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Abstract

Medical imaging has played a major role in defining the general anatomical targets for deep brain 

stimulation (DBS) therapies. However, specifics on the underlying brain circuitry that is directly 

modulated by DBS electric fields remain relatively undefined. Detailed biophysical modeling of 

DBS provides an approach to quantify the theoretical responses to stimulation at the cellular level, 

and has established a key role for axonal activation in the therapeutic mechanisms of DBS. 

Estimates of DBS-induced axonal activation can then be coupled with advances in defining the 

structural connectome of the human brain to provide insight into the modulated brain circuitry and 

possible correlations with clinical outcomes. These pathway-activation models (PAMs) represent 

powerful tools for DBS research, but the theoretical predictions are highly dependent upon the 

underlying assumptions of the particular modeling strategy used to create the PAM. In general, 

three types of PAMs are used to estimate activation: 1) field-cable (FC) models, 2) driving force 

(DF) models, and 3) volume of tissue activated (VTA) models. FC models represent the “gold 

standard” for analysis but at the cost of extreme technical demands and computational resources. 

Consequently, DF and VTA PAMs, derived from simplified FC models, are typically used in 

clinical research studies, but the relative accuracy of these implementations is unknown. 

Therefore, we performed a head-to-head comparison of the different PAMs, specifically evaluating 

DBS of three different axonal pathways in the subthalamic region. The DF PAM was markedly 

more accurate than the VTA PAMs, but none of these simplified models were able to match the 

results of the patient-specific FC PAM across all pathways and combinations of stimulus 

parameters. These results highlight the limitations of using simplified predictors to estimate axonal 

stimulation and emphasize the need for novel algorithms that are both biophysically realistic and 

computationally simple.
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1. Introduction

Deep brain stimulation (DBS) is an established clinical therapy for a range of neurological 

disorders. The most common application is subthalamic DBS for the treatment of 

Parkinson’s disease (PD). Advanced medical imaging and decades of clinical experience 

have helped identify anatomical targets for therapeutic stimulation in the subthalamic region 

[e.g. Saint-Cyr et al., 2002; Herzog et al., 2004; Nowinski et al., 2005; Butson et al., 2011; 

Welter et al., 2014; Eisenstein et al., 2014]. However, there is still little to no clinical 

consensus on the specific neural elements (and/or axonal pathways) that are necessary and 

sufficient for evoking therapeutic effects when stimulated [Hamel et al., 2017].

Patient-specific computational models are tools to study the underlying effects of DBS and 

evaluate different stimulation paradigms [McIntyre et al., 2007]. They allow for noninvasive 

quantitative characterization of the theoretical response of various neural elements to a wide 

range of stimulation settings. Recently, patient-specific DBS models have been used in 

combination with explicit representations of axonal pathways, typically derived from 

tractography, to evaluate possible stimulation correlations with symptom improvement or 

side effects [Chaturvedi et al., 2010]. These pathway-activation models (PAMs) leverage 

advances in the scientific documentation of the human brain structural connectome, and now 

represent a burgeoning subfield of DBS research we call connectomic DBS modeling. In 

particular, subthalamic DBS has already been the focus of numerous PAM studies [e.g. 

Coenen et al., 2011; Chaturvedi et al., 2012; Groppa et al., 2014; Sweet et al., 2014; Accolla 

et al., 2016; Vanegas-Arroyave et al., 2016; Gunalan et al., 2017; Horn et al., 2017; Akram 

et al., 2017]. However, the various PAM analyses have employed a wide range of different 

methods without much in the way of documentation or validation of their accuracy.

There are currently three general classes of methods for estimating the response of axonal 

pathways to DBS: 1) field-cable (FC) methods, 2) driving force (DF) methods, and 3) 

volume of tissue activated (VTA) methods. FC methods are the most detailed and technically 

demanding, explicitly modeling the electric field, axonal trajectories, and transmembrane 

ion channels responsible for action potential initiation in response to extracellular stimuli 

[McNeal, 1976; Gunalan et al., 2017]. DF methods represent a 1-degree simplification of FC 

methods, requiring calculation of the electric field but simplifying estimation of the 

transmembrane response to substantially speed up the simulations [Warman et al., 1992; 

Peterson et al., 2011]. VTA methods represent a 2-degree simplification of FC methods, 

reducing calculations of the electric field and axonal response into a generic algorithm that is 

the fastest and easiest to implement [Butson and McIntyre, 2006; Chaturvedi et al., 2013]. 

Each method has inherent limitations, but FC methods represent the “gold standard” for 

comparison because the DF and VTA methods are derivative formulations.
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Numerous academic software tools have been created to help facilitate the use of PAMs by 

clinical DBS researchers [e.g. Miocinovic et al., 2007; Horn and Kuhn, 2015; Lauro et al., 

2016; Noecker et al., 2017]. However, these tools hide non-expert users from the technical 

details of the PAM methodology and tend to rely on numerous simplifications to generate 

their results, which subsequently have unknown implications on the conclusions reached. 

This technical issue within the field of connectomic DBS modeling is exacerbated by the 

lack of direct comparisons of different methods for estimating axonal responses to electrical 

stimulation [Chaturvedi et al., 2010; Howell and McIntyre, 2017]. Therefore, the goal of this 

study was to perform a head-to-head comparison of different methods for estimating axonal 

activation, specifically evaluating DBS of three different axonal pathways in the subthalamic 

region.

2. Methods

2.1. Patient-specific model of subthalamic DBS

The technical details and methodology for constructing the patient-specific DBS models are 

described in prior works [Howell and McIntyre, 2016; Howell and McIntyre, 2017; Gunalan 

et al., 2017] and summarized below. We hypothesized that the assumptions and 

simplifications inherent in DF and VTA PAMs would generate markedly different results 

when compared to FC PAMs. We used the most detailed patient-specific foundation for DBS 

modeling currently available to perform our analysis [Gunalan et al., 2017], and attempted to 

minimize sources of variance between comparison of methods. We used the FC PAM, one 

DF PAM [Peterson et al., 2011] and three VTA PAMs [Chaturvedi et al., 2013; Madler and 

Coenen, 2012; Astrom et al., 2015] to estimate the activation thresholds of individual axons 

within three different pathways coursing through the subthalamic region. Our pathways of 

interest were the internal capsule fibers of passage (IC), hyperdirect pathway (HDP), and 

cerebellothalamic tract (CbTT).

2.1.1. Patient data—Collection of all patient data for this study was approved by the 

University of Minnesota Institutional Review Board. Pre-operative T1-weighted (T1W), T2-

weighted (T2W), susceptibility-weighted (SW), and diffusion-weighted (DW) images were 

obtained on a 7T magnetic resonance imaging (MRI) system (Magnex Scientific, UK) 

[Duchin et al., 2012; Gunalan et al., 2017]. A pre-operative T1W image was also acquired 

on a 1.5T Siemens Magnetom Espree. These MRI data were used to create the anatomical 

model of the patient. A post-operative CT image (Biograph64 Sensation, Siemens) was 

obtained approximately 1 month after surgery and used to define the location of the 

implanted DBS electrode.

2.1.2. Image processing—The DW images were corrected for distortions from eddy 

currents using FSL’s eddy tool and from magnetic field inhomogeneities using FSL’s topup 
tool. We registered all images to the T1W image using Advanced Normalization Tools or 

FSL’s image registration tool, flirt [Jenkinson and Smith, 2001; Jenkinson et al., 2002]. 

FSL’s brain extraction tool, bet [Smith, 2002], was used to isolate the brain from the 1.5T 

T1W image, and subsequently, we used FSL’s automated segmentation tool, fast [Zhang et 

al., 2001], to subdivide the brain image into grey matter, white matter, and cerebrospinal 
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fluid (CSF). The locations of bone and other soft tissues (e.g. fat and muscle) were 

approximated using a detailed single-patient atlas named MIDA [Iacono et al., 2015]. A 

linear mapping was calculated by using flirt with 12 degrees of freedom to coregister the 

grey matter, white matter, and CSF tissue types in the MIDA image to those in the patient’s 

T1W image, and the affine transformation was used to warp the MIDA masks of the non-

brain regions into the patient’s T1W space [Gunalan et al., 2017].

Manual segmentation of subcortical nuclei (putamen, globus pallidus, subthalamic nucleus, 

substantia nigra, red nucleus) was performed with Seg3D. As no image had adequate 

contrast for thalamic segmentation, we fit the thalamic atlas developed by Krauth et al. 

[2010] to the 1.5T T1W image in Cicerone [Miocinovic et al., 2007]. Freesurfer’s recon tool 

was used to segment the ipsilateral CSF and contralateral cerebral hemisphere from the 1.5T 

T1W image [Fischl et al., 2012].

2.1.3. Streamline reconstruction—We reconstructed three pathways for our analysis: 

internal capsule fibers of passage (IC), hyperdirect pathway (HDP), and cerebellothalamic 

tract (CbTT) (Figure 1). IC and HDP are comprised of layer V pyramidal cells that project 

corticofugal axons from the motor cortex, through the internal capsule, and terminate in the 

brainstem/spinal cord. The HDP is distinct from the IC in that it gives off a collateral from 

the corticofugal axon to the STN [Nambu et al., 2002; Kita and Kita, 2012; Haynes and 

Haber, 2013]. The CbTT originates from the dentate and interposed nuclei of the 

cerebellum, passes through the superior cerebellar peduncle, and terminates in the ventral 

lateral posteroventral (VLpv) thalamic nucleus [Gallay et al., 2008].

The IC, HDP, and CbTT each represent pathways of substantial clinical interest in the 

subthalamic region for DBS studies. Stimulation of the IC is commonly associated with 

motor contraction side effects of subthalamic DBS [Tommasi et al., 2008; Mahlknecht et al., 

2017]. Stimulation of the HDP is thought to be a major contributor to the therapeutic effects 

of subthalamic DBS [Walker et al., 2012; Sanders and Jaeger, 2016]. Stimulation of the 

CbTT is considered therapeutic for the control of tremor [Coenen et al., 2011; Groppa et al., 

2014; Sweet et al., 2014], but has also been implicated in the generation of speech 

disturbance side effects [Astrom et al., 2010; Tripoliti et al., 2014].

We used the probabilistic tractography toolbox in FSL to reconstruct the IC, HDP, and CbTT 

pathways. Diffusion parameters were fit using bedpostx, and streamlines were generated 

with probtrackx. We saved only those streamlines that originated in the seed mask, 

terminated in the target mask(s), and avoided the exclusion masks (as well as the patient-

specific DBS electrode position). We fit a smoothing spline to the tractography-generated 

streamlines to create the axonal trajectories used in our simulations (Figures 1 and S1).

The streamlines of the IC were generated from a seed region (with 100 seeds per voxel) that 

resided in the white matter lateral to the STN, between the thalamus and lenticular nucleus. 

Streamlines connected a target mask in the cerebral peduncle of the midbrain to another 

target mask superior to the seed mask [Gunalan et al., 2017], while avoiding the ipsilateral 

thalamus, globus pallidus, putamen, substantia nigra, red nucleus, CSF, DBS lead, and 

contralateral cerebral hemisphere. This process resulted in 13,219 streamlines, from which 
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we randomly subsampled 1,000 to represent the IC. The corticofugal streamlines of the HDP 

were constructed by randomly subsampling another 1,000 samples from the IC population. 

Then for each axon of the HDP, we constructed a collateral that branched from a node of 

Ranvier along the corticofugal axon and terminated within the STN [Kang and Lowery, 

2014; Gunalan et al., 2017].

The streamlines of the CbTT were generated from a seed mask within the contralateral 

superior cerebellar peduncle (with 2,000 seeds per voxel) (Figure S1). Streamlines 

decussated, then passed through a waypoint mask between the red nucleus and subthalamic 

nucleus, and terminated within the VLpv thalamic nucleus (Figure S1) [Gallay et al., 2008], 

while avoiding the ipsilateral globus pallidus, substantia nigra, subthalamic nucleus, ventral 

lateral anterior (VLa) thalamic nucleus, ventral posterior lateral (VPL) thalamic nucleus, 

CSF, DBS lead, and contralateral cerebral hemisphere. Additionally, we excluded 

streamlines that traveled superior to the VLpv thalamic nucleus. Applying these constraints 

resulted in 1,662 streamlines, from which we randomly subsampled 1,000 for creation of our 

CbTT. We then extended these CbTT streamlines up into the VLpv, using a weighting of the 

average their trajectory, so they did not simply terminate at the ventral border of the 

thalamus.

2.1.4. Volume conductor—The volume conductor of the head consisted of three domains 

(Figure 2). Domain 1 consisted of encapsulation tissue delineated by the internal boundary 

representing the implanted Medtronic model 3389 lead and the outer surface of a 0.5 mm 

thick uniform layer surrounding the lead. Domain 2 consisted of brain tissue delineated by 

the outer boundaries of the encapsulation tissue and the surface of the brain. Domain 3 was 

delineated by the outer boundaries of the brain and the scalp.

We constructed a conductivity tensor field for the entire head volume in the patient’s T1W 

space. Each voxel was categorized into 1 of 11 different types of tissues (Figure 2A), each 

with its own corresponding effective conductivity [Gunalan et al., 2017]. Within the brain 

volume, FSL’s dtifit tool was used to fit a single tensor to the signal in each voxel of the 

patient’s DW image, and the diffusion tensors (Ds) in DW space were warped to T1W 

space. Anisotropic conductivity tensors used in the patient model were a scaled version of D. 

We used the load preservation approach to generate impedance values that agreed with 

expected impedances measured in subthalamic DBS [Howell and McIntyre, 2016]. Because 

D was only used within the boundaries of the patient’s brain (i.e. domain 2), conductivity 

tensors within the brain were modeled as anisotropic, whereas the conductivity tensors 

outside the brain (i.e. in domain 3) were modeled as isotropic.

We used COMSOL (version 5.1) to construct tetrahedral meshes for the head model. The 

mesh was refined with an especially high nodal density within a 30-mm cubic region 

surrounding the tip of the modeled DBS lead. Elements within domain 1, the encapsulation 

tissue, were assigned an isotropic conductivity of 0.07 S/m, which falls within the range of 

previously reported values [Grill and Mortimer, 1994] and was chosen so that the load of the 

modeled head matched that measured from the patient by the Medtronic programming 

device [Gunalan et al., 2017]. Elements in domains 2 and 3, the brain and non-brain 

domains, respectively, were assigned conductivity tensors based on their proximity to the 
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nearest neighbor in the tensor field defined by the structured rectangular grid in the patient’s 

T1W space. The complete head model consisted of 1,429,416 total tetrahedral elements and 

6,524,354 nodes in the finite element mesh.

For stimulation configurations where the implantable stimulator was intended to be the 

return electrode (i.e. monopolar configurations), we defined Dirichlet boundary conditions 

of 1 V at the active contact(s), and 0 V at the neck. Inactive contacts were treated as ideal 

conductors and modeled using Robin boundary conditions that specified two conditions, per 

contact: all potentials within the contact were equal in value, and the net current flow 

through the surface of the contact was 0 A. Neumann boundary conditions of 0 A/mm2 were 

used to model the electrode shaft and scalp surface (minus the neck) as perfect insulators. In 

stimulation configurations where the return and source were both electrode contacts (i.e. 

bipolar configurations), the base of the neck was insulated.

The potential field in the volume conductor at the onset of the stimulus was calculated by 

using the finite element method (FEM) to solve numerically Laplace’s equation for 

conductive media:

∇·(∑ ·∇Φ) = 0 (1)

, where Σ is the tensor conductivity field. The variation of the potentials over time was 

approximated by multiplying Equation 1 with the time-varying voltage drop across the tissue 

in an equivalent circuit model of the implanted DBS system [Gunalan et al., 2017]. Although 

this approximation ignores the dispersion of time constants generated by nonuniform current 

densities [Howell et al., 2014], it is an accurate approximation at the frequencies considered 

in DBS [Howell and McIntyre, 2016].

2.1.5. Cable model of axons—Multi-compartment cable models of axons were 

constructed and solved in the NEURON simulation environment (version 7.3). We started 

with the MRG axon model [McIntyre et al., 2002] and modified some of the geometrical 

parameters to better reflect central nervous system axons [Howell and McIntyre, 2016]. We 

defined the diameter of the hyperdirect collateral as a fraction (1/3.1) of the diameter of the 

corticofugal axon [Hongo et al., 1987; Struijk et al., 1992; Grill et al., 2008]. We used the 

streamlines generated from tractography (Section 2.1.3) to define the axonal trajectories in 

the volume conductor. We interpolated the extracellular potentials at the coordinates of the 

centers of the compartments in the cable models and used the extracellular mechanism in 

NEURON to stimulate the modeled axons [McNeal, 1976; Gunalan et al., 2017] (Figure 2). 

For a given electrode configuration and stimulus pulse width, we used a binary search 

algorithm to determine the threshold stimulus amplitude for action potential generation to 

within 0.01 V. An axon was deemed activated when it responded “one-to-one” with the 

stimulus frequency. The combination of the electric field from the volume conductor and 

axonal responses from the multi-compartment cable models represent the results of the FC 

PAM (Figure 2).
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2.2. DF PAM

Simulating the nonlinear response of axons in an FC PAM is a time-consuming process. 

Therefore, incentives exist for estimating the axonal response using predictive algorithms. 

Charge flow throughout an axon is modeled with the cable equation, where the driving force 

(DF) approximates the effects of the extracellular potentials on the neural membrane 

[McNeal, 1976]. Warman et al. [1992] demonstrated that a weighted version of the DF could 

be used to calculate the steady-state response of a passive cable in response to an 

extracellular stimulus, and that passive response could be used to estimate the threshold for 

activation in the corresponding nonlinear axon model. However, it is not possible to 

determine a priori the critical steady-state response that corresponds to the threshold for 

activation in the nonlinear axon model. Therefore, DF-based predictors are capable of 

reducing computation time and achieving relatively high accuracy in most situations, but 

require extensive parameterization steps [Moffitt et al., 2004]. In this study, we elected to 

analyze the most recent iteration of a DF-based predictor [Peterson et al., 2011], which we 

refer to as DF-Peterson.

2.2.1. DF-Peterson—Peterson et al. [2011] estimated stimulation thresholds based on two 

metrics: the maximum magnitude of the stimulus potentials (Φe) across the axon and the 

weighted sum of Δ2Φe across the nodes of Ranvier (NoRs), which they refer to as a modified 

driving force (MDF),

MDF = ∑
i = − n

n
wi(PW , D)Δ2Φe, i (2)

Δ2Φe, i = Φe, i − 1 − 2Φe, i + Φe, i + 1 (3)

, where i is a relative index denoting the NoR where Δ2Φe is maximal, wi is a weighting 

term at the ith adjacent NoR for a given stimulus pulse width (PW) and axon diameter (D), 

and n is the number of adjacent nodes. Peterson et al. [2011] ignored n > 10 because these 

weights were negligible compared to the more proximal nodes. The calculation of the 

weights is summarized in the Section A of the Supplementary Text.

Development of the DF-Peterson algorithm can be summarized in two phases: In the first 

phase, vectors of artificial applied potentials were constructed without the use of a volume 

conductor. They began by defining values for Φe,0 and Δ2Φe,0, which, by construction, were 

located at the middle NoR of the axons modeled by Peterson et al. [2011]. Assuming Φe,−1 = 

Φe,+1, (3) was used to define Φe,−1 and Φe,+1. The remaining nodal potentials were then set 

to decay so that the first derivatives were zero at the ends of the axons, and a fitted spline 

was used to define the potentials at all internodal compartments. This process was repeated, 

constructing vectors of artificial applied potentials for various different combinations of Φe,0 

and Δ2Φe,0, and (2) was used to calculate an MDF for each vector of potentials.
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In the second phase, simulations were conducted in NEURON to determine which vectors of 

potentials from the previous phase evoked action potentials in the modeled axon [McIntyre 

et al., 2002]. The threshold MDF was defined as the smallest MDF for a given Φe,0 whose 

corresponding potentials directly activated the axon. The threshold MDFs for all values of 

Φe,0 at a given PW and D were summarized in a lookup table, and phases 1 and 2 were 

repeated for various combinations of PW and D. PWs ranged from 20 µs to 10 ms, and Ds 

ranged from 4 µm to 20 µm. We refer to the threshold Φe,0 and threshold MDF as Φe,0,th and 

MDFth, respectively.

Peterson et al. [2011] provide the data for implementing their predictor in Tables S1 and S3 

of their supplement. We calculated weights at their unspecified combinations of D and PW 

using bilinear interpolation, and nearest neighbor extrapolation was used to estimate MDFth 

at Φe,0,th > 500 mV (Section B of Supplementary Text). We also used a fitted spline to 

approximate the continuous relationship between Φe,0,th and MDFth. Stimulation thresholds 

at a given D and PW were calculated as follows (Figure 3). First, for a given axon, we 

sampled Φe at the NoRs generated with the patient-specific volume conductor (Figure 

3A/B), and then we determined where Δ2Φe was maximal; this NoR, which could be any 

node along the length of the axon, was designated as i = 0. The potential at this NoR was 

defined as Φe,0,unit, and we used (2) to calculate the corresponding MDFunit, where “unit” 

designates that values were calculated at an applied voltage of 1 V. Then, Φe,0 and MDF 

were calculated by multiplying Φe,0,unit and MDFunit by a scalar, respectively. The 

stimulation threshold voltage was the smallest scalar multiple that when applied to Φe,0,unit 

generated an Φe,0 whose corresponding MDF was ≥ MDFth (Figure 3C/D).

For the HDP, we calculated the thresholds in a piecewise manner. We calculated the MDFunit 

along the main body of the corticofugal axon separately from the MDFunit along the 

collateral projecting to the STN. We then used the larger of the two MDFunit to calculate 

thresholds as described above.

2.3. VTA PAMs

Another way to simplify DBS modeling is to use a predictor to estimate the nonlinear 

relationship between the parameters of stimulation and the spatial extent over which axons 

are activated. The typical approach is to use an ellipsoidal volume, commonly referred to as 

a volume of tissue activated (VTA) [Butson and McIntyre, 2006]. VTA PAMs are derived 

from highly simplified FC models, where a DBS lead is placed in an isotropic volume 

conductor and used to estimate the extent of activation of straight axons oriented 

perpendicular to the electrode shaft (Figure 4A). Simulations are conducted to assess which 

axons are directly activated for various stimulation settings and circumscribing ellipsoids are 

used to approximate the region of activation. This section describes three common 

implementations of VTA PAMs (Figure 4). We defined the stimulation threshold for direct 

activation of an axon as the minimum voltage amplitude needed to generate a VTA that 

intersects the respective streamline for a given axon diameter, stimulus pulse width, and 

electrode configuration (Figure 4C).
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2.3.1. VTA-Chaturvedi—Chaturvedi et al. [2013] used a series of ellipsoids to 

approximate the planar regions of activation, and then used an artificial neural network 

(ANN) to predict the relationship between a set of input parameters (described below), and 

the center and radii of the ellipsoids, which were the output of the ANN. We refer to this 

VTA PAM as VTA-Chaturvedi. This predictor represents the latest advancement of the 

original concepts developed by Butson and McIntyre [2006] and is capable of predicting the 

VTA for multipolar electrode configurations and multiple axon diameters.

Given an electrode configuration, an electrode/access resistance (Ra), a stimulus amplitude ≤ 

10 V, a PW between 60 µs and 450 µs, and axon diameter of 2 µm, 5.7 µm, or 10 µm; we 

generated an ellipsoid or set of ellipsoids based on the radii and center coordinates output 

from the ANN. The VTAs were then used to estimate which axons in the IC, HDP, and 

CbTT pathways were activated by quantifying the intersection of individual streamlines with 

the VTA (Figure 4). The VTA-Chaturvedi predictor is currently employed by the StimVision 

software tool [Noecker et al., 2017].

2.3.2. VTA-Madler—Madler and Coenen [2012] began with digital reconstructions of 

ellipsoidal VTAs originally calculated by Butson et al. [2006], and the lateral radius of each 

ellipsoid, which is the radius transverse to the electrode shaft’s axis, was used to define a 

corresponding spherical VTA. Next, they used a fitted second-order bivariate polynomial to 

approximate the relationship between the applied voltage, the nominal dependent variable, 

and two nominal independent variables, the radius of the spherical VTA and Ra. Coefficients 

that altered the output of the predictor by < 1% were dropped, thereby allowing the radius of 

the spherical VTA to be expressed as a closed-form function of the applied voltage and Ra. 

We refer to this bivariate quadratic predictor as VTA-Madler.

VTA-Madler can be used for a range of Ra, namely between 741 Ω and 1244 Ω, but the data 

used to fit the predictor only reflects one combination of PW and D; more specifically, PW = 

90 µs and D = 5.7 µm. Therefore, this predictor is very limited compared to the other more 

flexible predictors. The VTA-Madler predictor is currently employed by the DBSproc 

software tool [Lauro et al., 2016].

2.3.3. VTA-Astrom—Astrom et al. [2015] constructed VTAs based on the magnitude of 

the electric field (ET). For a given combination of PW and D, ET was calculated at the 

location in the grid where the furthest perpendicular axon was activated, and this process 

was repeated (at a given PW and D) across a number of stimulation amplitudes. The 

effective nominal threshold, or ET,th, was the median threshold ET across all the stimulus 

amplitudes. The VTA, then, was the minimum ellipsoidal volume circumscribing the volume 

delineated in the bulk tissue where E were ≥ ET,th. We refer to this predictor as VTA-

Astrom.

Astrom et al. [2015] provide a table summarizing ET,th for PWs between 30 µs and 120 µs 

and Ds between 2 µm and 7.5 µm. Because only values for ET,th were provided, we 

constructed the simplified axisymmetric volume conductor model used in their work. The 

conductivity of the bulk tissue and scar were set to 0.2 S/m and 0.1 S/m, respectively, which 

yielded an Ra that matched their reported value of 1 kΩ. We then changed the encapsulation 
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layer conductivity from 0.1 S/m to 0.0625 S/m, yielding an Ra of 1.37 kΩ, that matched the 

Ra in our patient-specific model, and we used the axisymmetric model to calculate the VTAs 

described above. For combinations of PW and D that were not provided in the tables, we 

estimated ET,th by using a fitted bivariate decaying rational function to interpolate and 

extrapolate values (Figure S2). The concept of ET,th-based VTAs are currently employed by 

the Lead-DBS software tool [Horn et al., 2017].

One important note is that VTA-Astrom is based on a myelinated single-cable axon model 

whose ion channels and geometry are different than that of the double-cable model used in 

the FC PAM. The results of the former better match the latter when their axon diameters are 

3.5 µm and 5.7 µm, respectively [Astrom et al., 2015]. To match better VTA-Astrom with the 

FC PAM, we reduced the axon diameter by a factor of 0.6140 (i.e., 3.5/5.7) when analyzing 

a subset of the axonal responses with VTA-Astrom (Figure S6).

Of the three VTA PAMs considered in this work, only VTA-Astrom can be paired with a de 
novo volume conductor electric field to estimate a patient-specific VTA. Therefore, we also 

used the magnitude of the electric field from the patient-specific volume conductor model 

(Section 2.1.4) and thresholded it at the ET,th of 0.142 V/mm (90 µs, 3.5 µm) [Astrom et al., 

2015]. We called this model variant VTA-Astrom* and the resulting non-symmetric 

isosurfaces were used to calculate the stimulation thresholds for each axon as described 

above (Figure S6).

2.4. Analyses

Stimulation thresholds were calculated for all 1,000 axons in each pathway (IC, HDP, 

CbTT) using the most advanced methods currently available for patient-specific modeling of 

DBS (Section 2.1, Figure 2) [Gunalan et al., 2017]. We defined thresholds from the FC PAM 

as our gold standard and evaluated the ability of the simplified predictor functions to 

estimate the thresholds of each axon. We omitted those axons from our analyses that 

initiated action potentials from the distal nodes of Ranvier along the main body of the axon, 

as calculated with the FC PAM. This resulted in 933, 983, and 1,000 axons for the IC, HDP, 

and CbTT, respectively. We defined absolute error in the voltage stimulation threshold (Vth) 

as Vth,Predictor-Vth,FC. Axons with Vth,FC > 10 V or Vth,Predictor > 10 V were omitted from 

the stimulus threshold error calculations, as these stimulation amplitudes are not relevant to 

clinical DBS (Table S1).

Using the threshold amplitude calculations, we created recruitment curves at a 0.1 V step 

size. For a given pathway, each axon was randomly clustered into 100 populations of 1000 

axons in a bootstrapping manner (with replacement), to quantify the effects of variability in 

the distribution of the axon trajectories. The average and standard deviation of the number of 

activated axons for the 100 populations in response to a stimulation amplitude are presented 

in the recruitment curves.

The vast majority of axons in the CNS have fiber diameters below 4 µm [Liewald et al., 

2014; Aboitiz et al., 1992], except pyramidal axons whose diameters, although 

predominantly between 2 µm and 4 µm, can range up to 12 µm [Firmin et al., 2014]. 

Nonetheless, it is the largest diameter axons that dominate the response to electrical 
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stimulation due to their low stimulation thresholds [McNeal, 1976]. Therefore, our analysis 

focuses on a fiber diameter of 5.7 µm and a pulse width of 90 µs. These parameters also 

represent the basis for most VTA algorithms currently in use. However, because a wide 

range of fiber diameters and pulse widths are relevant to clinical DBS, we incorporated a 

broader range of comparisons where possible.

3. Results

We constructed a detailed patient-specific model of subthalamic DBS and used it to evaluate 

a range of different methods for estimating axonal response. The FC PAM, which 

incorporated the latest advances in biophysical modeling of DBS [Gunalan et al., 2017], 

served as our gold standard, and we compared those results to the estimations of four 

predictive algorithms. Some of the predictors were unable to simulate all of the 

combinations of stimulus pulse widths, electrode configurations, and axon diameters 

investigated in this study. Therefore, an absence of results in the figures indicates that the 

corresponding predictor could not evaluate thresholds for that given set of parameters. The 

model parameters used to develop each predictor are summarized in Table 1.

3.1. Errors in stimulation thresholds

Absolute errors in the predicted stimulation thresholds had systematic trends. Errors 

generally increased with increasing stimulus amplitude, and errors in estimating the 

stimulation thresholds of the HDP were markedly greater than the errors in estimating 

thresholds of the IC and CbTT (Figures 5 and 6). However, the order of magnitude of the 

absolute errors was not the same across the different predictors (Figure 7). We observed the 

largest errors with VTA-Astrom, which had median errors between −1 V and −4 V. In 

addition, pairing VTA-Astrom with the electric field from the patient-specific volume 

conductor (VTA-Astrom*) did not improve its performance (Figure S6). The next most 

accurate predictors were VTA-Chaturvedi and VTA-Madler, with median errors of between 

−3 V and 3 V. DF-Peterson was the most accurate, with median errors of between −3 V and 

1 V. No predictor was accurate enough to limit errors to within 1 V across all stimulus pulse 

widths, electrode configurations, and axon diameters tested (Figure 7).

Given that the DF and VTA PAMs were derived from relatively simple models of 

stimulation (Figures 3 and 4), we expected to find inherent biases in their results as 

described above. The biases in the VTA PAMs are likely due to disparities in the decay and 

shape of the extracellular potentials between the simple volume conductor model (Figure 

4A2) and the highly detailed patient-specific volume conductor (Figure 2C), as well as the 

nonlinear trajectory of the axonal pathways (Section 4.1). In addition, the bias in VTA-

Astrom to underestimate the stimulation thresholds is likely because of the simplified axon 

model used to generate this predictor (Figure S6) (Section 2.3.3).

The tendency for DF-Peterson to markedly overestimate the activation thresholds at smaller 

pulse widths and larger axon diameters could be explained by discrepancies between Δ2Φe 

in the training and test data sets. The artificial potentials used to stimulate axons in the work 

by Peterson et al. [2011] had Δ2Φe that were depolarizing to within five nodes of the node of 

excitation, whereas Δ2Φe in the anisotropic and heterogeneous volume conductor produced 
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Δ2Φe that were sometimes largely hyperpolarizing much closer to the node of excitation 

(Figures S7 and S8). Thus, in cases where DF-Peterson performed poorly, the predicted 

MDF curves underestimated the true threshold MDF.

Despite DF-Peterson being developed from an even more simplified volume conductor than 

that of the VTA PAMs, it was more accurate overall. DF predictors are a 1-degree 

simplification from FC models, whereas VTA predictors are a 2-degree simplification. As 

such, DF predictors performed better because they are able to take advantage of both the 

patient-specific extracellular potentials and the actual axonal trajectories in their threshold 

predictions.

3.2. Errors in pathway recruitment

Although the four predictors were unable to estimate accurately the stimulation thresholds of 

individual axons, the predictors could still, in some cases, accurately predict the percent 

activation of a given pathway (Figures 8 and 9). We first designated a predictor as accurate if 

it estimated the percent activation of a given pathway to within 5% accuracy (on an absolute 

scale) at amplitudes of ≤ 10 V (Table 2). VTA-Astrom, because of its large bias in 

underestimating Vth, overestimated the percent activation of all pathways, regardless of the 

choice of stimulus pulse width (Figure 8) or axon diameter (Figure 9). VTA-Madler and 

VTA-Chaturvedi were also inaccurate for all of the cases tested. DF-Peterson, although more 

accurate than all the VTA PAMs, still only satisfied our criterion for accuracy in 4 of the 18 

cases.

If we relaxed our criterion for accuracy to a maximum absolute error of 10%, we observed 

that DF-Peterson could satisfy 11 of the 18 cases, VTA-Chaturvedi could satisfy 2 of the 18 

cases, and VTA-Astrom remained inaccurate in all cases. DF-Peterson was the only PAM 

accurate enough to capture the monotonic trends of the recruitment curves in most cases. 

However, given that clinical/behavioral effects are typically noted at pathway activation 

levels beginning at ~10% [Chaturvedi et al., 2010; Gunalan et al., 2017], it is unclear if a 

10% error tolerance is acceptable for clinical DBS research analyses.

4. Discussion

The goal of this study was to evaluate the relative accuracy of different methodologies for 

estimating axonal pathway activation in clinical DBS. We found that algorithms derived 

from simplified FC models have substantial limitations in their predictive capabilities, 

especially VTA-based predictors which are commonly used in clinical DBS research. 

Despite matching model parameters, VTA PAMs had activation thresholds errors on the 

order of volts, which translates to mis-estimates of the extent of activation on the order of 

millimeters. Errors of this magnitude will likely impact correlations attempting to link VTA 

models with structural connectome results. Nonetheless, there exists a great scientific and 

clinical need to characterize the axonal pathways directly modulated by DBS, as well as 

their anatomical connections. Therefore, future connectomic DBS studies should require far 

greater attention to the technical details of the stimulation modeling strategy being used, as 

well as appropriate selection of a method that has the quantitative accuracy necessary for the 

desired analysis to be performed.
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4.1. Pathway-activation models

Patient-specific DBS models utilizing anatomically and electrically accurate volume 

conductor models and multi-compartment cable neuron models represent the most 

scientifically advanced tools for simulating the effects of DBS [Gunalan et al., 2017]. 

However, these FC PAMs are so technically demanding to implement that their use in 

clinical research studies is greatly limited. They require massive processing power, as well 

as extensive proficiency in neuroimaging, electromagnetics, and numerical methods. 

Possibly the limitations of FC PAMs could be overcome via centralized computational 

resources and cloud-based dissemination strategies (e.g. CranialCloud [D’Haese et al., 

2015]). However, the current alternative is to use predictors derived from simplified DBS 

models, which impose various assumptions to speed up the simulations and reduce the 

complexity of implementation. DF PAMs represent a 1-degree simplification from FC 

PAMs, whereas VTA PAMs are a 2-degree simplification. Therefore, it is not surprising that 

the DF PAMs performed better than the VTA PAMs in our analyses (Figure 5, S3, S4, S5). 

While DF PAMs are exceptionally faster than FC PAMs, they still require constructing a 

volume conductor model, making them only moderately easier to implement than a FC PAM 

and thereby not widely used. On the other hand, VTA PAMs can be reduced to a simple 

ellipsoid overlaid onto the patient imaging data, making them widely used in clinical DBS 

research.

The ease of implementing VTA PAMs facilitates their use in DBS software tools designed to 

enable patient-specific analyses [Horn and Kuhn, 2015; Lauro et al., 2016; Noecker et al., 

2017]. However, the simplifying assumptions and methodology used to create VTA PAMs 

can dramatically affect the subsequent predictions (Figure 5). VTA-based methods are the 

product of two major simplifications. First, VTAs are derived from volume conductor 

models with a homogenous and isotropic tissue medium (Figure 4). Second, with a VTA-

based method, the axonal trajectories are assumed to be perfectly straight and perpendicular 

to the electrode shaft (Figure 4A). These two simplifications impart symmetry in the model 

that generates a smooth and continuous “strength-distance” relationship (Figure S3). 

However, more realistic DBS models generate substantial scatter in stimulation thresholds as 

a function of electrode-to-axon distance [Chaturvedi et al., 2010]. As a result, the 

corresponding fit of the VTA PAM to pathway recruitment is primarily dictated by how well 

it approximates the mean of the thresholds as a function of distance (Figure S3). In addition, 

VTA PAMs tend to do better simulating the response of relatively straight pathways, but 

have more difficulty when the pathway trajectory is tortuous or branching (Figures S3, S4, 

S5).

In general, we found that VTA PAMs performed relatively poorly when placed into a 

patients-pecific context. However, if an appropriate method (i.e. VTA-Chaturvedi) is being 

used to estimate activation of an appropriate pathway (i.e. IC) at typical stimulation 

parameter settings (i.e. 60 µs, <5 V), it can perform very well (i.e. 1.9% error) (Table S2). 

Nonetheless, those particular instances are somewhat limited, and our results reinforce the 

need to apply PAMs with care when using simplified algorithms or software tools that shield 

users from the technical details of the underlying model.
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Unfortunately, simplified PAMs have not been used with care in the recent clinical DBS 

literature. They have been extended far beyond their design capabilities to perform analyses 

that are likely unsound. One glaring example is the use of activation volume tractography 

(AVT) (Figure 10). AVT defines an activation volume around a DBS electrode contact, uses 

the voxels contained within that volume as seeds for tractography, and then attempts to 

define connectivity between the VTA and different brain regions. However, this method, 

especially when applied in a grey matter region, actually violates numerous assumptions 

inherent to VTA-based methods [Butson and McIntyre, 2006]. In addition, blindly relying 

on tractography from a seed region to define connectivity is known to generate a great deal 

of false positive/negative results [Behrens et al., 2007; Morris et al., 2008; Thomas et al., 

2014].

As an example of AVT and its shortcomings, we used AVT (with VTA-Chaturvedi) to 

evaluate thalamic connectivity and compared it to the corresponding FC PAM estimation of 

CbTT activation (Figure 10 and Section C in Supplementary Text). Not only did the percent 

activation predicted by the two algorithms not align, but the spatial trajectory of the resulting 

pathways were markedly different. Discrepancies with AVT were exacerbated even further 

when only excluding tracts that intersected the CSF or passed into the contralateral cerebral 

hemisphere, which is consistent with the tractography exclusion criteria typically used in 

clinical DBS research using AVT (Figure 10B3). For example, aberrant streamlines from 

AVT passed above the thalamus before terminating in the VLpv (Figure 10B3). Therefore, 

we have found that minimizing the potential for erroneous results requires first the 

construction of the pathways of interest with appropriate anatomical constraints, and then 

the application of the stimulation predictor to estimate theoretical activation of the 

predefined pathways.

One application where AVT may be slightly more accurate is when it is used explicitly 

within large white matter pathways. Examples include DBS clinical research applications 

focused on neuropsychiatric targets such as the anterior limb of internal capsule or the 

subcallosal cingulate white matter. For example, AVT from the subcallosal cingulate white 

matter generates predictions [Riva-Posse et al., 2017] that are qualitatively consistent with 

predictions from a patient-specific FC PAM [Lujan et al., 2013]. Nonetheless, AVT is likely 

not generalizable to all white matter regions, and we recommend that AVT methodology 

should not be used in future DBS research.

4.2. Limitations

The major limitation of this study is that an experimental ground truth for model comparison 

does not currently exist. The patient-specific FC PAM that we used as our gold standard is 

the most detailed and advanced computational model of DBS ever created. However, while 

aspects of that model, such as the volume conductor and cable model, can be validated and 

constrained by experimental data [McIntyre et al., 2002; Miocinovic et al., 2009], the output 

predictions of pathway activation cannot be measured with current experimental techniques. 

It is possible to perform indirect measurements that can be used to evaluate model 

predictions, with electromyography (EMG) measurements corresponding to IC activation 

being the most easily attainable [Chaturvedi et al., 2010]. As such, recent clinical interest in 
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using EMG to better characterize activation of the IC during subthalamic DBS [e.g. 

Mahlknecht et al., 2017; Bally et al., 2017], or cortically evoked potentials from HDP 

antidromic activation [e.g. Walker et al., 2012], represent excellent opportunities for the 

DBS modeling and clinical communities to converge on analyses that would be mutually 

beneficial.

This study analyzed four different predictors, which only represents a subset of the different 

VTA and DF PAMs that are currently available. We chose VTA-Chaturvedi because it is 

more accurate and generalizable than previous VTA methods [Chaturvedi et al., 2013]. 

VTA-Madler and VTA-Astrom were chosen because they are being utilized by a broader 

community of researchers studying DBS [e.g. Vanegas-Arroyave et al., 2016; Horn et al., 

2017]. And, we chose DF-Peterson because it is the most accurate and generalizable DF-

based method currently available [Peterson et al., 2011]. Another relevant consideration is 

that certain VTA predictors can be adapted to use patient-specific voltage distribution data to 

define the activation volume [Butson et al., 2007]. This could theoretically improve their 

accuracy by transitioning the method from a 2-degree to a 1-degree simplification. However, 

our attempts to employ such a strategy with VTA-Astrom did not improve its performance 

(Figure S6). Therefore, our analyses, although not exhaustive, likely provides a best-case 

assessment of the current predictive algorithms versus patient-specific FC PAMs.

Finally, a group of important limitations associated with modeling DBS are the substantial 

errors that can arise from image co-registration [Klein et al., 2009], imprecise localization of 

the DBS electrode in a post-operative CT [Hemm et al., 2009], general ambiguity of 

tractography [Thomas et al., 2014], and uncertainty in various parameters used to define the 

patient-specific volume conductor model [Miocinovic et al., 2009; Howell and McIntyre, 

2016]. However, by using the same underlying imaging data and model parameters for all of 

our simulations, we were able to hold these general errors constant and focus on quantifying 

the errors that come about from using a predictive algorithm in place of a full patient-

specific FC PAM. Nonetheless, it should be noted that these general errors do come into play 

when connectomic DBS analyses are performed across a population of subjects, and 

compound when attempting to map population results into an atlas space.

4.3. Future directions

Patient-specific DWI data suffers from a lack of spatial resolution that brings into question 

the anatomical accuracy of tractographic reconstructions of axonal pathways. As the field of 

connectomic DBS modeling evolves, polarized light imaging (PLI) may provide a better 

overall foundation for the creation of human axonal pathway models [Reckfort et al., 2015]. 

Although PLI requires post-mortem tissue, the micron-resolution vector maps can provide 

exceptional detail for the creation of a human PLI-based pathway atlas. Such an atlas could 

then be coregistered to a patient’s MRI for use in connectomic DBS modeling. The main 

negative of this approach would be the assumption that the fitted PLI atlas would be a better 

approximation of the axonal pathways than DWI-based reconstructions derived from the 

patient’s own imaging data. However, we suspect that the anatomical realism of the PLI atlas 

would be superior to the false negative/positive limitations of tractography.
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Connectomic DBS models hold promise for augmenting the interpretation of brain network 

modulation induced by stimulation. However, PAMs only provide estimates of the brain 

network connections that are being activated. Those activated connections then impose 

excitatory and/or inhibitory synaptic influences on the larger brain network which remain 

difficult to understand [McIntyre and Anderson, 2016]. In turn, analyzing the network 

dynamics induced by DBS requires a different kind of model system that is designed to 

simulate the oscillatory activity of interconnected groups of neurons [Rubin and Terman, 

2004; Hauptmann and Tass, 2007]. PAM results should represent the stimulation inputs to 

DBS network models, specifically driving activity in the various pathways at representative 

percentages [Hahn and McIntyre, 2010] and conduction delays [Esfahani et al., 2016]. We 

propose that integration of pathway activation results with dynamical network analysis has 

great potential to accelerate the clinical optimization of novel stimulation paradigms [Tass et 

al., 2012].

5. Conclusions

Predictive algorithms that estimate the neural response to DBS do simplify the process of 

patient-specific pathway-activation modeling, but those simplifications come at the cost of a 

substantial decline in predictive accuracy. When parameters such as stimulus pulse width, 

electrode configuration, and axon diameter are matched, VTA-based methods offer a coarse 

estimate of the extent of activation but are subject to errors on the order of millimeters. Thus, 

current versions of these algorithms are likely not suitable for defining correlations between 

clinical metrics and stimulation of specific axonal pathways. While that same caveat 

probably applies to currently available DF-based methods, their general framework, with 

some additional customization for DBS studies, does hold promise for accurately estimating 

the percent activation of individual axonal pathways within a patient-specific context. 

Therefore, future connectomic DBS studies looking to strike a balance between model 

tractability and accuracy should transition away from VTA-based analyses and focus on 

developing and using DF-based tools.
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Figure 1. 
Patient-specific axonal pathways. (A) A coronal view of the 7T T2-weighted magnetic 

resonance image along with overlaid representations of the DBS lead (Medtronic model 

3389), thalamus (yellow), and subthalamic nucleus (green). Representative population of 

100 streamlines of the: (B) internal capsule fibers of passage (white streamlines), (C) 

hyperdirect pathway (pink streamlines), and (D) cerebellothalamic tract (orange 

streamlines). Axes: D = dorsal, L = lateral.
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Figure 2. 
FC PAM of subthalamic DBS. (A) Tissue-type segmentation (grey matter – red, white matter 

– green, cerebrospinal fluid – dark blue, muscle – light purple, tendon – yellow, bone – pink, 

fat – light blue, skin – dark purple, intervertebral disks – not visible, blood – orange, air – 

black). (B) Conductivity tensors colored according to their fractional anisotropy (FA). (C) 

Isolines of the potential distribution generated by the Medtronic model 3389 lead (active 

contact – red). Inset. Stimulus waveform at the electrode-tissue interface. (D) Extracellular 

potentials interpolated along a tractography-generated streamline. (E) Multi-compartment 

cable model of an axon is stimulated with a suprathreshold stimulus from D. (Right) 
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Stimulus waveform and transmembrane voltage response at select nodes of Ranvier (red line 

- node of action potential initiation). (F) Subsample of 100 axons representing the internal 

capsule fibers of passage. (G) Potential distribution used to stimulate the axon models. (H) 

Red axons generated action potentials in response to the stimulus.
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Figure 3. 
DF PAM of subthalamic DBS. (A) Extracellular potentials (Φe) calculated from the patient-

specific volume conductor (3 V, contact 2 [−]) were interpolated along 100 internal capsule 

fibers of passage. (B) (Top) Φe at the nodes of Ranvier along an example axon. (Bottom) 

Second differences of Φe (black line) and weighted second differences of Φe (blue line). 

(Inset) Corresponding weights for weighted second difference calculation (green line). (C) 

Peterson et al. [2011] threshold modified driving force (MDFth) values as a function of the 

maximum extracellular potential (Φe,0) (black line). Patient-specific axons with a MDF that 
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lie above the threshold curve are classified as active (red cross). (D) Red axons are 

categorized as activated by the stimulus.
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Figure 4. 
VTA PAM for subthalamic DBS. (A) Illustrative example of training a VTA algorithm with 

an axisymmetric model of DBS. (A1) Multi-compartment cable models of straight axons 

perpendicular to the electrode are modeled. (A2) The potential distribution from a volume 

conductor model with isotropic and homogeneous conductivities is used to stimulate the 

model axons. (A3) Those axons that are activated by stimulation are shown as red. A 

circumscribing ellipse is then used to characterize the spatial extent of activation. (A4) The 

ellipse is then extruded about the electrode shaft to create an ellipsoid volume. (B) 

Trajectories of internal capsule fibers of passage are generated using probabilistic 

tractography. (C) VTA mapped to the patient-specific location of the DBS electrode, and the 

trajectories of axons that intersect the VTA are categorized as active (red streamlines).
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Figure 5. 
Axon-to-axon comparison of threshold stimulus amplitude (Vth) with FC, DF, and VTA 

PAMs. We used a stimulus pulse width of 90 µs and a monopolar cathodic electrode 

configuration (contact 2 [−] and case [+]) to stimulate axons with diameters of 5.7 µm. The 

rows denote results for the: (A) internal capsule fibers of passage, (B) hyperdirect pathway, 

and (C) cerebellothalamic tract; and there is one column for each of the four predictors. In 

this plot, we set axons with Vth > 10 V as 10 V, so that all axons representing a pathway can 

be visualized in the field of view.
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Figure 6. 
Errors in the threshold stimulus amplitude as a function of the electrode-to-axon distance. 

Each column pertains to one predictor, and errors were calculated for the: (A) internal 

capsule fibers of passage, (B) hyperdirect pathway, and (C) cerebellothalamic tract. In this 

analysis, the stimulus pulse width was 90 µs; contact 2 was the cathode (−), the case was the 

anode (+), and the axon diameter was 5.7 µm.

Gunalan et al. Page 29

Neuroimage. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Absolute errors in the stimulation thresholds for a variety of stimulus pulse widths and axon 

diameters. We started with a stimulus pulse width of 90 µs, a monopolar electrode 

configuration of contact 2 (−) and case (+), and an axon diameter of 5.7 µm; and we varied 

each parameter individually. The absolute error in the stimulation threshold for each 

predictor is plotted for the different pulse widths (column 1), and axon diameters (column 

2). Rows denote results for the: (A) internal capsule fibers of passage, (B) hyperdirect 

pathway, and (C) cerebellothalamic tract. Note: data was omitted when all stimulation 

thresholds were > 10 V.
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Figure 8. 
Recruitment curves generated with the FC, DF, and VTA PAMs for stimulus pulse widths of 

30 µs, 60 µs, 90 µs, and 120 µs. Recruitment curves were calculated for the: (A) internal 

capsule fibers of passage, (B) hyperdirect pathway, and (C) cerebellothalamic tract. The 

electrode configuration was contact 2 (−), case (+) and axon diameter was 5.7 µm.
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Figure 9. 
Recruitment curves generated with the FC, DF, and VTA PAMs for axon diameters of 2 µm, 

5.7 µm, and 10 µm. Recruitment curves were calculated for the: (A) internal capsule fibers 

of passage, (B) hyperdirect pathway, and (C) cerebellothalamic tract. The stimulus pulse 

width was 90 µs and electrode configuration was contact 2 (−), case (+).
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Figure 10. 
Activation volume tractography (AVT) of the cerebellothalamic tract. (A) FC PAM. (A1) 

T2-weighted image with overlaid DBS electrode (subthalamic nucleus - green, thalamus - 

yellow). (A2) Subsample of 100 streamlines representing the cerebellothalamic tract. (A3) 

Potentials from the volume conductor model interpolated along the streamlines. (A4) Axons 

activated by a 1 V stimulus (2.9 ± 0.5%). (A5) Axons activated by a 2 V stimulus (16.3 

± 1.1%). (B) AVT. For clarity, only 10% of the streamlines generated are displayed. (B1) 

VTA-Chaturvedi predictor for a 1 V stimulus. (B2) Voxelized VTA. (B3) Streamlines 

originating from the VTA shown in B2, terminating in the VLpv thalamus, and avoiding 

CSF and the contralateral cerebral hemisphere (16.0%). (B4) The same as B3 except subject 

to the same exclusion constraints used in the FC PAM (13.7%) (Section 2.1.3). (B5) The 

same as B4 except for a 2 V VTA (15.1%). The same model parameters were used for both 

the FC PAM and AVT: pulse width = 90 µs; pulse frequency = 130 Hz; electrode 

configuration = contact 2 (−) and case (+); axon diameter = 5.7 µm.
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