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Abstract

Significance: Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived
oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest.
Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous
diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge.
Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron para-
magnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific
products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in
cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes
provides a rigorous method for detection of those species in biological systems.
Critical Issues: Formation and detection of species-specific products from the probes enables accurate char-
acterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemilumi-
nescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the
products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied
by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed.
Future Directions: More work is required to characterize the chemical reactivity of the ROS/RNS probes, and
to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products
formed from the probes. Antioxid. Redox Signal. 28, 1416–1432.
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Introduction

Reactive oxygen species (ROS) and reactive nitrogen
species (RNS) are small molecules, typically of oxi-

dizing, nitrosating, nitrating, and/or halogenating properties,
that have been implicated in numerous physiological and
pathological events (22). Specific and sensitive methodolo-
gies for ROS/RNS detection are needed to advance our un-
derstanding of the chemical biology of ROS/RNS sources,

their molecular targets, and cellular redox regulatory mech-
anisms. This review focuses on the most recent advances and
applications of probes for the study of ROS/RNS in biolog-
ical systems, with additional information on the limitations
and pitfalls of generally used probes, with an emphasis on
methodologies that detect species-specific products generated
from reactions with specific ROS/RNS. Therefore, a series
of ROS/RNS species-specific probes (excepted for H2O2)
is described and discussed. Other specific or non-specific
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probes and a discussion on the detection of ROS/RNS in
biological systems can be found in other review articles (10,
16, 72, 89, 117).

The term ROS refers to a family of oxygen-containing
molecules including the superoxide radical anion (O2

�-)
(Fig. 1), hydrogen peroxide (H2O2), hydroxyl radical (�OH),
and singlet oxygen (1Dg O2). The term RNS includes
nitric oxide (�NO), peroxynitrite (ONOO-), nitrogen dioxide
(�NO2), nitrosating species (N2O3), and other nitrogen-
derived species. All these species have unique reactivity and
thermodynamic properties that need to be considered when
choosing the method of detection. Further, the medium, or
cellular locus where ROS/RNS are being detected, introduces
additional challenges in terms of the sensitivity and speci-
ficity of the assay.

The strategies to detect O2
�- and �NO are significantly

different if studying their generation in cells or the bio-
chemistry of purified enzymes. For example, spin-trapping
methodologies are ideal for in vitro detection of radicals such
as O2

�-, but, in cells, spin-trapping methodologies are com-
plicated by the intracellular reduction of the radical adducts
generated from the reaction of O2

�– with the spin trap. In this
case, detection of 2-hydroethidium formed from the reac-
tion between hydroethidine (HE) and O2

�– has been shown to
be a robust methodology (145). Moreover, studying mito-
chondrial O2

�– is also possible with triphenylphosphonium-
targeted HE (90, 91).

H2O2 and ONOO- have attracted much attention in bi-
ology for their oxidative potential. This property has also
served as the basis for their detection by various fluorescein-
based probes and cysteine-based molecular probes (9, 30,
61). The advantages and disadvantages of these method-
ologies are discussed in terms of specificity and sensitivity.
Detection of organic peroxides and hypochlorous acid, which
represent an important group of reactive species, is clearly
essential from the viewpoint of targets and species propa-
gating oxidant signaling.

Over the past two decades, an impressive number of probes
have been reported as involving in vitro characterization.
After all these years of research, it has become clear that
researchers need to understand the chemical and thermody-
namic basis of the reaction between probes and reactive

species (49, 72, 121, 146). The careful choice of suitable
probes, combined with an effort to corroborate the results
using additional methods, is, in most cases, necessary to
better sustain the conclusions (49, 51, 121).

In this review, we focus on the description and discussion
of probes and techniques to detect particular ROS, including
the O2

�–, H2O2 and other hydroperoxides, hypochlorous acid
(HOCl), �NO, and peroxynitrite (ONOO-), accurately in bi-
ological systems. We hope this review assists in clarifying
some of the current controversies and discussions about the
detection of ROS/RSN in biological systems.

Detection of O2
�–

O2
�–, produced by the one-electron reduction of oxygen (O2),

plays a central role by initiating the main chains of production
of other ROS/RNS (Fig. 1). Its role is essential in pathological,
signaling, and other physiological processes such as phagocy-
tosis. The major cellular sources of O2

�– are believed to be
mitochondrial complexes I and III and nicotinamide adenine
dinucleotide phosphate (NADPH) oxidases. The reactivity of
O2
�– with other molecules typically is relatively low, except

with �NO and selected metalloproteins (e.g., superoxide dis-
mutases, aconitases), which, in turn, makes it relatively selec-
tive. It should be emphasized that O2

�– is not stable in an
aqueous (protic) environment and undergoes dismutation to
H2O2 and O2 even in the absence of an SOD enzyme. The rate
of spontaneous dismutation of O2

�– to O2 and H2O2 is typically
high (k* 105 M-1s-1 at pH 7) and becomes diffusion con-
trolled in the presence of SOD (k* 109 M-1s-1 at pH 7).

Detection of O2
�– by the spin-trapping technique

Among the different methods available to detect and
characterize O2

�–, the spin-trapping technique combined with
electron paramagnetic resonance (EPR) spectroscopy has
been shown to be one of the most accurate and valuable
methods for in vitro experiments (1, 14, 46, 60). Due to its
short lifetime, at physiological conditions, O2

�– cannot be
detected directly by EPR, and, thus, a series of spin traps for
O2
�– have been developed. The principle of spin trapping

(Fig. 2) relies on the addition of a diamagnetic spin trap probe
to the sample, which reacts with short-lived free radicals to
generate paramagnetic spin adducts exhibiting characteristic
EPR signals that are specific to the trapped radicals and a
lifetime ranging from a few seconds to hours, depending on
the spin trap used and the radical species detected.

Nitrone spin traps have been shown to be efficient probes
for O2

�– detection, allowing the detection of superoxide
fluxes as low as a few lM.min-1 and generating superoxide
adducts with a half-lifetime of up to 1 h. Over the past decade,
significant improvement has been achieved in the design of
nitrone spin traps for superoxide detection, with improved
O2
�– trapping rate constants and longer lifetime of the cor-

responding adducts, as well as subcellular targeting proper-
ties (21, 26, 33–35, 52, 75–77, 85a, 118).

Although the spin trapping of O2
�– is considered one of the

gold standard methods in in vitro cell-free experiments,
current limitations make its use challenging for intracellular
and in vivo O2

�– detection (2, 3). The main bottlenecks of the
application of the EPR spin-trapping technique for O2

�– de-
tection are the low trapping rate constant relative to the SOD-
catalyzed dismutation and the reduction of the EPR-active

FIG. 1. Chemical pathways of ROS/RNS formation
and interactions in biological systems. ROS, reactive ox-
ygen species; RNS, reactive nitrogen species.
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spin adduct to EPR silent product(s) by endogenous antiox-
idants/reducing systems. Conversely, spin trapping generates
species-specific products, with signature EPR spectral prop-
erties, and complementary simple control experiments using
SOD or other competitors may be used for easy and accurate
assignment of the obtained signal to O2

�–, making the method
reliable and robust.

Examples of superoxide detection using the spin-trapping
technique in the presence of cells have been reported in the
past decades, mainly with stimulated macrophages. In these
experiments, the choice of the spin trap has shown to be a key
parameter for the successful detection of superoxide radicals,
and usually, the EPR spectra exhibited the signals of the
superoxide and hydroxyl (or carbon-centered radical) ad-
ducts as a mixture (1–3, 94, 103).

Superoxide spin trapping of O2
�– generated

from nitric oxide synthase

EPR spin-trapping detection of O2
�– has been significantly

improved with the use of novel substituted DMPO-nitrones
(31, 53, 128). These new spin traps produce more persistent
O2
�– adducts that increase the sensitivity and reproducibility

of O2
�–quantitative analysis. As an example of the signifi-

cance of this methodological development, later we review
the application of EPR spin trapping to clarify the role of the
(6R) 5,6,7,8-tetrahydrobiopterin (BH4) cofactor in the regu-
lation of O2

�–release from nitric oxide synthase (NOS), a
reaction known as NOS uncoupling.

One possible consequence of O2
�– generation from NOS

is that NOS itself could act as a peroxynitrite synthase.
Thus, understanding the mechanisms and regulation of this
activity has been the focus of several biophysical and bio-
chemical studies. Neuronal NOS (nNOS) and endothelial
NOS (eNOS) are homodimeric proteins, and each subunit
contains a reductase domain with tightly bound flavin mono
and dinucleotide (FMN and FAD, respectively) and a
binding site for NADPH. Calcium/calmodulin activates the
electron transfer from NADPH to flavins in the reductase
domain, which, subsequently, results in the reduction of
heme-Fe(III) to heme-Fe(II) in the oxygenase domain (106).
Using DEPMPO and EMPO spin traps, we established
that recombinant dimeric nNOS and eNOS, produced in
Escherichia coli and purified in the absence of BH4, generate
O2
�– from the heme-iron oxygenase domain on activation with

the calcium/calmodulin complex (113, 115, 128). L-arginine
increases O2

�– release from eNOS, whereas it decreases it

from nNOS. This indicates that endothelial oxidant stress is
likely enhanced on L-arginine supplementation in conditions
of limited BH4 availability. Reconstitution of the BH4-free
recombinant enzyme with BH4 dose dependently decreased
O2
�– generation by nNOS and eNOS. The redox activity of

BH4 in NOS catalysis was suggested by results from several
experiments, including the fact that the oxidized metabolite
7,8-dihydrobiopterin (BH2) was unable to support �NO for-
mation. Because BH4 but not BH2 inhibited O2

�–release from
the oxygenase domain of NOS, it was proposed that BH4

directly reduced the heme-iron-dioxygen to a heme-iron
peroxyl species (116). The breakdown of the heme-dioxygen
intermediate produces O2

�–, whereas heme-iron-peroxyl
generates H2O2. The redox activity of BH4 is also consistent
with the requirement of BH4 to support the �NO-producing
activity of NOS enzymes (Fig. 3). Low-temperature EPR
analysis of the enzyme in single-turnover conditions dem-
onstrated the formation of the BH4 radical, which is reduced
back to BH4 in situ (44, 87).

Evidence that the BH4 binding site is readily accessible
to other BH4-analogs suggests that competition kinetics is
possible. Using DEPMPO as a spin trap, we showed that
the addition of BH2 to fully coupled eNOS (i.e., enzyme-
producing �NO) but not O2

�– inhibited �NO production but
increased O2

�– release, an effect known as NOS uncoupling
and referring to the dissociation of NADPH oxidation to ar-
ginine oxidation in favor of O2

�– release (116). This mech-
anism has been implicated in the increased production of
ROS and the cellular oxidative injury affecting cardiovas-
cular functions.

Detection of O2
�– with luminescent probes

Luminescence (chemiluminescence and fluorescence)-
based assays for O2

�– are widely used when measurements
are performed in cells, tissues, and live animals. Among the
chemiluminescent probes, luminol, L-012, and lucigenin
probes are the most widely used (74). However, luminol is
not a species-specific probe and the reliability of those probes
for O2

�– measurements has been repeatedly questioned due
to the redox properties of the probe-derived intermediates.
Since these probes can react with multiple radical species
(HO�, RO�, ROO�) and oxidants (ONOOH), it must be noted
that these probes can be seen as specific to O2

�– only in
purified in vitro cell-free system. Further, it was demon-
strated that all those probes are capable of producing O2

�– on
one-electron oxidation (luminol and L-012) or reduction

FIG. 2. Principle of spin trapping and EPR spectra of DEPMPO-OOH and DEPMPO-OH spin adducts. EPR,
electron paramagnetic resonance. To see this illustration in color, the reader is referred to the web version of this article at
www.liebertpub.com/ars
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(lucigenin) (23, 62, 114). For example, it was shown that
lucigenin redox cycles in the presence of NOS and that the L-
012 probe produces an SOD-inhibitable signal when incu-
bated with H2O2 and peroxidase (114, 140). A most recent
example of the confusion linked to lucigenin usage is the
demonstration that lucigenin yields a luminescence signal in
NADPH oxidase assays, when tested in tissue homogenates
obtained from NADPH oxidase-lacking mice (triple Nox1/
Nox2/Nox4 knockout model) (88).

Reduced cyanines (hydrocyanines) have been proposed as
probes for O2

�– (56, 133). Although their advantage is the
formation of a fluorescence signal in the near-infrared region,
compatible with in vivo detection, the selectivity of those
probes, as well as the product identity of their reaction with
O2
�–, remains to be established. Similarly, other fluorogenic

probes developed for O2
�– measurements have been reported

recently; however, they still require comprehensive chemical
characterization as well as a detailed validation in biological
systems (40, 126).

HE (also known as dihydroethidium, DHE, Fig. 4) is the
fluorescent probe of choice for the detection of O2

�– in biological

systems (139). The major advantage of this probe is the forma-
tion of an O2

�–-specific product, 2-hydroxyethidium (2-OH-E+,
Fig. 5), which can be detected by using high-performance liquid
chromatography (HPLC) or liquid chromatography–mass
spectrometry (LC-MS) techniques (50, 135, 145). Also, HE is
one of the few probes whose chemistry has been studied
in detail, including the reaction kinetics, stoichiometry, and
reactivity toward different oxidants (67, 139). Therefore,
the HE probe, combined with HPLC-based detection of 2-
hydroxyethidium, should be used as the first-line approach to
study cellular production of O2

�–.
Although HE was initially believed to be selective toward

O2
�– and produce red fluorescent ethidium in a reaction with

O2
�–, both assumptions were shown to be untrue (93, 139).

HE reacts with several biologically relevant oxidants, in-
cluding peroxynitrite-derived radicals, iron-derived oxidants,
and heme proteins (142, 144, 146). In case of all one-electron
oxidants, the first intermediate formed is the HE radical
cation (HE�+, Fig. 5), which can be converted into different
products depending on the reaction conditions. In the pres-
ence of superoxide, HE�+ produces 2-OH-E+; in the absence
of O2

�–, ethidium (E+, Fig. 5) and dimeric products (HE-HE,
HE-E+, and E+-E+) are formed. The factors controlling the
distribution of the oxidation products in the absence of O2

�–

are not fully understood and are currently under investigation.
As indicated earlier, the product of the reaction of HE by

superoxide is 2-OH-E+ and not E+ (67, 132). It is important to
note that E+ is typically formed in cells in excess of 2-OH-E+,
and for specific monitoring of 2-OH-E+, HPLC-based tech-
niques are necessary (139). One-electron oxidation of HE
by heme proteins and specific one-electron oxidants lead to
the formation of E+ and several dimeric products, including
diethidium (144, 146). Thus, HPLC-based profiling of HE
oxidation products can be used to monitor the production of
O2
�– as well as other oxidants. As described later, the reaction

of HE with HOCl produces the 2-chloroethidium cation (2-
Cl-E+, Fig. 5), which was proposed to be used as a specific
marker of HOCl (or of myeloperoxidase [MPO] activity)
both in in vitro and in vivo studies.

As a small lipophilic molecule with a neutral charge, HE is
assumed to passively diffuse through cellular membranes, as
it is distributed over most subcellular compartments. To de-
tect O2

�– in mitochondria, the HE molecule has been linked
to the triphenylphosphonium cation (TPP+), which targets
the probe to energized mitochondria (90, 91, 137, 144). The

FIG. 3. Mechanism of O2
�– release from NOS. (Left) Resting state of NOS does not consume NADPH. (Center) Calcium/

calmodulin binding to NOS stimulates the reduction of FAD and FMN and, subsequently, the reduction of heme-Fe(III).
(Right) The heme-Fe(II) reacts with oxygen to form heme-Fe-O2 species that can generate O2

�– when BH4 is low or when BH2

is high. BH4 enables �NO production from L-arginine oxidation. NOS, nitric oxide synthase; O2
�–, superoxide radical anion;

NO, nitric oxide; BH2, 7,8-dihydrobiopterin; BH4, 5,6,7,8-tetrahydrobiopterin; NADPH, nicotinamide adenine dinucleotide
phosphate. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

FIG. 4. Structure of hydroethidine-based fluorescent
probes.
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probe, known as MitoSOX Red (or Mito-HE, Fig. 4), has
been widely used to detect mitochondrial O2

�– in intact cells.
However, in most reports, the identity of the oxidation
product(s) was not determined. Another derivative of HE,
called hydropropidine (HPr+, Fig. 4), has been designed to
trap extracellular O2

�–, as the probe does not easily enter the
cells due to the localized positive charge attached to the
molecule (69). Although HE, MitoSOX Red, and HPr+ differ
in their physicochemical properties and subcellular distri-
bution (Fig. 6) and can be used for site-specific superoxide
detection, they share their chemical reactivity and, in all
cases, a 2-hydroxylated cationic product is formed in reaction

with O2
�–. In all cases, heme proteins were shown to rapidly

oxidize the probes, leading to the nonhydroxylated cation and
dimeric products (69, 144). Therefore, regardless of whether
HE, MitoSOX Red, or HPr+ is used, the identity of the prod-
uct(s) formed from the probe needs to be established for the
determination of the oxidant(s) being detected (50).

HE and its analogs have been used to monitor O2
�– and/or

general cellular oxidants in numerous studies in vitro in cell
culture, as well as in animal studies in vivo. As the scientific
community begins to realize the requirement and advantages
of HPLC-based product profiling, an increasing number of
in vitro and in vivo studies will involve the detection of the
hydroxylated product as a specific marker of O2

�– (20, 24, 25,
65, 97, 109). However, currently, the in vivo experiments are
mostly limited to local administration of the probe, as HE is
rapidly oxidized by heme proteins in blood, confusing data
analyses. It should also be noted that the pharmacokinetic
properties of HE have not yet been studied in detail. How-
ever, local administration of HE, in combination with HPLC-
based analyses, was successfully applied to study O2

�– and
production of other oxidants (e.g., in carotids and in the brain)
in vivo (97, 109).

The limitations of HE-based analyses are linked to HE’s
reactivity toward various oxidants and the formation of
several products in cells. In fact, the pathways of E+ forma-
tion in cells remain to be established, although both one-
electron oxidation and enzymatic two-electron oxidation
have been proposed (139, 144). Although HPLC-based ana-
lyses convert this limitation into an advantage, the assay re-
quires termination of the experiment and sample preparation
for HPLC-based profiling of the oxidation products, limiting

FIG. 5. Chemical pathways of HE probe oxidation in the presence of various ROS (67). HE, hydroethidine. Reprinted
from Michalski et al. (67), Copyright (2014), with permission from Elsevier. To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub.com/ars

FIG. 6. Site specificity of HE-based probes (69). Rep-
rinted from Michalski et al. (69) Copyright (2013), with
permission from Elsevier. To see this illustration in color,
the reader is referred to the web version of this article at
www.liebertpub.com/ars
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the ability for real-time analyses of the dynamics of O2
�–

production. New derivatives of HE, with complete spectral
separation between E+ and 2-OH-E+, are needed to overcome
this limitation.

Detection of H2O2

H2O2 is an important biological oxidant produced by cells
under physiological and pathophysiological conditions, and it
is believed that under physiological conditions H2O2 plays an
important role in cell signaling as a redox messenger (123).

H2O2 can be generated by direct two-electron reduction
of molecular oxygen, or by spontaneous or SOD-catalyzed
dismutation of O2

�–. For that reason, all cellular sources
producing O2

�- (e.g., mitochondrial respiratory chain and
NADPH oxidases) generate a flux of H2O2. H2O2 is also
generated as an end product of some metabolic reactions,
especially peroxisomal oxidations.

It is important to keep in mind that estimated basal cyto-
solic steady-state H2O2 concentrations are in the nanomolar
range, due to both the low basal production and the efficient
cellular antioxidant defense system against that oxidant,
which include peroxiredoxins, glutathione peroxidases, and
catalase. The chemical reactivity and biological chemistry of
H2O2 is well recognized (123), but the mechanism of H2O2-
dependent redox signaling is still elusive, although great
progress in that field has been made in recent years (98, 104).

Intracellular detection of H2O2

Despite the progress in ROS probes’ design and charac-
terization, detection of intracellular H2O2 remains a chal-
lenge. In general, two different approaches can be used: one
based on the use redox-sensitive genetically encoded fluo-
rescent proteins and the other based on the usage of the low-
molecular fluorogenic probe. In both cases, the selectivity of
the sensor and/or specificity of the oxidation product for
H2O2 seems to be a serious limitation.

Redox-sensitive fluorescent proteins. In the case of
redox-sensitive fluorescent proteins, those from the HyPer
family or those based on roGFP, the mechanism of the probe
fluorescence enhancement is based on the oxidation of redox-
sensitive cysteines leading to the disulfide bond formation (5,
66). This mechanism, however, does not guarantee selectiv-
ity toward H2O2 as any agent (e.g., ONOO-, HNO) reacting
with those cysteines with disulfide formation will result in an
increased fluorescence signal. The other shortcoming of this
approach is that the HyPer probes are extremely sensitive to
changes in physiological pH, and, therefore, precise pH
control is required (for example, SypHer probe can be used to
monitor the changes in intracellular pH).

Fluorogenic probes. In the past, several small-molecule
probes producing fluorescent products on oxidation were
used to monitor H2O2 production in cells (16, 121). Among
those, reduced fluorescent dyes—dichlorodihydrofluorescein
(DCFH) and dihydrorhodamine (DHR)—were the most
popular for H2O2 detection. It should be emphasized that
neither DCFH nor DHR reacts with H2O2 directly, and that
the oxidation of those probes requires involvement of a cat-
alyst (transition metal ions, peroxidases, etc.). Moreover,
both probes are converted into fluorescent dyes via radi-

cal intermediates that can react with molecular oxygen,
producing O2

�– and, after its dismutation, H2O2, which is
what results in artificial enhancement of the signal intensity.
(It even has been pointed out that the oxidation of DCFH is a
‘‘self-fulfilling prophesy’’ (7).) It has also been demonstrated
that many other biological oxidants, for example, �NO2,
carbonate radical anion (CO3

�-), glutathionyl (GS�), or cy-
steinyl (CysS�) radicals, are able to oxidize DCFH and DHR
(121). With no information about what is detected, the use of
those probes gives only qualitative information on the pro-
duction of cellular oxidants, or activity of cellular peroxidases/
heme proteins. It is important to note that cytochrome c can
serve as a catalyst for oxidation of DCFH (8, 59). Because
cytochrome c is released from mitochondria during the ap-
optotic events, the use of the probe under the conditions
leading to cell apoptosis should be avoided.

In the first decade of the 21st century, boronate derivatives
of fluorescent dyes were proposed as a novel class of sensors
for the selective detection of H2O2, and now there exists a
large pool of fluorogenic boronate probes that have been
designed and claimed as selective toward this cellular oxidant
(63, 143). As mentioned earlier, the main problem here is the
selectivity. Boronates react with H2O2, but the oxidation is
rather slow with typical rate constants in the range of 1–10
M-1s-1, and the probe cannot compete effectively for H2O2

with other cellular H2O2 scavengers. In addition, boronates
also react with hypohalous acids (e.g., HOCl) and other
peroxides (ROOH, O2COO-, ONOO-, O2NOO-) with the
formation of the same phenolic products. Among listed oxi-
dants, only ONOO- and HOCl produce additional, oxidant-
specific products, as discussed in a subsequent section.

Extracellular detection of H2O2

The measurement of extracellular H2O2 in cell cultures is
definitely less problematic than intracellular detection. Either
boronate probes or an Amplex Red/HRP assay can be used
(134, 147). For kinetic reasons, the detection of extracellular
H2O2 with the usage of boronates is effective in the cellular
systems generating high quantities of that oxidant (e.g., ac-
tivated neutrophils). Recently, we have proposed the use of
coumarin-based boronate probe CBA in the high-throughput
assay for the measurement of the NADPH oxidases activity
(134, 136, 147).

Much more sensitive than boronate-based extracel-
lular H2O2 detection is an assay using 10-acetyl-3,7-
dihydroxyphenoxazine (Amplex Red) probe. The method is
based on the enzymatic oxidation of the probe by H2O2 in
the presence of horseradish peroxidase (HRP), resulting in
the formation of highly fluorescent resorufin. Although the
Amplex Red assay is assumed to be selective toward H2O2, it
is important to keep in mind that peroxynitrite is also able to
oxidize Amplex Red to resorufin, and the yield of resorufin is
increased in the presence of HRP (18). Thus, catalase should
be used to confirm the identity of detected species. H2O2

quantitation may also be affected by NADH, GSH, and light,
which should be taken into account when designing the ex-
periment and interpreting the data (107, 119, 130).

Organic hydroperoxides

While describing the techniques and methods of the de-
tection of H2O2, we must mention the detection of other
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organic hydroperoxides, especially when parts of the tech-
niques and methods are common to both species.

Organic hydroperoxides are produced during the reactions
of free radicals and excited-state species with biological
molecules in the presence of molecular oxygen (15, 73).
These species are particularly readily formed not only on
lipids and proteins but also on the small molecules present in
biological systems. Organic hydroperoxides are associated
with the pathogenesis of various diseases, but their actual
biological significance and sources are still being investi-
gated. Organic hydroperoxides can propagate oxidative in-
jury to the proteins or other surrounding biomolecules,
especially low-molecular-weight hydroperoxides, such as
tyrosyl hydroperoxide or urate hydroperoxide, that can dif-
fuse far from the site of their formation (80, 124).

Organic hydroperoxides are not stable in biological ma-
trixes; thus, the methods of their detection need to be sim-
ple and relatively fast. This excludes the chromatographic
and spectroscopic detection methods based on complicated
sample preparation procedures. The available hydroperox-
ides detection techniques can be divided into titration and
colorimetric methods based on iodide or iron oxidation (e.g.,
the FOX assay) and methods based on the oxidative trans-
formation of the profluorescent probes into the highly fluo-
rescent products. The use of profluorescent probes seems to
be a more convenient method for hydroperoxides determi-
nation because it enables one-step direct detection of hy-
droperoxides, in contrast to the FOX assay and iodometric
method, where organic hydroperoxides need to be isolated
from biological samples before analysis.

As previously described, the extracellular detection of
H2O2 is done by the Amplex Red/HRP system. Although this
assay could be useful in detecting other organic hydroper-
oxides, this method cannot be applied for the detection of
most organic hydroperoxides, because bulky organic hydro-
peroxides are not good substrates for HRP (70).

Another profluorescent probe that can be used for detection
of hydroperoxides is diphenyl-1-pyrenylphosphine (96). This
probe reacts stoichiometrically with hydroperoxides to pro-
duce fluorescent diphenyl-1-pyrenylphosphine oxide and
corresponding alcohols. Nevertheless, very little is known
about the kinetics of oxidation of this probe and its speci-
ficity. Another strategy in the detection of organic hydro-
peroxides is the use of the earlier mentioned, redox-active
fluorescent proteins, such as OHSer (Organic Hydroperoxide
Sensor) (131). Unfortunately, this probe has the same limi-
tations as other fluorescent proteins used for detection of
H2O2. The enhancement of the intensity of the protein’s
fluorescent signal is followed by the oxidation of two cys-
teines and the formation of a disulfide bond between two
subunits. Thus, any oxidant able to oxidize these cysteines
(e.g., ONOO-) may cause a false positive response.

Recently, it has also been shown that boronate probes are
oxidatively transformed into fluorescent derivatives by ami-
no acid and protein hydroperoxides (17, 68). It has been
determined that the resulting products of hydroperoxides’
reduction by boronate probes are the corresponding alcohols
(68). Although the stoichiometry of this reaction has not been
confirmed directly because of the lack of appropriate stan-
dards, it is reasonable to assume that it is 1:1, the same as that
of the boronates/H2O2 reaction (101, 143). Boronates are
unreactive toward lipid hydroperoxides, and this property can

be used to determine the protein hydroperoxides generated in
cells without separating the protein hydroperoxides from li-
pid hydroperoxides (68). Boronate probes react at least 10
times faster with amino acid hydroperoxides when compared
with hydrogen peroxide, but in the presence of a millimolar
concentration of cellular reductants, such as glutathione,
boronates cannot compete effectively for them (17). Another
inconvenience is that boronate probes are not selective for
organic hydroperoxides and are oxidized to the phenolic
product, similar to H2O2.

The reaction of organic hydroperoxides with pro-
fluorescent probes may be an alternative to the existing
methods that usually require the onerous procedure of sepa-
rating hydroperoxides from biological samples. This ap-
proach enables high-throughput studies and allows kinetic
measurements. Nevertheless, the lack of specificity of ex-
isting probes, lack of authentic hydroperoxide standards, and
uncertainty as to whether all the peroxides present undergo
reaction are the main obstacles for real-time monitoring of
organic hydroperoxides in intact cells. However, protein-
based hydroperoxides are characterized by their longer life-
time than ONOO-, and this can be taken advantage of for
their selective detection by analyzing boronate probes oxi-
dation in cell lysates, when performed in the presence of
catalase to remove residual H2O2 (68).

Detection of �NO

�NO is a small hydrophobic molecule containing one un-
paired electron exhibiting paramagnetic properties. It is
produced in vivo by three isoforms of NOS in the presence of
L-arginine as well as several NOS cofactors. In 1998, R.F.
Furchgott, L.J. Ignaro, and F. Murad received the Nobel Prize
of Medicine for showing that �NO is responsible for the
vascular smooth muscle vasorelaxation previously known as
EDRF (endothelium-derived relaxing factor) (29, 45). Since
then, �NO has raised major interest in many researchers’
groups. Among its numerous physiological roles, �NO is a
cytotoxic mediator of the immune system (79) and a neuro-
transmitter in the central nervous system (11).
�NO is stable in an oxygen-free environment and can

diffuse across cell membranes, but it reacts with superoxide
to yield ONOO- at a nearly diffusion-controlled rate (43).
Peroxynitrite is a potent oxidative molecule that is capable of
severe cellular damages reacting with thiols, lipids, and DNA
(86). �NO has been implicated in the pathology of numerous
diseases such as cardiac diseases (myocardial ischemia and
reperfusion injury, myocarditis); vascular diseases (athero-
sclerosis); cancer; and neurodegenerative disorders such as
Parkinson’s, Alzheimer’s, and Huntington’s diseases and
amyotrophic lateral sclerosis (ALS) (78). �NO also plays an
important role in plants and, since the pioneering work of
Lamb and colleagues, �NO research is mostly devoted to its
role in plant immunity (19, 71). �NO is a simple molecule
with the tremendous ability to affect numerous processes in
mammalians and plants. �NO reactivity and its low steady-
state concentration in biological systems represent a chal-
lenge for researchers trying to develop methods to detect and
quantify it. However, to understand the physiology and the
pathology of �NO, it is imperative that �NO production is
detected and quantified in living systems. Direct detection of
�NO using EPR is very tedious (due to the reactivity of �NO
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with molecular oxygen, and its steady-state concentration
below the EPR limit), so conventional EPR associated with a
spin-trapping technique has been developed. Usual spin traps
such as nitrones and nitroso compounds are not suitable be-
cause of the instability of the resulting spin adduct (85).
Therefore, other systems such as exogenous iron chelates and
nitronyl nitroxides (NNO) were developed for �NO detection
(38). Each method is discussed, and recent developments are
exposed later.

To elaborate, for in vitro experiments involving �NO, ex-
ogenous sources of �NO are usually necessary. Among the
�NO donors commercially available, NONOates (1, Fig. 7)
such as spermine NONOate (2, Fig. 7) with a temperature-
dependent �NO release and S-nitrosothiols such as GSNO (3,
Fig. 7) and SNAP (4, Fig. 7), which release �NO on photol-
ysis, are mostly used.

Detection of �NO Using Fe(II)-Dithiocarbamates

�NO can bind efficiently to Fe2+ chelates, and the die-
thyldithiocarbamate ferrous complex, (DETC)2-Fe2+, (1,
Fig. 8) is commonly used to trap �NO produced in hydro-
phobic conditions (111).

The resulting (DETC)2-Fe2+-�NO complex (1, Fig. 8) is
detected as a three-line EPR spectrum. Water-soluble Fe2+-
dithiocarbamate complexes (N-methyl-D-glucamine [MGD],
2; N-(dithiocarboxy)sarcosine, 3; 2-hydroxyethyl dithiocar-
bamate, 4) were developed and successfully used to obtain
evidence of real-time �NO production in a septic shock
mouse model (28, 57, 125).

However, the trapping of �NO by (MGD)2-Fe2+ is not
selective; Mason and colleagues showed that nitrite, an oxi-
dation product of �NO, can react with (MGD)2-Fe2+ to pro-
duce �NO (112). Moreover, Ichikawa’s and Rosen’s groups
have reported that the iron contained in iron-dithiocarbamate
complexes is an inhibitor of �NO production by the NOS
enzymes, further confusing data interpretations (84, 127).

Despite those limitations, dithiocarbamate complexes are
widely used for in vivo detection of �NO, even if the high
quantities of Fe2+ added and dithiocarbamate ligands can
initiate unwanted reactions and a cytotoxicity.

Detection of NO by NNO

NNO are stable paramagnetic species bearing a nitronyl
and an aminoxyl moiety in the same molecule. NNOs are
characterized by a five-line EPR signal with an intensity ratio
1:2:3:2:1 due to the coupling of the single electron with two
equivalent nitrogen atoms (Fig. 9). It was suggested that ni-
tronyl nitroxides could be a viable alternative to iron (II)-
dithiocarbamate complexes (54). Indeed, nitronyl nitroxides
react specifically with �NO at reasonable rates (103–104

M-1s-1) (4), giving rise to an imino nitroxide (INO), which
shows a completely different EPR spectrum (seven lines,
Fig. 9) (48).

The stoichiometry of the reaction between �NO and the
NNO probe is 2 to 1, respectively (Scheme 1) (39).

NNOþNO! INOþNO2

NNOþNO2 ! þNNOþNO2
�

þNNOþNOþHO� ! NNOþNO2
� þHþ

Scheme 1. Trapping of NO with NNO
However, the use of NNO for �NO detection is not without

limitation. NNO can react with HNO and O2
�–, affording the

reduced hydroxylamine form (6, 95). Indeed, Blasig and
colleagues reported that O2

�– can reduce NNO into an EPR-
silent diamagnetic product with a rate constant of 8.8 · 105

M-1s-1, competing directly with the trapping of �NO (36).
The possibility of modulating NNO solubility and speci-

ficity makes possible the detection of �NO at different tissue

FIG. 7. �NO donors: main source of �NO
for in vitro experiments.

FIG. 8. Structure of Fe21-dithiocarbamate complexes.
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sites; an example was published by Peng and colleagues, who
report the synthesis of 30 different NNO labeled with amino
acid fragments (129).

To improve the sensitivity of the �NO detection method
and to circumvent NNO bioreduction, several strategies were
used. Rosen et al. reported the first synthesis of dendrimer-
linked NNOs (from 2 to 8 U of NNO) (92). Duan and col-
leagues associated an NNO with a fluorescent metal-organic
tetrahedron, which mimics the enzymatic pocket, combining
EPR spectroscopy with fluorescence detection for improved
sensitivity (120). They report that the trapping reaction of NO
by the metal-organic tetrahedron–NNO complex was en-
hanced and has a limit of detection of 5 nM.

Detection of �NO via nitrosation
of diamino-substituted fluorophores

For real-time monitoring of �NO in biological systems, the
various fluorescent probes have been used, but diamino-
substituted fluorophores (e.g., diaminofluorescein, DAF-2)
gained the highest popularity. The advantage of those probes
is the formation of the highly fluorescent product, triazole
derivative (e.g., DAF-2T), which incorporates a nitrogen
atom from �NO. HPLC-based analyses indicate that several
fluorescent products can be formed from DAF-2, and, thus,
selective detection of DAF-2T using the chromatographic
techniques is recommended (110, 146).

It must be noted that �NO does not react directly with
DAF-2, and that two pathways have been proposed for
DAF-2T formation. One involved direct nitrosation by N2O3,
and the other involved one-electron oxidation to the aminyl
radical, followed by its reaction with �NO (58). This mech-
anism would implicate the sensitivity of DAF-2T yield
to one-electron oxidants, as demonstrated experimentally
(138). It is important to note that the probe nitrosation can
also result from the reaction of the probe with nitrite under
acidic conditions.

Detection of Peroxynitrite with the Use
of Boronate Probes

For many years, intracellular detection of peroxynitrite has
been a significant challenge. In the past, the reduced leuco-
derivatives of fluorescein and rhodamine, DCFH and DHR,
previously discussed, were used (12). Unfortunately, there

are some serious disadvantages to their use: the radical
mechanism of their oxidation, the production of O2

�– in the
reaction of radical intermediates with molecular oxygen, and
the lack of selectivity (121).

The discovery of a rapid, direct, and stoichiometric reac-
tion between ONOO- and boronate compounds, resulting in
the formation of a peroxynitrite-specific mixture of oxidation
products, has opened the possibility of specific detection of
this elusive oxidant (101). It should be emphasized that the
boronate group containing the trivalent, sp2-hybridized
electrophilic boron atom in boronate-based molecular probes
can be easily oxidized to corresponding phenols by different
nucleophilic biological oxidants—hydrogen peroxide and
organic hydroperoxides, peroxynitrite, peroxynitrate, and
hypohalous acids—but the reaction with peroxynitrite leads
to the parallel formation of oxidant-specific products (99–
102, 147). The mechanism of peroxynitrite reaction with
boronates has already been described in detail (99, 100), and
it has been shown that the formation of peroxynitrite-specific
products can be used to identify the oxidant reacting with
boronates (102, 147). The first step of the peroxynitrite re-
action with boronates is the formation of an anionic oxidant
adduct to the boronate group that further decomposes to
products via two different pathways: The heterolytic cleav-
age of the O-O bond leads to the formation of a major, phe-
nolic product (g * 90%), whereas the hemolytic cleavage of
that O-O bond results in the formation of an unstable transient
radical anion PhB(OH)2O�- (g* 10%) that decomposes with
the formation of phenyl radicals (Ph�). Those radicals can
easily react with hydrogen atom donors (e.g., GSH) or with
the �NO2 radicals that are also produced during hemolytic
cleavage, resulting in the formation of peroxynitrite-specific
products (16). Recently, we have shown that, in the case of
mitochondria-targeted arylboronate o-MitoPhB(OH)2, the
transient phenyl radical, o-MitoPh�, undergoes rapid in-
tramolecular cyclization, resulting in the formation of the
peroxynitrite-specific product cyclo-o-MitoPh (147). The
yield of that product in the reaction of peroxynitrite and
o-MitoPhB(OH)2 is equal to 10.5%, so the major product
o-MitoPhOH and the minor, peroxynitrite-specific product
cyclo-o-MitoPh are formed in the ratio 9:1 (147). The ob-
served yield of these two products can be used to esti-
mate the contribution of peroxynitrite and other oxidants to
o-MitoPhB(OH)2 oxidation.

FIG. 9. Trapping of �NO NNO
and EPR signal of the generated
INO.

1424 HARDY ET AL.



Detection of HOCl

Over the past decade, numerous fluorescent probes—
typically containing a sulfur atom as an HOCl-reactive
center—have been proposed for the selective detection of
HOCl, as reviewed elsewhere (41). Because most of those
probes still require detailed characterization of chemical re-
activity and biological validation, detecting the product(s) of
probe chlorination seems to be the most reliable method for
selective monitoring of HOCl generation in biological sys-
tems. Chlorination of endogenous phenols (tyrosyl residues
of proteins) and exogenous phenolic probes was applied to
detect HOCl production in cell-free and cellular systems
(Fig. 10) (13, 27, 37, 47, 122). Taking into account the high
reactivity of HOCl toward thiols and amines, only a very
small fraction of HOCl is expected to react directly with the
probe intracellularily, whereas additional chlorination can be
accomplished by chloramines, the products of the reaction of
HOCl with endogenous amino acid residues (42, 81–83, 105).

As phenols also undergo nitration by �NO2 radicals, the
same probe could be used to gain information about nitrating

and chlorinating species. As an example, monitoring fluo-
rescein chlorination and nitration was used to establish the
identity of the oxidants produced by MPO under various
concentrations of nitrite, in both cell-free and cellular sys-
tems (47). More recently, it was established that the HE
probe, widely used for O2

�– detection, reacts with HOCl,
leading to the formation of 2-Cl-E+ (Fig. 5), which was
proposed as a specific marker for HOCl (64, 108). It was
shown that stimulation of human neutrophils with PMA leads
to the formation of 2-Cl-E+, which correlates with the extent
of tyrosine chlorination (64). Similarly, 2-Cl-E+ formation
was detected in activated peritoneal mouse phagocytes and in
a mouse model of arterial inflammation in vivo. In both
in vivo systems, knocking down MPO led to significant at-
tenuation of 2-Cl-E+ formation (64).

As previously mentioned, boronate probes have been used
to detect H2O2 and ONOO- (63, 101, 143). It was also
demonstrated that boronate probes can be oxidized by HOCl
(101, 143). Although the phenolic product is not specific to
HOCl, its further reaction with HOCl produces chlorophenol,
which can be used as a specific marker for HOCl (101). As an
example, it was shown that the luminescent probe PCL-1
undergoes oxidation to luciferin, which in the presence of
HOCl is further converted to chloroluciferin (Luc-Cl,
Fig. 11) (141).

Simultaneous Detection of Various ROS/RNS

As discussed earlier, several probes have been shown to
yield various products, depending on the identity of the ROS/
RNS with which they react; the HE probe can be used for
detection of O2

�–, HOCl, and one-electron oxidants, forming
different, specific products.

EPR spin traps can be used to detect various radical
species, each producing a product with very characteristic
spectral features. For example, the 5-tert-butoxycarbonyl-5-
methyl-1-pyrroline N-oxide (BMPO) spin trap was used to
characterize radical species formed under conditions of co-
generated fluxes of O2

�– and �NO (Fig. 12) (55). In the ab-
sence of �NO, an EPR spectrum characteristic for the adduct
of O2

�– is observed. With increasing flux of �NO, the su-
peroxide adduct disappears, with concomitant build-up of the
�OH adduct. This is consistent with the rapid reaction be-
tween O2

�– and �NO producing ONOO-, which decomposes
to the �OH radical.

Also, testing the reactivity of o-MitoPhB(OH)2 with var-
ious oxidizing, nitrating, and halogenating species revealed a
range of products, including a relatively nonspecific phenolic
product (o-MitoPhOH); ONOO--specific products (cyclo-
o-MitoPh and o-MitoPhNO2); nitrated phenolic products
(o-MitoPh(NO2)OH), indicative of the presence of �NO2

radicals; and halogenated products (o-MitoPh(Cl)OH and
o-MitoPh(Br)OH), formed in the presence of HOCl and
HOBr, respectively (Fig. 13) (147). Thus, complementa-
tion of real-time monitoring of boronate-probe-derived

FIG. 10. Chemical reactions of phenols
with HOCl.

FIG. 11. Reaction of PCL-1 with HOCl.
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FIG. 12. The function of EPR spectra generated from BMPO spin trap on the relative fluxes of O2
�– and �NO (55)

This research was originally published in Koto et al. (55) ª Informa UK Ltd.

FIG. 13. Boronate reaction with particular ROS and the products formed (147) This research was originally pub-
lished in Zielonka et al. (147) ª the American Society for Biochemistry and Molecular Biology.
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fluorescence or luminescence by HPLC or LC-MS-based
profiling of the products formed can provide a rigorous
method for identifying HOCl and/or other species that are
capable of oxidation of boronates.

Summary

This review is unique in that it focuses on the detection of
specific products formed from the interaction between vari-
ous ROS/RNS, spin traps, and fluorescent/nonfluorescent
probes. Using this approach, we are able to rigorously iden-
tify the specific ROS/RNS generated in cell-free and cellu-
lar systems.

Nitrone spin traps (e.g., DEPMPO, DMPO, BMPO) react
with O2

�– to form nitroxide spin adducts that exhibit highly
characteristic EPR spectra. This approach is suitable for de-
tecting O2

�– formed in biochemical systems and in the ex-
tracellular milieu. However, this approach is not suitable for
detecting intracellular superoxide. HE and its analogs react
with intracellular and extracellular superoxide, forming hy-
droxylated products that can be rapidly separated and iden-
tified by using HPLC-based techniques. HE analogs also
react with HOCl to form specific chlorinated products.

Boronate-based probes react slowly with H2O2, and amino
acid/protein hydroperoxides to form hydroxylated products
that can be detected by using fluorescence or chromato-
graphic techniques. Boronate probes react rapidly with
ONOO- to form the hydroxylated product (major) and ni-
trated products (minor). These minor nitrated products are
formed only through a reaction with ONOO-. Boronate
probes react with HOCl to form specific chlorinated products.
The techniques to detect and characterize these products are
EPR, HPLC, and/or LC-MS.
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Abbreviations Used

BH2¼ 7,8-dihydrobiopterin
BH4¼ 5,6,7,8-tetrahydrobiopterin

BMPO¼ 5-tert-butoxycarbonyl-5-methyl-1-pyrroline
N-oxide

DAF-2¼ diaminofluorescein
DCFH¼ dichlorodihydrofluorescein

DHR¼ dihydrorhodamine
eNOS¼ endothelial NOS

EPR¼ electron paramagnetic resonance
H2O2¼ hydrogen peroxide

HE¼ hydroethidine
HOCl¼ hypochlorous acid
HPLC¼ high-performance liquid chromatography

HRP¼ horseradish peroxidase
LC-MS¼ liquid chromatography–mass spectrometry

MPO¼myeloperoxidase
NADPH¼ nicotinamide adenine dinucleotide phosphate

NNO¼ nitronyl nitroxides
NO¼ nitric oxide

NO2¼ nitrogen dioxide
N2O3¼ nitrosating species
nNOS¼ neuronal NOS
NOS¼ nitric oxide synthase
O2
�–¼ superoxide radical anion

OH¼ hydroxyl radical
ONOO-¼ peroxynitrite

RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
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