, the probabilities in G(α1) are 

calculated by Monte Carlo simulation.

Step 4. We determine α1
opt which maximizes 1 − G(α1), such that we reject H0

(3) using 

A
α1

opt.

Appendix C. Refined Confidence Region in the Phase 3 Study Using the 

Prior Evidence

The idea of using the prior information for hypothesis testing in the Phase 3 study can be 

extended to obtain a narrower confidence interval for δ3. To construct a (1 − 2α)100% 

confidence interval (corresponding to the hypothesis testing for equivalence with the type I 

error α), we split α into α1 and (α − α1). Using the prior evidence, we calculate Ẑα1 as 

before such that P(|δ1| ≤ Ẑα1) ≥ 1 − α1. Thus, if RSM1 ≥ c1, then

P(Zα1
≤ c1 ∣ U′ − L′ ∣ ) ≤ P(Zα1

≤ ∣ δ1 ∣ ) ≤ α1 .

Using the Phase 3 data, we construct a (1 − 2α + 2α1)100% confidence interval for δ3 as 

(L̂α−α1, Ûα−α1), such that
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P(δ3 ≤ Lα − α1
) ≤ α − α1, (δ3 ≥ Uα − α1

) ≤ α − α1 .

By combining the above two confidence intervals, we obtain

[L f , U f ] =
[Lα − α1

, Uα − α1
] i f Zα1

> c1 ∣ U − L′ ∣

[Lα − α1
∨ L, Uα − α1

∧ U] otherwise

where a ∨ b = max (a, b), and a ∧ b = min(a, b). If α1 = 0, then [L̂
f, Ûf] reduces to [L̂α, Ûα], 

which is the confidence interval based on the Phase 3 data only.

To see why the proposed confidence interval has the correct coverage, we note that

P(δ3 ≤ L f ) = P(δ3 ≤ Lα − α1
, Zα1

> c1 ∣ U′ − L′ ∣ ) + P(δ3 ≤ Lα − α1
∨ L, Zα1

≤ c1 ∣ U′ − L′ ∣ )

≤ (α − α1)P(Zα1
> c1 ∣ U′ − L′ ∣ ) + P(δ3 ≤ Lα − α1

or δ3 ≤ L)P(Zα1
≤ c1 ∣ U′ − L′ ∣ ) .

We consider the second term on the right side. If δ3 > L, then this probability is less than

P(δ3 ≤ Lα − α1
)P(Zα1

≤ c1 ∣ U′ − L′ ∣ ) ≤ (α − α1)P(Zα1
≤ c1 ∣ U′ − L′ ∣ ) .

If δ3 ≤ L, then since the structural assumption implies that RSM1 > c1 and thus |δ1| > Ẑα1, 

this probability is less than

P(Zα1
≤ c1 ∣ U′ − L′ ∣ ) ≤ P(Zα1

≤ ∣ δ1 ∣ ) ≤ α1 .

In either case,

P(δ3 ≤ L f ) ≤ α .

Likewise, we conclude that P(δ3 ≥ Ûf) ≤ α. That is, [L̂
f, Ûf] is a valid (1 − 2α)-confidence 

interval for δ3. We can search for the optimal α1 such that the resulting confidence interval 

has the shortest length.

Zeng et al. Page 14

J Biopharm Stat. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Remark 1

If we use the confidence interval to perform the hypothesis test by rejecting H0
(3) when [L̂

f, 

Ûf] ⊂ [L,U], then we reject H0
(3) when either Ẑα1 ≤ c1|U′ − L′| or [Lα̂−α1, Ûα−α1] ⊂ [L,U]. 

This is exactly the rejection region described in Appendix A.

Remark 2

When analyzing the Phase 3 data, we may adjust for covariates through a log-linear 

regression model:

log p = δ3G + ξTX,

where G is the indicator for the proposed biosimilar product versus the reference product, 

and X is the set of covariates including the unit component.
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Figure 1. 
Simulation results under the null hypothesis: (a) type I error of the equivalence test; (b) 

coverage probability of the 90% confidence interval; and (c) ratio of the widths of the 

confidence intervals with versus without the prior evidence. The solid, dashed, dotted, and 

dot-dashed curves pertain to α1
opt, α1 = 0, α1 = 0.2α, and α1 = 0.4α, respectively. The solid 

and dashed curves are indistinguishable.

Zeng et al. Page 16

J Biopharm Stat. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Simulation results under the alternative hypothesis: (a) power of the equivalence test; (b) 

coverage probability of the 90% confidence interval; and (c) ratio of the widths of the 

confidence intervals with versus without the prior evidence. The solid, dashed, dotted, and 

dot-dashed curves pertain to α1
opt, α1 = 0, α1 = 0.2α, and α1 = 0.4α, respectively.
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Figure 3. 
Simulation results for using the analytical assessment evidence in both designing and 

analyzing the Phase 3 study: (a) and (c) show the ratio of the sample sizes in the Phase 3 

study to achieve the power of 80% when the prior evidence is used versus when it is not 

used; and (b) and (d) show the power of the proposed equivalence test in analyzing the Phase 

3 data.
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Figure 4. 
Simulation results for combining both analytical and PK similarity evidence: (a) ratio of the 

sample sizes in the Phase 3 study to achieve the power of 80% when the prior evidence is 

used versus when it is not used; and (b) power of the proposed equivalence test in analyzing 

the Phase 3 data.
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