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Communication: Adaptive boundaries in multiscale simulations
Jason A. Wagoner1 and Vijay S. Pande2
1Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook,
New York 11794, USA
2Department of Chemistry, Department of Structural Biology, and Department of Computer Science,
Stanford University, Stanford, California 94305, USA

(Received 13 February 2018; accepted 2 April 2018; published online 13 April 2018)

Combined-resolution simulations are an effective way to study molecular properties across a range
of length and time scales. These simulations can benefit from adaptive boundaries that allow the
high-resolution region to adapt (change size and/or shape) as the simulation progresses. The number
of degrees of freedom required to accurately represent even a simple molecular process can vary by
several orders of magnitude throughout the course of a simulation, and adaptive boundaries react to
these changes to include an appropriate but not excessive amount of detail. Here, we derive the Hamil-
tonian and distribution function for such a molecular simulation. We also design an algorithm that can
efficiently sample the boundary as a new coordinate of the system. We apply this framework to a mixed
explicit/continuum simulation of a peptide in solvent. We use this example to discuss the conditions
necessary for a successful implementation of adaptive boundaries that is both efficient and accurate in
reproducing molecular properties. Published by AIP Publishing. https://doi.org/10.1063/1.5025826

Multiscale models are an effective way to simulate molec-
ular systems. The motivation is clear: a high-resolution model
can capture physical detail, while a low-resolution model
offers computational efficiency and is sometimes better suited
or more easily parameterized for large-scale phenomena.1

There are two strategies for multiscale modeling. In the first,
multiple independent simulations are used for different levels
of resolution. Combined intelligently, the sum is worth more
than the parts: simulations at one level motivate and parame-
terize simulations at another.2–4 The focus of this work is the
second approach, which combines multiple levels of resolution
into a single simulation. These simulations use a fine-grained
(FG) model for a region of interest and a computationally effi-
cient coarse-grained (CG) model elsewhere. Examples include
mixed quantum and molecular mechanical,5,6 mixed all-atom
and coarse grained (CG),7–13 and hybrid explicit-continuum
solvent models.14–21

Accurately modeling the boundary between high- and
low-resolution regions is the crux of a combined-resolution
simulation. Even for a homogeneous system like bulk solvent,
equilibrium properties emerge from a delicate balance of inter-
actions with the surrounding medium. An improper handling
of the boundary will break the natural symmetry, and the result-
ing structural artifacts can extend well beyond the boundary
into other regions of the simulation.15

We have developed a hybrid explicit-continuum solvent
model that includes a boundary region over which molecules
gradually, rather than abruptly, change resolution. This bound-
ary method avoids the structural artifacts common to hybrid
solvent models and accurately reproduces thermodynamic
properties throughout the entire explicit domain.15,16 This
boundary method is similar to that introduced in the Adap-
tive Resolution (AdRes) approach,22,23 a method used to cou-
ple high resolution particles to a more coarse-grained9,10 or

continuum24–26 representation and that can also incorporate
regions with some quantum mechanical effects.27–29 AdRes
has been successfully applied to a range of molecular sys-
tems.9–13,30

Previously,16 we introduced adaptive boundaries into
combined-resolution simulations. This allows the high-
resolution region to adapt and include an appropriate but
not excessive amount of detail as the simulation progresses.
Consider protein folding as a simple example. A simulation
with a fixed boundary must be large enough to solvate the
largest possible protein conformation. As we show below,
an infrequently visited extended conformation may require
over an order of magnitude more solvent molecules than the
predominant collapsed state. By contrast, an adaptive bound-
ary can shrink and expand as the simulation progresses, as
shown in Fig. 1 (Multimedia view). Adaptive boundaries
would similarly benefit simulations of biomolecular assem-
bly, aggregation, crystallization, and other examples outside
of biology.

Simulations with flexible boundaries have been previ-
ously implemented with a restraining potential centered on
a solute molecule that prevents atomistic solvent from drift-
ing away.31,32 Kreis et al. have implemented an adjustable
boundary with AdRes, which does not use a restraining
potential and defines the high resolution region by a set
of overlapping spheres that can change the relative posi-
tion.33 This method successfully reproduces thermodynamic
properties.

Here, we define the Hamiltonian and derive the distri-
bution function of a combined-resolution simulation that has
adaptive boundaries. This approach complements the work
of Kreis et al., which does not have a conserved Hamilto-
nian. Their method could presumably be incorporated with
the Hamiltonian-based version of AdRes,34–37 in which case
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FIG. 1. A mixed explicit/continuum solvent model with an adaptive boundary
that shrinks and expands in response to the conformational fluctuations of the
peptide. A video of this simulation has been posted online. Multimedia view:
https://doi.org/10.1063/1.5025826.1

the appropriate distribution function should match that derived
here.

This formalism allows us to connect the equilibrium prop-
erties of the high resolution region to those expected from
a simulation performed in full detail. We build on previous
work,16 where we derived adaptive boundaries specifically for
a mixed explicit-continuum model with a spherical domain.
Our work here extends this theory for general mixed-resolution
models and for arbitrarily shaped boundaries. We also design a
new algorithm that efficiently samples the boundary as a coor-
dinate of the system. We test this model on a peptide in a mixed
explicit/continuum solvent model, as shown in Fig. 1 (Multi-
media view), and show that an adaptive boundary severely
reduces the number of degrees of freedom in the simulation.

We first outline the theory of combined-resolution mod-
els with fixed boundaries following the formalism of Roux and
co-workers.14,17,19 Consider a system containing molecule A
of interest (e.g., a protein), which is always modeled in high
resolution, and N identical solvent molecules. We define fine-
grained U and coarse-grained V potential functions. This is
a minimal example; the theory is easily extended to multi-
component systems or to a molecule A that can change
resolution.

We first consider the full system in fine-grained (FG)
detail. The configurational probability distribution in the
canonical ensemble is

PFG (X) =
1

ZFG
exp

[
−βHFG(X)

]
, (1)

ZFG =
1

N!

∫
Ω

dXA

∫
Ω

dXN exp
[
−βHFG(X)

]
(2)

for configuration X, where the subscripts A and N corre-
spond to molecule A and the N solvent molecules. Hence-
forth, we will drop the coordinate arguments of the Hamil-
tonian. The Hamiltonian can be written as a sum of
intra- and inter-molecular terms; HFG =

∑
i Ui+

∑
i,j,i Uij/2 for

i, j ∈ {A, 1, . . . , N }.
Now consider the same system modeled in combined-

resolution with a fixed boundary. We partition the domain into

regions of high- and low-resolution,Ω = Ωi (Γ)∪Ωo (Γ), delin-
eated by the boundary Γ. The representation of molecule i is
defined by the scaling function λi = λ (xi, Γ). Molecules in
high resolution correspond to λi = 1 for xi ∈ Ωi. Molecules in
low resolution correspond to λi = 0. This switch may occur
abruptly so that λi = 0 for xi ∈Ωo, or λi may smoothly interpo-
late to zero over some transition region.9,10,15,16 The multiscale
Hamiltonian is

HMM (Γ) = ∆W +
∑

i

[
λiUi + (1 − λi) Vi

+
1
2

∑
j,i

(
λiλjUij +

(
1 − λiλj

)
Vij

) ]
, (3)

where ∆W = ∆W (X, Γ) is a many-body potential of mean
force (PMF). It is implied that V is a compound function that
contains a mapping M to low resolution, M: X→ Y, where Y
is a coarse-grained representation of X. The configurational
probability distribution of this combined-resolution system is

PMM-fixed (X, Γ) = exp
[
−βHMM (Γ)

]
/ZMM, (4)

where the superscript signals that the boundary is fixed, though
HMM depends on its location Γ.

To reproduce the thermodynamic properties of the interior
region, we define the marginal probability distribution of the
high-resolution system,

PFG (Xn, Γ) =
exp

[
−βHFG

ii

]

n!(N − n)!ZFG

×

∫
Ωo(Γ)

dXN−n exp
[
−β

(
HFG

io + HFG
oo

)]
, (5)

and aim to reproduce this function with the analogous marginal
distribution of the combined-resolution system. We have sep-
arated the potential into inner-inner, HFG

ii , inner-outer, HFG
io ,

and outer-outer, HFG
oo , components15 and the subscripts n and

N � n denote molecules located within the interior (Ωi) and
exterior (Ωo) regions. If we do the same for Eq. (4), we can
ensure PMM-fixed (Xn, Γ) = PFG (Xn, Γ) by imposing∫
Ωo(Γ)

dXN−n exp
[
−β

(
HFG

io + HFG
oo

)]

=

∫
Ωo(Γ)

dXN−n exp
[
−β

(
HMM

io + HMM
oo + ∆W

)]
. (6)

The goal in parameterizing a coarse-grained potential V and/or
PMF ∆W is to satisfy Eq. (6).14,15

We can now explicitly include adaptive boundaries in the
distribution function. We define a normalized joint probability
P (XA, Γ) that couples the boundary location to the configura-
tion of molecule A and modify Eq. (4) to include the boundary
as an explicit coordinate,

PMM (X, Γ) =
1

ZMM
P (XA, Γ) exp

[
−βHMM(Γ)

]
. (7)

Equation (7) is the distribution function sampled from a mul-
tiscale simulation with adaptive boundaries. Consider some

https://doi.org/10.1063/1.5025826.1


141104-3 J. A. Wagoner and V. S. Pande J. Chem. Phys. 148, 141104 (2018)

molecule or molecules always given in high-resolution (here,
molecule A). This distribution will exactly reproduce the ther-
modynamic properties for these molecules if (1) Eq. (6) is
satisfied and (2) P (XA, Γ) is normalized, as we can see by inte-
grating over the boundary Γ and all other degrees of freedom
when these conditions are satisfied,

PMM (XA) =
1

ZMM

∫
dΓP (XA, Γ)

∫
dXN exp

[
−βHMM(Γ)

]

=
1

ZFG

∫
dXN exp

[
−βHFG(X)

]

= PFG (XA) . (8)

Equations (7) and (8) give our first main result.
For a static domain, the Γ-dependence of ∆W may be

safely ignored. To include adaptive boundaries, it is essen-
tial that ∆W accurately capture this dependence. For a hybrid
explicit-continuum model, for example, ∆W must have a cav-
itation term that is very accurate with respect to the shape
and size of the explicit domain. Otherwise, the domain of the
simulation will tend toward large or small sizes and, through
Eq. (7), artificially bias the configuration of molecule A.16

The low-resolution region can be represented through a
number of CG models38–47 or with a pure continuum.14,18–20,48

A combination of these two limiting cases works well, and we
have developed a model that includes a “flawed region” of
solvent molecules that gradually transition from explicit detail
to continuum. This flawed region reproduces local interac-
tions and relaxes the complexity of∆W.16 The scaling function
is

λi =




1, ri ≤ R − w

1 +
2 (ri −R + w)3

w3
−

3 (ri −R + w)2

w2
, R− w < ri < R

0, ri ≥ R

,

(9)

where ri is the distance of molecule i from the center of the
domain, R is the location of the boundary, and w defines the
width of the transition region.

In our model, the PMF∆W includes a position-dependent
chemical potential that accounts for transforming molecules
from an FG to continuum representation and ensures constant
solvent density across the transition region.15,16 The multi-
scale Hamiltonian, Eq. (3), leads to position-dependent forces
that cannot be written as a sum of pairwise antisymmetric
terms between molecules. These forces arise from interac-
tions between a molecule and the degrees of freedom that
have been “removed” from the system and are also present in
other hybrid models that rely on a PMF construction.14,17,19,20

This approach gives a sound thermodynamic formalism14–16,49

and matches the Hamiltonian version of AdRes,34–37 though
Newton’s third law is not conserved between molecules.

Alternatively, the force-based version of AdRes is con-
structed to have forces that are a sum of pairwise antisymmetric
terms,22–24,35 important to describe, for example, hydrody-
namics at the boundary.24,35,37,50 This method does not have
a conserved Hamiltonian but does conserve Newton’s third
law between molecules. We do not consider hydrodynamics

here since it would not affect thermodynamics and, as we dis-
cuss below, does not seem to be necessary for the kinetics of
biomolecules in our model. Hydrodynamics can be important
for other systems and have been considered in more detail in
AdRes24,35,37 and other hybrid models.21,51–53

We now apply this work to simulations of a peptide in a
sphere of explicit solvent. We use a boundary Γ = R that defines
the inner region Ωi as a sphere of radius R that is coupled
to the radius of gyration Rg of the peptide using a Gaussian
distribution,

P (XA, R) =

√
βk
π

exp
[
−βk

(
R − aR − bRRg (XA)

)2
]
, (10)

where aR and bR determine the amount of space between the
peptide and boundary, and k is the coupling strength.

Our algorithm has two steps: (1) the configuration X
is updated with a combination of molecular dynamics and
grand canonical Monte Carlo (MC) moves; (2) the boundary
is updated with an MC move. Previously, we proposed updat-
ing the boundary to discrete positions using MC moves biased
by nonequilibrium paths that required hundreds of integration
steps per boundary update.16 The following method is more
efficient and more easily applied. We instead define the bound-
ary as a continuous variable and modify the Hamiltonian so
that the boundary update can be completed without any inte-
gration steps. We define two bounding radii, R = Rh

⌊
R
Rh

⌋
and

R = Rh

⌈
R
Rh

⌉
, for a given discretization Rh with the floor bc and

ceiling de functions. The new Hamiltonian is a linear com-
bination of the energies corresponding to the two bounding
radii,

Hα (X, R) = (1 − α) HMM (
X, R

)
+ αHMM

(
X, R

)
, (11)

whereα (R) =
(
R − R

)
/Rh. The two energies on the right hand

side of Eq. (11) can be calculated efficiently and simultane-
ously as they differ only in their interactions for molecules in
the transition region.

For the MC move, we hold all molecules fixed and select
a candidate radius R′ from a small uniform window (0.01
nm) centered on the current value R. We accept or reject the
move with a Metropolis criterion. If the candidate radius R′

does not cross one of the bounding radii, then HMM (
X, R

)
and HMM

(
X, R

)
do not change, and the new energy is calcu-

lated from Eq. (11) by updating the value of α. This move is
of negligible computational expense. Alternatively, the can-
didate boundary R′ will cross one of the bounding radii.
If R′ > R, we must insert a new shell of molecules. At the
moment that R′ =R, these new molecules are non-interacting
and the candidate solvent shell is inserted using the distribu-
tion of ideal molecules. Because the candidate R′ will not fall
precisely on R, this move will have a small energetic contri-
bution calculated from Eq. (11). Similarly, for a move that
crosses the lower bounding radius, R′ < R, we automatically
delete the appropriate shell of water molecules. The selec-
tion probabilities of the insertion and deletion moves cancel
exactly with their contributions to the overall configurational
probability distribution.16 This algorithm is our second main
result.
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This scheme leverages the weak interactions at the bound-
ary to construct a new high-resolution configuration from the
previous low-resolution configuration. Because there is a grad-
ual change in resolution, these new coordinates are close to
equilibrium and we have high acceptance rates. This would
be more difficult with an abrupt change in resolution at the
boundary.

We now test the adaptive boundary algorithm on sim-
ulations of solvated peptides. We use the MARTINI force-
field,16,54,55 a coarse representation that does not include sol-
vent charged interactions. Simulations are preformed with a
Langevin integrator56 and a generalized hybrid MC correc-
tion for the finite time step.57 We set the width of the transition
region defined in Eq. (9) to w = 0.5 nm, roughly the size of
a single solvation layer in MARTINI. This value has been
found to accurately reproduce thermodynamic properties.15

After testing multiple parameter sets for the boundary loca-
tion defined in Eq. (10), we set aR = 0.7 nm, bR = 1.8, and
k = 2000 kJ/(mol/nm2). These values give a tight shell of
1-3 solvent layers around the peptide throughout the course
of the simulation, though different parameters may be suitable
for other biomolecules. The bulk PMF ∆W includes a term,
wcav (R) = aR3 + bR2 + cR, where a = 207.20 kJ/(mol/nm3),
b = �9.00 kJ/(mol/nm2), and c = �9.17 kJ/(mol/nm). This term
models the change in ∆W as a function of the boundary posi-
tion and is essential to ensure that the explicit domain is not
artificially biased to large or small sizes. Parameterization of
this and other contributions to ∆W are described in Ref. 16.

The adaptive boundary method is illustrated in Fig. 1
(Multimedia view) for a simulation of a 50-residue repeat
of polyglutamine. The joint distribution of Rg and the sphere
radius R is shown in Fig. 2. The number of explicit particles,
proportional to volume, spans from 440 to 2800, a sixfold
difference over the course of the simulation. Were this simula-
tion performed in atomistic detail, rather than with MARTINI
(where one particle corresponds to 4 water molecules), the
corresponding range would be 72-fold. While [688, 996] sol-
vent molecules are required for the interquartile range, the
infrequently visited states (Rg > 1.72 nm, 2% of the sim-
ulation) require more than 1880 molecules. This shows the

FIG. 2. Log joint probability distribution of the explicit sphere of radius R and
the radius of gyration Rg for a 50-residue repeat of polyglutamine. The adaptive
boundary of the sphere shrinks and expands in response to the conformational
fluctuations of the peptide.

computational advantage of the method: the size of the high-
resolution region can remain small unless more detail is
needed.

This model reproduces thermodynamic properties exactly,
within statistical errors, as shown in Fig. 3. This is the dis-
tribution of Rg compared to a pure explicit simulation for a
30-residue and an 8-residue repeat of polyglutamine. We have
obtained this degree of accuracy for multidimensional thermo-
dynamic properties, such as the principal moments of inertia
(data not shown).

Our derivation of HMM is committed to reproducing ther-
modynamic properties but gives no consideration to kinetics.
The integrated autocorrelation function for Rg of the polyg-
lutamine octamer shows an increase from 38.33 ps in full
explicit detail to 44.34 ps in the adaptive boundary model. The
16% increase is unsurprising: kinetics may be affected both by
the continuum representation and lack of hydrodynamics for
solvent in the outer domain, and by the introduction of MC
boundary updates. We find that the former effect is negligible
here by testing the model over larger explicit regions. It may
be possible to develop boundary updates with memory in order
to reduce this small error in kinetics.

In summary, we have derived the distribution function
and have given an example implementation of adaptive bound-
aries for combined-resolution simulations. In our example, the
boundary reacts to a peptide’s radius of gyration to include an
appropriate but not excessive amount of detail as the simulation
progresses. Adaptive boundaries would similarly benefit simu-
lations of crystallization, aggregation, biomolecular assembly,
and others.

Our approach should transfer to other models that use
smooth coupling at the boundary. An adaptive boundary sim-
ulation requires both a very accurate model of the bulk PMF

FIG. 3. The distribution of Rg for an 8- and 30-residue repeat of polyg-
lutamine calculated from full explicit simulations and from the adaptive
boundary multiscale model. Results of the adaptive boundary method are
exact within statistical errors.
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as a function of the system’s boundary and a way to gener-
ate equilibrium high-resolution configurations mapped from
low-resolution configurations. Both of these requirements can
be met using a smoothly coupled boundary that has a gradual
change in resolution.

The example we have used here is simple and changes
the size but not the shape of a spherical domain. Kreis et al.
have implemented a domain of several overlapping spheres
that cannot change size but do adjust shape by changing their
relative orientations.33 This approach could be included here
to give a more flexible domain that can change both size and
shape. With fixed boundaries, this model can include electro-
static interactions using Generalized Born-like terms with vol-
ume overlaps58 or a reaction-field term solved for a smoothly
varying dielectric.59,60 For adaptive boundaries, the remain-
ing challenge is to parameterize the boundary-dependence of
these electrostatic contributions to the PMF.

We are grateful to Sean Seyler for a discussion on the role
of hydrodynamic interactions in combined-resolution models.
We thank Emiliano Brini and James Dama for helpful com-
ments on this manuscript. This work was supported by NIH
Award No. GM62868.
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19W. Im, S. Bernèche, and B. Roux, J. Chem. Phys. 114, 2924 (2001).
20M. S. Lee, F. R. Salsbury, and M. A. Olson, J. Comput. Chem. 25, 1967

(2004).
21N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 142, 044101

(2015).
22M. Praprotnik, L. Delle Site, and K. Kremer, J. Chem. Phys. 123, 224106

(2005).
23M. Praprotnik, L. D. Site, and K. Kremer, Annu. Rev. Phys. Chem. 59, 545

(2008).
24R. Delgado-Buscalioni, K. Kremer, and M. Praprotnik, J. Chem. Phys. 128,

114110 (2008).
25R. Delgado-Buscalioni, K. Kremer, and M. Praprotnik, J. Chem. Phys. 131,

244107 (2009).
26J. H. Walther, M. Praprotnik, E. M. Kotsalis, and P. Koumoutsakos,

J. Comput. Phys. 231, 2677 (2012).
27A. B. Poma and L. Delle Site, Phys. Rev. Lett. 104, 250201 (2010).
28A. Agarwal and L. Delle Site, J. Chem. Phys. 143, 094102 (2015).
29A. B. Poma and L. D. Site, Phys. Chem. Chem. Phys. 13, 10510 (2011).
30C. Krekeler and L. D. Site, Phys. Chem. Chem. Phys. 19, 4701 (2017).
31Y. Li, G. Krilov, and B. J. Berne, J. Phys. Chem. B 110, 13256 (2006).
32O. M. Szklarczyk, N. S. Bieler, P. H. Hünenberger, and W. F. van Gunsteren,

J. Chem. Theory Comput. 11, 5447 (2015).
33K. Kreis, R. Potestio, K. Kremer, and A. C. Fogarty, J. Chem. Theory

Comput. 12, 4067 (2016).
34R. Potestio et al., Phys. Rev. Lett. 110, 108301 (2013).
35K. Kreis, D. Donadio, K. Kremer, and R. Potestio, Europhys. Lett. 108,

30007 (2014).
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