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Abstract

Digital diffusion tensor imaging (DTI) templates of the adult human brain are commonly used in 

neuroimaging research, and their characteristics influence the accuracy of the application. 

However, a systematic evaluation of the characteristics and performance of standardized and 

study-specific DTI templates has not been conducted. The purpose of this work was to compare 

eight available standardized DTI templates to each other (ICBM81, ENIGMA, FMRIB58, SRI24, 

IIT2, NTU-DSI-122-DTI, IIT v.3.0, Eve), as well as to study-specific templates, in terms of 

template characteristics (image sharpness, ability to identify small brain structures, artifacts, mean 

values, noise properties) and performance in spatial normalization and detection of small inter-

group FA differences. The IIT v.3.0 template was shown to combine a number of desirable 

characteristics: includes full-tensor information, is population-based, has high image sharpness, 

shows no visible artifacts, has low noise levels, has diffusion tensor properties and spatial features 

representative of data from the average individual adult brain. Furthermore, the IIT v.3.0 template 

was shown to allow higher inter-subject DTI spatial normalization accuracy, and detection of 

smaller inter-group FA differences, compared to all other templates, including study-specific 

templates. These findings were consistent when evaluating the templates in younger as well as 

older adult cohorts.
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1. Introduction

Digital diffusion tensor imaging (DTI) templates of the adult human brain are indispensable 

neuroimaging tools. The most common applications of DTI templates are in voxel-wise 

analyses, where they are used as references for inter-subject spatial normalization (Zhang 

and Arfanakis, 2013)(Smith et al., 2006), and in region of interest analyses, where they are 

used for conventional or skeletonized atlas-based segmentation (Zhang and Arfanakis, 

2014). DTI templates are also used in automated seed selection for fiber-tracking (Y. Zhang 

et al., 2010)(Nucifora et al., 2012)(Suarez et al., 2012), as spatial maps forming the basis of 

brain atlases (Peng et al., 2009)(Mori et al., 2008), and as standards for algorithm evaluation 

(Shi et al., 2013)(Zhou et al., 2015). The fundamental assumption in all the above 

applications is that the characteristics of the DTI template are representative of those of DTI 

data from the average individual adult brain. The degree to which this is true influences the 

success of the application (Van Hecke et al., 2011)(Zhang and Arfanakis, 2013).

The adult DTI templates that have been presented and used in the literature include A) both 

single-person and population-based templates (referring to the number of individuals used in 

their construction), as well as B) templates that contain full tensor information and others 

containing only tensor-derived scalar quantities, such as fractional anisotropy (FA) and mean 

diffusivity. A) In theory, a notable drawback of a single-person template is that a single 

brain’s characteristics may not be representative of the general population, and therefore, 

such a template may introduce a bias (Joshi et al., 2004). This limitation is also true, though 

to a lesser degree, for a population-based DTI template constructed with a relatively small 

number of participants. As the number of participants increases, a population-based DTI 

template becomes more representative of the average characteristics of the general 

population. Specifically, it has been demonstrated that population-based DTI templates 

constructed using a bootstrap approach and a small number of participants are characterized 

by highly variable diffusion characteristics, and that this variability decreases asymptotically 

as the number of participants increases, with more than approximately 60 persons resulting 

to a highly stable template (S. Zhang et al., 2010). B) Templates that contain full tensor 

information clearly have additional functionality compared to those containing only tensor-

derived scalar quantities. Furthermore, in theory, tensor-based registration to a template 

containing full tensor information allows more accurate inter-subject spatial normalization 

of DTI data than registration to a template of a scalar quantity (e.g. FA) (Alexander and Gee, 

2000)(Park et al., 2003). Among population-based full tensor templates of the adult human 

brain, those that have spatial features and diffusion characteristics most similar to those of 

the DTI data from individual adults should theoretically lead to highest accuracy in various 

template-dependent applications (Zhang et al., 2011).

Adult DTI templates can be divided into two main categories: study-specific (Van Hecke et 

al., 2011)(Zhang et al., 2007) and standardized (Mori et al., 2008)(Peng et al., 2009). The 

former are constructed in each study separately based on the data collected specifically for 

that study, and the latter are constructed once and used in multiple investigations. Study-

specific DTI templates can only be used as references for inter-subject spatial normalization 

for the purposes of voxel-wise analyses, since they typically lack complementary resources, 

such as labels and other features of an atlas, which limits their functionality (Van Hecke et 
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al., 2011). Nonetheless, study-specific templates are in theory most representative of the data 

under investigation and are thought to result in more accurate spatial normalization than 

standardized templates (Van Hecke et al., 2011). However, when the requirements for 

building an optimal study-specific template are not satisfied due to various limitations, the 

resulting study-specific template is suboptimal and may not be representative of the 

individual data under investigation, thus leading to low spatial normalization accuracy (Van 

Hecke et al., 2011). Additionally, differences across study-specific templates complicate 

integration of results across studies. In contrast, a high-quality, demographically 

representative, standardized DTI template may allow consistently high accuracy across 

studies, minimize inefficiencies and complexities associated with template construction, 

enable a variety of applications (when it is part of a comprehensive atlas), and facilitate 

integration of findings across modalities and across studies. Several standardized DTI 

templates have become available over the last decade (Mori et al., 2008)(Peng et al., 2009)

(Oishi et al., 2009)(Rohlfing et al., 2010)(Zhang et al., 2011)(Jahanshad et al., 2013)(Hsu et 

al., 2015) and have been used extensively. However, a systematic evaluation of the 

characteristics and performance of available standardized and study-specific DTI templates 

has not been conducted. Only isolated pair-wise comparisons of standardized templates have 

been presented in (Peng et al., 2009)(Zhang et al., 2011)(Hsu et al., 2015), and a comparison 

of a study-specific template to a single standardized template has been presented in (Van 

Hecke et al., 2011). This is a critical gap in literature, as template selection may have 

important implications in the accuracy of DTI investigations (Van Hecke et al., 2011).

The purpose of this work was to compare available standardized DTI templates to each 

other, as well as to study-specific templates, in terms of template characteristics and 

performance. Eight standardized DTI templates and two study-specific templates 

constructed based on publicly available data on younger and older adults, were compared in 

terms of image sharpness, ability to identify small brain structures, artifacts, mean values, 

and noise properties. Since DTI templates most commonly serve as references for spatial 

normalization, all templates were also compared in terms of the accuracy of spatial matching 

achieved when they are used as references for normalization of younger and older adults, 

separately. Finally, power analysis was conducted to assess the impact of differences in 

spatial normalization accuracy across templates on the ability to detect small inter-group FA 

differences in younger and older adults, separately.

2. Materials and Methods

2.1 MRI Data

Two brain MRI datasets were used in this work. All participants provided written informed 

consent in accordance with procedures approved by the local institutional committees for the 

protection of human subjects.

Dataset 1 included DTI and T1-weighted data from 72 healthy young and middle-aged adults 

(22 male, 31 ± 13 years of age, 18 – 59 years of age) (Appendix 1), obtained from the 

Enhanced Nathan Kline Institute Rockland Sample (http://fcon_1000.projects.nitrc.org/indi/

enhanced/sharing.html) and collected on a 3 T Siemens MRI scanner (Erlangen, Germany). 

The DTI data were acquired using a single-shot spin-echo echo-planar diffusion imaging 
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sequence with the following imaging parameters: TR = 2,400 ms, TE = 85 ms, field-of-view 

21.2 cm × 18 cm, 2 mm slice thickness, 64 axial slices, 106 × 90 image matrix, b = 1,500 

s/mm2 for 128 diffusion gradient directions, nine b = 0 s/mm2 volumes, and a multi-band 

acceleration factor of 4. The T1-weighted data were acquired using an MPRAGE sequence 

with the following imaging parameters: TR = 1,900 ms, TE = 2.52 ms, preparation time = 

900 ms, flip angle 9 degrees, field of view 25 cm × 25 cm, 176 sagittal slices, 1 mm slice 

thickness, 256 × 256 image matrix, and an acceleration factor of 2.

Dataset 2 included DTI and T1-weighted data from 72 healthy older adults (17 male, 72 ± 5 

years of age, 65 - 85 years of age) (Appendix 1), also obtained from the Enhanced Nathan 

Kline Institute Rockland Sample and collected with the same protocol as Dataset 1.

2.2 Pre-processing

For the DTI data of both Datasets 1 and 2, the brain was extracted from the raw DTI data, 

and corrections for eddy-current distortions as well as bulk motion were accomplished by 

affine registration to the first volume with no diffusion weighting (b=0 sec/mm2). Distortions 

due to magnetic field non-uniformities were corrected by non-linear registration to the 

corresponding T1-weighted MPRAGE data. The b-matrix was reoriented and the diffusion 

tensor was estimated in each brain voxel. Maps of FA and trace were generated from the 

diffusion tensors. All DTI data pre-processing steps were accomplished using TORTOISE 

(www.tortoisedti.org) (Pierpaoli et al., 2010).

2.3 Comparison of Eight Standardized and Two Study-Specific DTI Brain Templates

Eight standardized DTI templates of the adult human brain and two study-specific templates 

were compared as described in the following sections. The two study-specific diffusion 

tensor templates were constructed based on Datasets 1 and 2, separately, and are referred to 

here as SS-y (for younger) and SS-o (for older), respectively. The template construction 

process followed the popular DTI-TK approach recommended in: http://dti-

tk.sourceforge.net/pmwiki/pmwiki.php?n=Documentation.Registration. The eight 

standardized templates included five providing full tensor information: IIT v.3.0 (based on 

72 persons, 20–40 years of age) (Appendix 2 provides details on the construction of this 

template) (Varentsova et al., 2014), IIT2 (67 persons, 20–40 years of age) (Zhang et al., 

2011), ICBM81 (81 persons, 18–59 years of age) (Mori et al., 2008), Eve (1 person, 32 years 

of age) (Oishi et al., 2009), and NTU-DSI-122-DTI (122 persons, 19–40 years of age) (Hsu 

et al., 2015); and three providing only scalar quantities derived from the diffusion tensor: 

ENIGMA (400 persons, 18–85 years of age) (Jahanshad et al., 2013), FMRIB58 (58 

persons, 20–50 years of age) (FMRIB, Oxford, UK), and SRI24 (24 persons, 19–84 years of 

age) (Rohlfing et al., 2010). These standardized templates were selected because they are 

publicly available and commonly used in neuroimaging research.

2.3.1 Comparison of Template Characteristics—First, FA maps of all templates were 

compared in terms of image sharpness assessed by means of the normalized power spectra 

for the anterior-posterior, left-right, and inferior-superior axes, separately (Zhang et al., 

2011). FA maps were also compared in terms of the user’s ability to identify certain small 
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brain structures based on visual inspection. Furthermore, FA maps of all templates were 

evaluated with regard to image artifacts content.

FA values for selected white matter regions of interest (ROI) were extracted and compared 

across templates. The ROIs were located in the genu and splenium of the corpus callosum, 

forceps minor, forceps major, superior cingulum, anterior and posterior limb of the internal 

capsule, external capsule, parahippocampal white matter, and cortico-pontine white matter in 

the brainstem, and included homologous structures from both hemispheres (Wakana et al., 

2004). ROIs were drawn in the FA maps of each template separately. Care was taken to 

sample homologous brain tissue across templates, and to sample the central portion of the 

structures listed above in order to minimize partial volume effects. FA values in the selected 

ROIs were compared across templates using ANOVA with Tukey’s honestly significant 

difference (HSD) post hoc test (Tukey, 1949). Only differences with p<0.05 were considered 

significant.

The noise characteristics of the IIT v.3.0 template were extracted using a bootstrap approach 

described in (Zhang et al., 2011), and compared to those of IIT2 (noise characteristics of 

IIT2 were extracted previously using the same approach). More specifically, maps of the 

total variance of the diffusion tensor (TVDT) (Papadakis et al., 1999) (Appendix 3), 

standard deviation of FA (FAstd) and trace (tracestd) (Zhang et al., 2011), and 95% cone of 

uncertainty (COU) (Jones, 2003) (Appendix 3) were compared between IIT v.3.0 and IIT2.

2.3.2 Comparison of Inter-subject DTI Spatial Normalization Accuracy—The 

accuracy of inter-subject DTI spatial normalization achieved when using each of the 

templates as reference was compared across templates, for normalization of younger and 

older adults, separately. For that purpose, the DTI data from Datasets 1 and 2 were registered 

to the standardized and corresponding study-specific templates. For templates providing full 

tensor information (IIT v.3.0, IIT2, ICBM81, Eve, NTU-DSI-122-DTI, SS-y, SS-o), tensor-

based registration was conducted using DTI-TK (Zhang et al., 2006), which is shown to be 

one of the top-performing DTI registration tools (Wang et al., 2015)(Wang et al., 2011)

(Zhang and Arfanakis, 2013)(Kochunov et al., 2015)(Irfanoglu et al., 2016). For templates 

providing only tensor-derived scalar quantities (ENIGMA, FMRIB58, SRI24), the FA maps 

of Datasets 1 and 2 were first registered to the template FA maps using ART (Ardekani et 

al., 2005), one of the top-performing registration tools in its class (Klein et al., 2009), and 

the resulting transformations were applied to the diffusion tensors of Datasets 1 and 2 using 

finite strain tensor reorientation (Alexander et al., 2001). A number of metrics were used to 

assess the accuracy of inter-subject spatial normalization achieved for each template by 

measuring similarity of whole tensors, or similarity in portions of the diffusion tensor 

contents across participants. These metrics have been defined previously and are also 

described in Appendix 3. The average Euclidean distance of tensors (DTED) (Zhang et al., 

2011), the average Euclidean distance of the deviatoric tensors (DVED), the average log-

Euclidean tensor distance (LETD) (Arsigny et al., 2006), and the average overlap of 

eigenvalues-eigenvectors between tensors (OVL) (Basser and Pajevic, 2000), over all 

possible pairs of participants (separately for Datasets 1 and 2), were estimated in each voxel. 

In addition, the coherence of primary eigenvectors (COH) (Zhang et al., 2011), the COU 

(Jones, 2003) and the TVDT (Papadakis et al., 1999) were estimated in each voxel. White 
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matter was then segmented for each template through K-means clustering of the mean FA 

maps of the corresponding normalized data, and histograms of the above quantities in white 

matter were generated for Datasets 1 and 2, separately (Zhang and Arfanakis, 2013). Each 

histogram was normalized by the corresponding total number of white matter voxels. 

Histograms of the metrics listed above were compared across templates using the one-sided 

two-sample Kolmogorov-Smirnov (KS) test. Differences were considered significant at 

p<0.05.

2.3.3 Impact of Spatial Normalization Accuracy on the Ability to Detect Small 
Inter-group FA Differences—Power analysis was used to assess the impact of spatial 

normalization accuracy achieved for each of the templates on the ability to detect small 

inter-group FA differences. More specifically, FA standard deviation maps generated after 

the registration of Dataset 1 to each of the templates were used in power analyses to assess 

the minimum FA differences that can be detected in each white matter voxel across two 

groups, assuming 100 participants per group, significance at p<0.05, and power>0.95. This 

was accomplished using the “sampsizepwr” function in Matlab (Mathworks, Natick, 

Massachusetts) for one-sided t-tests. White matter was defined after registration of Dataset 1 

to each template as described above. Maps of the minimum detectable inter-group FA 

differences were generated for all templates. Cumulative distributions of the values 

presented in these maps were compared across templates using the one-sided two-sample 

Kolmogorov-Smirnov (KS) test. Differences were considered significant at p<0.05. The 

same power analysis on the ability to detect small inter-group FA differences was repeated 

for data from older adults, using FA standard deviation maps generated after the registration 

of Dataset 2 to each of the templates.

3. Results

3.1 Comparison of Template Characteristics

According to visual inspection, image sharpness was higher in the FA maps of Eve and IIT 

v.3.0 compared to all other templates (Fig. 1). This finding was supported by a quantitative 

comparison of the normalized power spectra of FA maps from different templates (Fig. 2). 

The energy at high spatial frequencies was higher in the normalized power spectra of FA 

maps from Eve and IIT v.3.0 compared to other DTI templates, on average over all axes 

(Fig. 2).

In general, fine white matter details were observed throughout the brain in IIT v.3.0 and Eve 

templates, even in areas near the cortex, while the same information was often lost due to 

blurring in other templates, especially in ICBM81, ENIGMA, and FMRIB58 (Fig. 1). Fine 

white matter details in the area of the anterior commissure (Fig. 3 top row) were visible in 

IIT v.3.0, Eve and IIT2 templates, while, in contrast, the anterior commissure was 

considered indistinguishable from the column and pre-commissural part of the fornix in 

ENIGMA, SRI24, SS-y, and SS-o, and not present in ICBM81 and NTU-DSI-122-DTI. The 

optic chiasm (Fig. 3 bottom row) was considered to be well-defined in IIT v.3.0, while it was 

not discernible in NTU-DSI-122-DTI, ENIGMA or SS-o.
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In terms of image artifacts, visual inspection revealed eddy-current-induced artifacts mainly 

in the frontal lobe in ICBM81 and Eve (Fig. 4). NTU-DSI-122-DTI suffered by pronounced 

ghosting of the pons anterior to the actual structure (Fig. 4). The FA maps of SRI24 were 

deemed atypical since they exhibited low FA values in a substantially smaller portion of the 

brain than typical FA maps (Figs. 1,4).

Mean and standard deviation of FA values from the selected white matter ROIs are presented 

in Figure 5 for all 10 templates (also tabulated in Appendix 4). ANOVA showed significant 

differences in mean FA values of all regions across templates. Post hoc comparisons using 

Tukey’s honestly significant difference test are listed in Appendix 4. According to these post 

hoc comparisons, in most ROIs, mean FA values of the ICBM81, ENIGMA, FMRIB58, 

SRI24, SS-y, and SS-o templates were significantly lower than those of the IIT2, NTU-

DSI-122-DTI, IIT v.3.0, and Eve templates (p<0.05) (Appendix 4). In addition, even though 

FA values in gray matter were not quantified since most templates lack the images necessary 

for precise definition of gray matter, visual inspection of FA maps revealed elevated gray 

matter FA values in ENIGMA and FMRIB58 templates (Fig. 1).

Maps of FAstd, tracestd, TVDT and COU showed reduced noise in white matter of IIT v.3.0 

compared to IIT2 (Fig. 6). The improvement in FAstd was most visible at the edges of white 

matter structures (Fig. 6A), and in tracestd at the interface between brain tissue and CSF-

filled spaces (Fig. 6B). The improvements in TVDT and COU were present throughout 

white matter (Fig. 6C,D).

3.2 Comparison of Inter-subject DTI Spatial Normalization Accuracy

The accuracy of inter-subject spatial normalization of DTI data from Datasets 1 and 2 

achieved when using each of the standardized and study-specific templates as reference was 

compared across templates. It was demonstrated that, for Dataset 1 (younger adults), use of 

the IIT v.3.0 template resulted in a significantly higher number of white matter voxels with 

high COH and OVL, and low COU, DTED, DVED, LETD, and TVDT, compared to all 

other templates (including the corresponding study-specific template, SS-y), suggesting 

higher inter-subject DTI spatial normalization accuracy when using the IIT v.3.0 template 

(p<10−8 in all cases, one-sided two-sample KS test) (Fig. 7A). For Dataset 2 (older adults), 

higher inter-subject DTI spatial normalization accuracy was again achieved when using the 

IIT v.3.0 template compared to all other templates (including the corresponding study-

specific template, SS-o), (p<10−8 in all cases, one-sided two-sample KS test) (Fig. 7B).

3.3 Impact of Spatial Normalization Accuracy on the Ability to Detect Small Inter-group FA 
Differences

Power analysis showed that, on average over all white matter, use of the IIT v.3.0 template 

allowed detection of smaller inter-group FA differences compared to other templates 

(including the study-specific templates), for both younger (Fig. 8A) and older adults (Fig. 

8B). This was demonstrated in Figure 8 as a higher number of white matter voxels with 

cooler colors and a lower number of white matter voxels with warmer colors for IIT v.3.0. 

Also, the cumulative distribution of the minimum detectable inter-group FA differences in 

white matter was significantly higher for IIT v.3.0 compared to other templates (p<10−8 in 
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all cases, one-sided two-sample KS test), for both younger (Fig. 9A) and older adults (Fig. 

9B). (Appendix 5 presents an additional power analysis assessing the impact of spatial 

normalization accuracy achieved for each of the templates on the ability to detect a reduction 

of white matter FA in aging).

4. Discussion

A number of DTI templates of the adult human brain are commonly used in neuroimaging 

research, and their characteristics influence the accuracy of the application. In this work, 

available standardized DTI templates were compared to each other, as well as to study-

specific templates, in terms of their characteristics and performance in spatial normalization 

and detection of small inter-group FA differences. According to this analysis, the IIT v.3.0 

template was shown to combine a number of desirable characteristics over other templates: 

includes full-tensor information, is population-based, has high image sharpness, shows no 

visible artifacts, has low noise levels, has diffusion tensor properties and spatial features 

representative of data from the average individual adult brain. It was also demonstrated that 

the IIT v.3.0 template allows higher inter-subject DTI spatial normalization accuracy, and 

detection of smaller inter-group FA differences, compared to other templates (including 

study-specific templates), for both younger and older adults.

4.1 Comparison of Image Sharpness and Ability to Distinguish Small White Matter 
Features Across DTI Templates

Both Eve and IIT v.3.0 templates were shown to have higher image sharpness compared to 

all other DTI templates and provided the ability to distinguish small white matter structures. 

Although, this is straightforward for Eve since it is a single subject template, it is more 

difficult to achieve in a population-based template due to brain structural differences across 

participants. The high image sharpness and preservation of fine white matter details in the 

IIT v.3.0 template was probably due to more accurate spatial normalization of data from 

individual participants compared to other population-based templates. This, in turn, was due 

to the use of a top-performing tensor-based registration algorithm (Zhang et al., 2006) on 

data with no visible artifacts (Gui et al., 2008) (Appendix 2 provides details on the 

construction of the IIT v.3.0 template).

A template in which fine white matter details typical of data from individual adult brains are 

either missing or blurred, may negatively impact template applications. For example, the fact 

that the anterior commissure is not present in the ICBM81 and NTU-DSI-122-DTI templates 

(Fig. 3) means that when these templates are used as references for inter-subject spatial 

normalization, spatial matching of this particular structure across subjects may be inaccurate 

since the location of the target is unknown. The same problem exists in several of the 

standardized and study-specific templates for numerous other white matter structures that 

are relatively small yet play important roles in the brain (e.g. posterior commissure, optic 

chiasm, decussation of the superior cerebellar peduncle, and others less known). Similarly, 

white matter structures that are blurred in a template (most blurring was seen in ICBM81, 

ENIGMA, FMRIB58) (Figs. 1,2) constitute imprecisely-defined targets, and may also 

reduce inter-subject spatial normalization accuracy. Other template applications, such as 
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localization of semantic labels for atlas construction based on template-derived maps, or 

algorithm evaluation on a template that is assumed to represent data from the average 

individual adult brain, may also be negatively impacted by templates with low image 

sharpness and lacking fine white matter details typically present in individual datasets. 

Enhancing the accuracy of various template applications requires a template with spatial 

features that are representative of those of data from the average individual adult brain. From 

the available DTI templates, Eve has the characteristics of an individual dataset, since it is 

based on data from a single subject. However, this also means that the features in Eve may 

not be representative of those in data from the average individual adult brain. In contrast, IIT 

v.3.0 has similar sharpness to Eve (Figs. 1,2), preserves fine white matter details seen in 

typical individual data (Figs. 1,3), and as a population-based template, it may be more 

representative of the features in data from the average individual adult brain.

4.2 Comparison of Image Artifacts Content Across DTI Templates

Image artifacts were visible in at least four of the DTI templates. The eddy-current induced 

artifacts in ICBM81 and Eve were probably due to residual eddy-current artifacts present in 

the echo-planar imaging data used to develop these templates (Mori et al., 2008)(Oishi et al., 

2009). The white matter ghosting in NTU-DSI-122-DTI might be a result of inaccuracies in 

spatial normalization of individual datasets. The atypical FA maps in SRI24 were probably 

due to inaccurate spatial matching of individual DTI datasets caused by the exclusively T1-

driven registration (Rohlfing et al., 2010). In addition to the above visible artifacts, less 

visible errors may have also contaminated the DTI templates. More specifically, eddy-

current artifacts not only introduce bright bands at the edges of the brain, but also errors in 

tensors throughout the brain, and thus, the uncorrected eddy-current artifacts in individual 

datasets used to develop the ICBM81 and Eve templates suggest that tensor errors inside the 

brain have been carried over to the final templates. The inaccuracies in spatial normalization 

that may have led to the white matter ghosting in NTU-DSI-122-DTI may have also affected 

neighboring brain regions. Similarly, the inaccuracies in spatial matching of diffusion 

information that probably led to the atypical FA maps in SRI24 may have negatively 

influenced diffusion information throughout that template. Furthermore, all templates 

excluding IIT2 and IIT v.3.0, were based on data collected with spin-echo echo-planar DTI 

and suffered from different degrees of signal loss and signal pileup due to magnetic field 

non-uniformities. Even though these magnetic field-related artifacts may have been averaged 

out and may not be visible in the final templates, their effects remain in the form of errors in 

diffusion characteristics in the affected brain regions (mainly frontal and temporal lobes). 

Templates with any of the artifacts described above may negatively impact the accuracy of 

various template applications. In contrast, IIT2 and IIT v.3.0 are the only templates based on 

artifact-free DTI data (Appendix 2) (Gui et al., 2008). Furthermore, for IIT v.3.0, spatial 

normalization of individual datasets was conducted using one of the top-performing DTI 

registration tools (Zhang et al., 2006)(Wang et al., 2015)(Wang et al., 2011)(Zhang and 

Arfanakis, 2013)(Kochunov et al., 2015)(Irfanoglu et al., 2016). Consequently, the approach 

followed in the construction of IIT v.3.0 (Appendix 2) minimized the artifacts that were 

shown to contaminate other DTI templates.
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4.3 Comparison of Mean FA Values Across DTI Templates

Mean FA values in white matter were lower on average in ICBM81, ENIGMA, FMRIB58, 

SRI24, SS-y, and SS-o templates compared to IIT2, NTU-DSI-122-DTI, IIT v.3.0, and Eve 

templates (Fig. 5, Appendix 4). Furthermore, mean FA values in gray matter were higher in 

ENIGMA and FMRIB58. These FA findings may in part be due to the use of less effective 

registration algorithms leading to less accurate spatial normalization of data from individual 

participants during construction of ICBM81, ENIGMA, FMRIB58, and SRI24 templates 

compared to IIT2, NTU-DSI-122-DTI, IIT v.3.0, and Eve templates (Peng et al., 2009). 

Another element that may have contributed to the above FA findings may be the fact that 

ICBM81, ENIGMA, FMRIB58, SRI24, SS-y, and SS-o included older adults (age range 18–

85 years) compared to IIT2, NTU-DSI-122-DTI, IIT v.3.0, and Eve (age range 19–40 years), 

and FA is known to decrease with age (Pfefferbaum et al., 2000). Finally, the hardware and 

software used for data acquisition may have also contributed to the FA differences observed 

across templates.

4.4 Comparison of Noise Characteristics between IIT2 and IIT v3.0 Templates

The noise in various tensor properties was lower in IIT v.3.0 compared to IIT2 (Fig. 6). This 

comparison included only IIT2 and IIT v.3.0 because other templates do not provide noise 

estimates. Since the data used in the construction of IIT2 constituted 93% of the data used to 

build IIT v.3.0, the improvement in noise characteristics in IIT v.3.0 was exclusively due to 

improved tensor matching across individual participants and suggests higher confidence in 

the information presented in IIT v.3.0 compared to IIT2.

4.5 Comparison of Inter-subject DTI Spatial Normalization Accuracy

The IIT v.3.0 template resulted in the highest inter-subject DTI spatial normalization 

accuracy when used as a reference, compared to all other templates (including study-specific 

templates), for both younger and older adults (Fig. 7). IIT2, SS-y, SS-o, NTU-DSI-122-DTI, 

ICBM81 and Eve showed average performance, while FMRIB58, ENIGMA and SRI24 

resulted in the lowest inter-subject spatial normalization accuracy. All three templates in the 

last group were templates containing only FA information, preventing tensor-based 

registration, which may have contributed to the low performance (Alexander and Gee, 2000)

(Park et al., 2003). FMRIB58 and ENIGMA were in the group of templates with substantial 

blurring. Furthermore, SRI24 included artifacts (discussed earlier). The above factors may 

have contributed to the low inter-subject spatial normalization accuracy for FMRIB58, 

ENIGMA and SRI24. In contrast, all templates with average spatial normalization accuracy, 

IIT2, SS-y, SS-o, NTU-DSI-122-DTI, ICBM81, Eve, included full tensor information and 

allowed tensor-based registration. They did not however reach top performance probably due 

to bias (in the case of the single-subject Eve template), blurring (mainly in ICBM81, SS-y, 

SS-o), and artifacts (in the case of ICBM81 and NTU-DSI-122-DTI). In contrast, IIT v.3.0 is 

a full-tensor, population-based template with similar features and diffusion characteristics to 

those of typical datasets from individual adult brains, low noise, and no visible artifacts, and 

these factors may have contributed to the higher inter-subject spatial normalization accuracy 

when using IIT v.3.0 as reference, compared to other templates.
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4.6 IIT v.3.0 vs. Study-Specific Templates

At first glance, the above results showing higher inter-subject DTI spatial normalization 

accuracy when using a standardized instead of a study-specific template appear to be in 

conflict with the work by (Van Hecke et al., 2011), which has established the use of study-

specific templates as the modus operandi in DTI investigations. However, van Hecke et al. 

only compared spatial normalization accuracy between a study-specific template and a 

single standardized template, namely ICBM81, and showed that the coefficient of variation 

(COV) of FA and mean diffusivity values across subjects was lower when using the study-

specific template instead of ICBM81. The results of the present work are actually in 

agreement with this finding by van Hecke et al. More specifically, Figure 7A of the present 

work also showed that use of the study-specific template instead of the ICBM81 resulted in 

lower DTED, TVDT, and LETD, suggesting higher spatial normalization accuracy when 

using the former instead of the latter (Note #1: the DTED, TVDT and LETD are more 

related to the COV of FA and mean diffusivity used by van Hecke et al. compared to the 

other measures included in Fig. 7A; Note #2: Only the results of Fig. 7A, and not Figure 7B, 

can be compared to those of van Hecke et al., since the data in Fig. 7B correspond to a 

different age-range). Furthermore, the same figure of the present work shows that IIT v.3.0 

achieves even lower DTED, TVDT, and LETD than both templates, probably due to the 

enhanced characteristics of IIT v.3.0 compared to other templates. In addition, van Hecke et 

al. used FA-based instead of tensor-based registration, which leads to suboptimal spatial 

matching. Overall, the scope of the paper by van Hecke et al. was limited by the fact that 

several of the templates considered in the present work were simply not available at that 

time, and tensor-based registration was not yet widely used. Similar limitations as in (Van 

Hecke et al., 2011) were also true for (Zhang and Arfanakis, 2013) who also compared 

spatial normalization accuracy between a study-specific template and only two standardized 

templates (ICBM81, IIT2), and showed that a study-specific template may outperform the 

standardized templates in terms of spatial normalization accuracy. The present investigation 

substantially extends the work by (Van Hecke et al., 2011) and (Zhang and Arfanakis, 2013), 

and demonstrates that IIT v.3.0, a standardized template, can lead to higher spatial 

normalization accuracy than study-specific templates constructed with state-of-the-art 

approaches. This result is of high significance as it pertains to the template selection strategy 

used in many DTI studies. In agreement with the findings of the present work, Cabeen et al. 

(Cabeen et al., 2017) recently showed that, use of the IIT v.3.0 template in various voxel-

based analysis approaches (VBA, TBSS etc.) resulted in better fitting (higher R2) of models 

relating age to FA, compared to study-specific templates.

Although the relative performance in spatial normalization across standardized templates 

remained relatively consistent for both younger (Fig. 7A) and older (Fig. 7B) adult data, the 

performance of SS-o relative to standardized templates (Fig. 7B) was lower than that of SS-y 

compared to the same standardized templates (Fig. 7A). This more pronounced difference in 

spatial normalization accuracy of older adult data between the top-performing standardized 

template and the corresponding study-specific template may reflect the difficulty in 

constructing a study-specific template that is representative of individual brain data when 

dealing with data from older adults, which are known to have higher variability compared to 

data from younger adults. This finding does not suggest that data from older adult brains 
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register better to young instead of older adult templates. It simply means that until a high-

quality older adult template is constructed, spatial normalization of older adult data is more 

accurate when using the IIT v.3.0 template than a study-specific template constructed with 

state-of-the-art approaches. The above has significant implications for DTI studies on older 

adults.

In addition to higher spatial normalization accuracy, the IIT v.3.0 standardized template 

offers several other important benefits to DTI investigations over study-specific templates. 

First, it eliminates the complexities and delays associated with constructing separate 

templates for different studies. It should be noted here that care and time must be invested 

when generating study-specific templates, since a poorly constructed study-specific template 

may result in even lower spatial normalization accuracy than that shown in Figure 7. Second, 

adoption of a standardized template by the community may facilitate integration and 

comparison of findings across studies. Third, a standardized template provides a space in 

which semantic labels and other resources can be developed, which may enhance 

functionality.

4.7 Impact of Spatial Normalization Accuracy on the Ability to Detect Small Inter-group FA 
Differences

Inter-subject spatial normalization is a key element of DTI voxel-wise investigations, among 

others, and high normalization accuracy is important to ensure high sensitivity and 

specificity in statistical analyses. Since the IIT v.3.0 template resulted in the highest inter-

subject DTI spatial normalization accuracy when used as a reference, it also allowed 

detection of smaller inter-group FA differences on average over all white matter compared to 

all other templates, for both younger and older adult data (Figs. 8,9). The difference between 

IIT v.3.0 and study-specific templates was more pronounced for data from older adults (Fig. 

9). Although the present investigation on the ability to detect small inter-group differences 

used a conventional voxel-wise analytic approach, the results are also relevant for analyses 

using tract-based spatial statistics (TBSS) (Smith et al., 2006), which projects information 

from the central portion of imperfectly aligned tracts onto a white matter skeleton to reduce 

the effects of misregistration. TBSS has been shown to address only a small portion of the 

effect of residual misalignment across subjects (Zalesky, 2011). Therefore, maximizing 

normalization accuracy through the use of a high-quality template continues to be crucial 

even in TBSS-type analyses.

4.8 Caveats

A few caveats must be considered when evaluating the findings of this work. Regarding the 

evaluation of inter-subject spatial normalization accuracy when using different templates as 

reference, it should be stressed that registration results depend not only on the template, but 

also on the quality of the individual data, as well as the registration algorithm. In the present 

work, data with typical quality from a popular publicly available database, and state-of-the-

art publicly available registration methods, were used for the assessment of normalization 

accuracy. The findings of the present work might not generalize to other conditions. Also, 

maps of mean diffusivity and other tensor-derived quantities were not compared in this work 
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since they are not available for most templates, and are not commonly used in template-

based applications.

5. Conclusion

Standardized and study-specific DTI templates of the adult human brain were evaluated in 

this work. The DTI template of the IIT Human Brain Atlas (v.3.0) was shown to combine a 

number of desirable characteristics over other templates: includes full-tensor information, is 

population-based, has high image sharpness, shows no visible artifacts, has low noise levels, 

and has diffusion tensor properties and spatial features representative of data from the 

average individual adult brain. It was also demonstrated that the IIT v.3.0 template allows 

higher inter-subject DTI spatial normalization accuracy, and detection of smaller inter-group 

FA differences, for both younger and older adults, compared to other available standardized 

templates as well as study-specific templates constructed with state-of-the-art techniques. 

The IIT v.3.0 DTI template and associated resources are available for download at 

www.nitrc.org/projects/iit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
FA maps of five axial brain slices of the ICBM81, ENIGMA, FMRIB58, SRI24, IIT2, NTU-

DSI-122-DTI, IIT v.3.0, Eve, SS-y and SS-o templates.
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Figure 2. 
Normalized power spectra of FA maps for the anterior-posterior (AP), left-right (LR), and 

inferior-superior (IS) axes, separately, from the ICBM81, ENIGMA, FMRIB58, SRI24, 

IIT2, NTU-DSI-122-DTI, IIT v.3.0, Eve, SS-y and SS-o templates.
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Figure 3. 
Magnified axial FA maps through the anterior commissure (top row) and optic chiasm 

(bottom row) of the ICBM81, ENIGMA, FMRIB58, SRI24, IIT2, NTU-DSI-122-DTI, IIT v.

3.0, Eve, SS-y, SS-o templates. Fine white matter details in the area of the anterior 

commissure (top row) are visible in IIT v.3.0, Eve and IIT2 templates, while, in contrast, the 

anterior commissure is indistinguishable from the column and pre-commissural part of the 

fornix in ENIGMA, SRI24, SS-y, and SS-o, and not present in ICBM81 and NTU-DSI-122-

DTI. The optic chiasm (bottom row) is well-defined in IIT v.3.0, while it is not discernible in 

NTU-DSI-122-DTI, ENIGMA, or SS-o.
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Figure 4. 
Artifacts. Eddy-current-induced artifacts in the frontal lobe of ICBM81 and Eve. Ghosting 

of the pons in NTU-DSI-122-DTI. Atypical FA map in SRI24.
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Figure 5. 
Mean FA values for homologous white matter regions of interest in the ICBM81, ENIGMA, 

FMRIB58, SRI24, IIT2, NTU-DSI-122-DTI, IIT v.3.0, Eve, SS-y, SS-o templates. Error 

bars denote standard deviation of FA values in the selected regions.
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Figure 6. 
Maps of A) FAstd, B) tracestd, C) TVDT and D) COU for one slice of the IIT v.3.0 (left 

image in each image-pair) and IIT2 (right image in each image-pair) DTI templates.
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Figure 7. 
A) Histograms of the relative number of white matter voxels corresponding to different 

values of COH, COU, TVDT, average OVL, DTED, DVED, LETD, for registration of DTI 

data from Dataset 1 (younger adults) to the ICBM81, ENIGMA, FMRIB58, SRI24, IIT2, 

NTU-DSI-122-DTI, IIT v.3.0, Eve, SS-y templates. B) The same histograms for registration 

of DTI data from Dataset 2 (older adults) to the standardized templates and corresponding 

study-specific template, SS-o. Use of the IIT v.3.0 template for spatial normalization of DTI 

data from Datasets 1 and 2 (separately) results in a significantly higher number of white 

matter voxels with high COH and OVL, and low COU, DTED, DVED, LETD, and TVDT, 

compared to other templates (including the corresponding study-specific templates, SS-y 

and SS-o) (p<10−8 in all cases, one-sided two-sample KS test). This shows that, for both 

Datasets 1 and 2, inter-subject DTI spatial normalization accuracy is higher when using the 
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IIT v.3.0 template compared to other standardized templates or the corresponding study-

specific templates.
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Figure 8. 
Maps of the minimum detectable FA differences across A) two younger adult groups and B) 

two older adult groups, when using different templates as reference for spatial normalization 

(results are based on power analyses assuming 100 participants per group, p<0.05 and 

power>0.95). The color bar shows the correspondence of colors to minimum detectable FA 

differences. On average over all white matter, when using the IIT v.3.0 template, a higher 

number of voxels with cooler colors and a lower number of voxels with warmer colors are 
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obtained, suggesting that the IIT v.3.0 template allows detection of smaller inter-group FA 

differences compared to other templates, for both younger and older adults.
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Figure 9. 
Cumulative distributions of the minimum detectable inter-group FA differences in white 

matter, when using different templates as reference for spatial normalization. Use of the IIT 

v.3.0 template allows detection of smaller inter-group FA differences compared to other 

templates, for both A) younger and B) older adults.
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