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Abstract

Purpose—To develop parallel imaging techniques that simultaneously exploit coil sensitivity 

encoding, image phase prior information, similarities across multiple images and complementary 

k-space sampling for highly accelerated data acquisition.

Methods—We introduce Joint Virtual Coil (JVC-) GRAPPA to jointly reconstruct data acquired 

with different contrast preparations, and show its application in 2D, 3D and Simultaneous Multi-

Slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support 

and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint 

parallel imaging from limited auto-calibration signal (ACS) region, as well as permitting partial 

Fourier sampling and calibrationless reconstruction.

Results—We demonstrate highly accelerated 2D bSSFP with phase-cycling, SMS multi-echo 

spin echo, 3D multi-echo MPRAGE and multi-echo GRE acquisitions in vivo. Compared to 

conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-

fold reduction in reconstruction error.

Conclusion—JVC-GRAPPA takes advantage of additional spatial encoding from phase 

information and image similarity, and employs different sampling patterns across acquisitions. J-

LORAKS achieves a more parsimonious low rank representation of local k-space by considering 

multiple images as additional coils. Both approaches provide dramatic improvement in artifact and 

noise mitigation over conventional single-contrast parallel imaging reconstruction.
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INTRODUCTION

Magnetic Resonance (MR) data acquisition routinely involves image acquisition at multiple 

echoes or phase-cycles to obtain complementary information. Multi-echo acquisition finds 

important applications in T2 and T2* relaxation time mapping (1–4), water/fat imaging (5–

8), and reduction of field inhomogeneity related distortion (9). Although enabling numerous 

applications, achieving whole-brain coverage with high-resolution multi-echo imaging is 

encoding intensive, leading to excessive scan times.

Another application where multiple images are acquired and combined is balanced steady 

state free precession (bSSFP). Despite being an SNR efficient sequence with unique T2/T1 

contrast, bSSFP suffers from image banding artifacts due its sensitivity to B0 field 

inhomogeneity. To mitigate these artifacts, multiple images with different RF phase-cycling 

can be acquired (10,11). This scheme shifts the location of the banding artifacts in each 

acquisition, so that the phase-cycled images can be combined through e.g. maximum 

intensity projection (MIP) to eliminate the artifacts. However, collecting multiple phase-

cycles increases the scan time and counteracts the inherent efficiency of bSSFP.

Faster acquisitions are possible using receiver encoding, e.g. with sensitivity encoding (12) 

or generalized auto-calibrating partially parallel acquisitions (GRAPPA) (13). While parallel 

imaging allows acceleration along one phase encoding direction in 2D acquisitions, 

undersampling can be flexibly distributed between two axes (phase encoding and partition/

slice direction) in 3D (14,15) and SMS imaging (16–20) to achieve higher accelerations.

Parallel imaging can be combined with compressed sensing to exploit sparsity/low-rank 

properties (21–24), and can be augmented with the Virtual Coil (VC) concept to provide 

additional spatial encoding using image phase prior information (25–27). On the other hand, 

LORAKS has been introduced as a novel method that can harness image phase smoothness 

and limited spatial support, and relies on local low rank properties of k-space to estimate 

missing data (28). Its extension to parallel imaging also allows utilization of coil sensitivity 

encoding (29,30). Earlier applications of low rank prior in k- or image-space have also 

permitted calibrationless parallel imaging (28,29,31–34).

These approaches have been designed to utilize coil sensitivity encoding and prior 

information to reconstruct a single contrast, without exploiting potential similarities/

differences across multiple images. Within the SENSE framework (12), joint reconstruction 

across echoes/contrasts can be performed by exploiting joint sparse (35–39) (in this context, 

we use “joint reconstruction” to refer to approaches that couple the reconstruction of 

multiple images of the same anatomy (37,40)). However, compared to regularized SENSE 

per single image (41,42), exploiting similarities at the regularization level was seen to 

provide a small improvement (43). Joint reconstruction at the receiver encoding level could 

serve as a better alternative to coupling the images at the regularization stage. Such 
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approaches include k-t GRAPPA (44,45), joint reconstruction of multiple shots in echo-

planar diffusion imaging (46,47), k-space interpolation across all echoes in a gradient and 

spin echo (GRASE) acquisition (48,49), or across multiple gradient echoes for temperature 

mapping (50). Moreover, transmit inhomogeneity at ultra-high field can be mitigated by 

acquiring multiple images with different excitation modes, which are then jointly 

reconstructed in the TIAMO approach (51).

Recent advances in multi-shot diffusion imaging also perform joint reconstruction (46,47). 

These techniques aim to reconstruct a single, high-resolution k-space by merging data from 

multiple acquisitions while avoiding motion artifacts. Liu et al. (52) made use of self-

navigated trajectories to estimate motion-induced shot-to-shot phase variations. Inverse 

reconstruction (53) instead solves for the complex-valued diffusion images in each shot 

separately. The phase information of each shot is then used as additional coil sensitivity 

variation to jointly reconstruct a combined, real-valued diffusion image with data from all 

shots. Similarly, MUSE estimates the phase variation of each shot using regularization, then 

solves a general model incorporating data from all shots and the calculated phase 

information (54). GRAPPA-based realigned kernel techniques (46,47) embed these phase 

variations into GRAPPA kernels estimated from additional navigators, which are then used 

for jointly reconstructing multi-shot data. The goal of such Joint-GRAPPA DWI techniques 

is to reduce the sensitivity to mismatches between navigator and image echoes.

MUSSELS is a new approach for phase-calibration-free multi-shot DWI reconstruction (55). 

This considers the multi-shot images to have the same contrast, but allow for slowly varying 

phase across the shots. These constraints are modeled with an annihilating k-space filter 

(55–60), which is learned during the structured low-rank recovery of the missing data.

While multi-shot DW images have the same contrast except for phase discrepancies, we 

instead focus on joint reconstruction to treat a broader class of applications, where the 

acquisitions are made with multiple contrasts/echoes/cycles. Rather than improved 

combination of multiple shots, we are targeting higher acceleration rates. For this, we 

propose a general framework for joint reconstruction. We reformulate the joint 

reconstruction problem as an extension of parallel imaging, and employ existing components 

such as GRAPPA, LORAKS, and virtual coils as our building blocks. We also extend the 

scope, performance and application space of these techniques. In designing our joint parallel 

imaging approaches, our hypothesis was that joint reconstruction would allow us to 

accelerate multi-contrast acquisitions further than currently possible with conventional 

parallel imaging.

To this end, we introduce the Joint Virtual Coil (JVC) technique wherein multiple echoes/

cycles are reconstructed jointly under the GRAPPA framework. This combines and extends 

k-t (44,45), realigned GRAPPA (46,47) and TIAMO (51) approaches with the VC concept 

(25,26) to permit highly accelerated 2D, 3D and SMS acquisitions. JVC-GRAPPA allows all 

channels from all image contrasts to contribute to the reconstruction of a particular channel, 

and employs VC to convert image phase information into additional spatial encoding. Data 

were undersampled with shifts in the k-space sampling pattern across echoes/cycles to 

provide complementary k-space coverage and improve reconstruction.
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We further extend the joint parallel imaging concept to exploit limited support and smooth 

phase constraints through Joint (J-) LORAKS formulation. J-LORAKS achieves a more 

parsimonious low rank representation of local k-space by considering multi-contrast images 

as additional coils, and allows reconstruction from limited ACS region. J-LORAKS 

seamlessly incorporates partial Fourier sampling into joint parallel imaging and permits 

improved calibrationless parallel imaging through joint reconstruction.

Herein, we demonstrate our joint parallel imaging concept in 2D phase-cycled bSSFP, 3D 

ME-MPRAGE (9,61) multi-echo gradient-echo (ME-GRE), and SMS multi-echo spin-echo 

imaging. We have reported initial versions of this work as abstracts (62,63), where we have 

shown the application of joint GRAPPA and SPIRiT (21) in reconstructing phase-cycled 

bSSFP with 2D and SMS encoding. Herein, we have extended this initial version with the 

addition of VC concept, J-LORAKS formalism that admits arbitrary sampling patterns 

including partial Fourier and CAIPI (14), calibrationless reconstruction, and application to 

multi-echo acquisitions. We also note the elegant profile-encoding by Ilicak et al. that 

independently developed joint parallel imaging reconstruction for phase-cycled bSSFP 

(64,65), which was also extended to multi-echo acquisition in a recent abstract (66).

Accompanying Matlab code that reproduces our results is submitted as supplementary 

material and can also be downloaded from: http://bit.ly/2sY1FJT

METHODS

RECONSTRUCTION ALGORITHMS

GRAPPA, JVC-GRAPPA and J-LORAKS were implemented and compared for a number of 

imaging cases/applications. All experiments used 16 compressed channels with singular 

value decomposition (SVD) coil compression for faster reconstruction (67,68). ACS regions 

used for calibration were included in the final reconstruction for improved SNR and fidelity. 

Partial Fourier experiments made use of coil-by-coil projection onto convex sets (POCS) 

processing (69–71) following GRAPPA reconstruction. Experiments were performed on a 

workstation with 64 Intel Xeon CPU’s and 256 GB memory running Matlab 8.0 

(Mathworks, Natick, MA). Details of various reconstructions are provided below.

GRAPPA and Slice GRAPPA—Kernel estimation for conventional parallel imaging 

reconstruction using GRAPPA (13) and Slice GRAPPA (16) was regularized with Tikhonov 

penalty, and kernel sizes and regularization parameters were selected to minimize root mean 

squared error (RMSE) relative to the fully sampled data. Slice GRAPPA made use of signal 

leakage constraint (72) to minimize crosstalk between reconstructed slices.

JVC-GRAPPA and JVC Slice GRAPPA—JVC-GRAPPA creates additional channels by 

treating data from other echoes/cycles as extra coils. In addition to stacking all contrasts in 

the coil axis, virtual coil concept is employed to further double the number of channels. 

Starting with Nc coils in each of the Ne echoes, we end up having 2 × Nc × Ne total number 

of channels for joint reconstruction. For example, using typical numbers Nc = 16 and Ne = 4, 

the number of coils reach 128, and the amount of kernels that need to be estimated escalates 

rapidly since this scales with the square of the channel count.
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To address this, we follow (26) and perform an iterative procedure where an initial Joint-

GRAPPA is performed without virtual coils. This way, the entire k-space of the interim 

reconstruction becomes available for calibration of JVC kernels. We limit the number of 

JVC iterations to 4, since the gain diminishes after the first couple of iterations (26). In 

addition to providing ample sample points for kernel estimation, such large calibration 

region is also better at capturing high-resolution image phase information into the kernels of 

the virtual coils, thus preventing structured aliasing artifacts (26). During reconstruction, two 

different Tikhonov regularization parameters were used for the initial Joint (λinit) and the 

latter JVC (λlatter) kernel calibrations to further optimize RMSE in the face of increasing 

calibration region.

To provide complementary frequency information, k-space sampling patterns of the 

individual echoes/cycles were shifted with respect to each other. Partial Fourier sampling 

was also explored in 2D, 3D and SMS acquisition settings. This, however, has prevented the 

use of VC concept because missing portion of virtual coil k-space due to partial Fourier 

would be otherwise used for reconstructing the actual coil k-space based on conjugate 

symmetry. As such, partial Fourier experiments made use of Joint (J-) GRAPPA only, 

without the aid of virtual coils. Similarly, all contrasts were constrained to use the same 

partial Fourier sampling direction in the J-GRAPPA reconstructions. To increase the amount 

of available k-space region for kernel calibration, J-GRAPPA also used an iterative scheme 

with 4 iterations. The initial step used the ACS data to train kernels and generate an interim 

reconstruction. The following iteration was then able to utilize the k-space of this interim 

data and re-train kernels with a larger calibration region. Again, two different Tikhonov 

regularization parameters could be used for the initial and latter iterations.

Both regularization parameters, kernel sizes and k-space staggering amounts were optimized 

to minimize RMSE in joint reconstruction.

Fig1 provides a depiction of Joint and Joint Virtual Coil GRAPPA reconstructions, ignoring 

coil and readout axes for simplicity.

Autocalibrating J-LORAKS—J-LORAKS also stacks data from all contrasts in the 

channel axis, and makes use of image phase information by creating virtual coils. It enforces 

local k-space neighborhoods, now extended across all echoes/cycles in the coil dimension, to 

have low rank during the reconstruction. There are two parameters associated with this 

constraint; the neighborhood size and the target rank of the local k-space matrices, which 

were optimized to reduce RMSE. Since J-LORAKS admits arbitrary sampling patterns, 

staggering across contrasts, 2D-CAIPI controlled aliasing as well as using different partial 

Fourier undersampling (e.g. +k or –k) for each image were explored. While many LORAKS 

publications solve non-convex matrix completion problems and are compatible with 

calibrationless data, substantial computational accelerations are possible when ACS data is 

present. Specifically, the autocalibrated LORAKS framework learns the nullspace properties 

of the k-space matrices prior to image reconstruction, and then uses the learned nullspace to 

formulate image reconstruction as a simple linear least squares problem that can be solved 

efficiently (73). Autocalibrating J-LORAKS reconstruction was performed using 

preconditioned conjugate gradient (pcg) with 50 iterations for all cases, apart from partial 
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Fourier experiments which employed 100 iterations to ensure successful completion of k-

space. Unlike GRAPPA, this also obviated the need for a sequential POCS reconstruction for 

partial Fourier sampling. For SMS image reconstruction, autocalibrated J-LORAKS was 

implemented using the SMS framework for LORAKS (74).

Calibrationless J-LORAKS—In calibrationless J-LORAKS, we assume that no ACS 

data are available, and thus solve the non-convex matrix completion problems described in 

(28,29) instead of the simpler least-squares problem associated with the autocalibrated case. 

To reduce reconstruction time, we first reconstruct a central subregion of the k-space data, 

and then use that as quasi-ACS data to enable autocalibrated J-LORAKS reconstruction of 

progressively larger k-space regions until the entire region has been covered. Since the 

quasi-ACS data may have imperfections, we then use the autocalibrated results as an 

initialization for the original non-convex optimization problem. The neighborhood size and 

the matrix rank were tuned to optimize RMSE. The number of maximum iterations were set 

to 1000.

DATA ACQUISITION AND COMPARISON CASES

The performances of various reconstruction algorithms were compared for 2D phase-cycled 

bSSFP, 3D ME-MPRAGE, SMS multi-echo spin-echo and calibrationless 3D ME-GRE 

imaging. Imaging parameters and comparison scenarios are described in detail below.

2D Phase-Cycled bSSFP

Data Acquisition: A single abdominal slice of a volunteer was imaged with bSSFP on a 3T 

Siemens Skyra system. Four phase-cycles (0, π/2, π, 3π/2) were collected during a single 

breath-hold to minimize motion. Parameters were: field of view (FOV) = 380×380 mm2, 

matrix size = 160×160, slice thickness = 5 mm, repetition time (TR) = 3.3 ms, echo time 

(TE) = 1.54 ms, flip angle = 37°, bandwidth = 822 Hz/pixel, using 34-channel chest/spine 

coil reception.

Image Reconstruction at 6-fold acceleration: Fully-sampled data were retrospectively 

undersampled by R=6×1-fold with a uniform sampling pattern. The three reconstruction 

methods used 20 lines of ACS data for kernel calibration.

For J-LORAKS, using an ACS size smaller than 20 lines was also explored, and the 

calibration region was reduced until J-LORAKS had similar RMSE performance as JVC-

GRAPPA from 20 lines of calibration data. 50 pcg iterations were used in these 

reconstructions.

The sampling pattern was shifted by Δky = {0,1,2,3} samples between the four phase-cycles 

to provide complementary k-space coverage in the JVC-GRAPPA and J-LORAKS 

reconstructions.

For comparison, VC-GRAPPA without joint reconstruction was also performed. As an 

alternative to k-space based parallel imaging, Tikhonov-regularized SENSE reconstruction 

with ESPIRiT coil sensitivity estimation (75) was also explored. Both the regularization 

parameter and the threshold for sensitivity mask size were optimized to reduce RMSE.
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Image Reconstruction at 7-fold acceleration: To explore even higher acceleration rates 

where conventional parallel imaging would break down, we further pushed the 

undersampling rate to R=7×1. We also tested the combination of uniform R=6×1-fold 

undersampling and partial Fourier acquisition, while keeping the number of sampled points 

the same as the R=7×1-fold case. For this, the required partial Fourier amount to achieve the 

same number of phase encoding lines, including the ACS data, was 7/8.

Combination of J-GRAPPA and POCS was used for reconstructing the data at R=6×1-fold 

undersampling with 7/8 partial Fourier. Following parallel imaging reconstruction, the 

missing portion of k-space due to partial Fourier sampling was completed with 100 

iterations of POCS.

J-LORAKS with 7/8 partial sampling and R=6×1-fold uniform acceleration employed 100 

pcg iterations to ensure successful completion of partially sampled k-space.

3D Multi-Echo MPRAGE

Data Acquisition: A volunteer was scanned with a Siemens 3T Skyra system using a fully-

sampled ME-MPRAGE sequence at 1 mm3 resolution with FOV = 256×240×192 mm3. 

Salient parameters were: TR = 2530 ms, inversion time (TI) = 1100 ms, four echos were 

sampled at TE’s = {1.7, 3.6, 5.4, 7.3} ms, flip angle = 7°, and bandwidth = 651 Hz/pixel. A 

Siemens 32 channel head coil was used for reception.

Image Reconstruction at 12-fold acceleration: A single slice along the readout direction 

was selected out of the 3D dataset, and was retrospectively undersampled along the two 

phase encoding axes by R=4×3. Performance of the reconstruction methods was compared 

using an ACS region size of 24×24.

The sampling pattern was shifted by (Δky, Δkz) = (2,2) in the second, by (4,4) in the third, 

and by (6,6) samples in the fourth echo relative to the first TE to provide complementary k-

space coverage. In addition to such complementary sampling, J-LORAKS also employed a 

different 2D-CAIPI sampling pattern (14) for each TE to better distribute aliasing. These 

were designed according to (Ry=4, ∆=0) for TE1, (Ry=4, ∆=1) for TE2, (Ry=4, ∆=2) for TE3 

and (Ry=4, ∆=3) for TE4.

Iterative VC-GRAPPA without joint reconstruction and Tikhonov-regularized SENSE were 

also performed for each echo individually.

Image Reconstruction at 16-fold acceleration: To push the acceleration even further, we 

compared R=4×4 uniform sampling against R=4×3-fold acceleration combined with partial 

Fourier sampling in both phase encoding axes. The required partial sampling amount to keep 

the acquired number of sampled points the same was 6/8, distributed among ky and kz.

Partial Fourier cases were reconstructed using J-GRAPPA with POCS as well as J-

LORAKS. J-GRAPPA was constrained to use the same partial Fourier sampling direction, 

whereas J-LORAKS used a different partial Fourier mask for each echo, rotated by 90° in 

each image, to provide complementary information.
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SMS Multi-Echo TSE

Data Acquisition: A volunteer was scanned with a Siemens 3T Prisma system using a fully-

sampled 2D multi-echo turbo spin echo (TSE) sequence. The imaging parameters were, 

FOV = 240×240, matrix size = 256×256, slice thickness = 4 mm, slice gap = 12.8 mm, 

number of slices = 10, number of echoes = 6, TR = 4 sec, TE’s = {12, 25, 50, 62, 87, 99} 

ms, echo train length (ETL) = 3, and bandwidth = 260 Hz/pixel. A Siemens 32 channel 

product head coil was used for reception.

Image Reconstruction at MB-10 acceleration: The separately encoded 10 slices were 

retrospectively collapsed to simulate an MB-10 acquisition. Slice unaliasing performance of 

conventional and JVC Slice GRAPPA as well as Joint SMS LORAKS were compared using 

24 lines of ACS data.

Image Reconstruction at MB-10 acceleration with 6/8 partial Fourier: The same MB-10 

experiment was performed using an additional 6/8 in-plane partial Fourier acceleration. 

Since VC concept is not applicable with partial Fourier due to asymmetric sampling, joint 

parallel imaging was performed with Joint Slice GRAPPA, without virtual coils. 100 

iterations of POCS were utilized to estimate the missing data due to partial sampling 

following conventional and Joint Slice GRAPPA reconstruction.

Unlike the Joint Slice GRAPPA case, J-SMS-LORAKS still used virtual coils and did not 

require POCS to implement phase-constrained partial Fourier reconstruction.

Calibrationless: 3D Multi-Echo Gradient-Echo

Data Acquisition: A volunteer was scanned using Siemens 3T Skyra system to collect 3D 

ME-GRE data. The imaging parameters were, FOV = 240×240×192, matrix size = 

160×160×128, TR = 23 ms, TE’s = {3, 7, 11, 15, 19} ms, flip angle = 15° and bandwidth = 

496 Hz/pixel using a Siemens 32 channel head array.

Image Reconstruction at 4-fold acceleration: A single slice along the readout was taken 

out from 3D k-space data. Then, it was retrospectively undersampled with R=4 fold 

calibrationless Poisson random sampling pattern in 2D. The performance was compared 

between conventional single contrast LORAKS and the proposed multi-contrast J-LORAKS 

in terms of reconstruction of the individual echoes, as well as the R2* parameter maps. Echo 

images were coil combined with the RSoS method, and parameter mapping was performed 

by taking the logarithm of the echo images and fitting a line in each voxel. The negative 

slope of the fitted line yielded the R2* value in that voxel. To ensure realistic parameter 

maps, a non-negativity constraint on the R2* values was applied using the lsqnonneg 

function in Matlab.

RESULTS

A quick summary of reconstruction results is provided in Table 2, in which the RMSE 

performance of the methods under consideration are compared.
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2D Phase-Cycled bSSFP

Image Reconstruction at 6-fold acceleration—Optimal parameters for conventional 

GRAPPA were, kernel size = 7×3 and regularization parameter λ = 10−8. Best RMSE in 

JVC-GRAPPA was obtained with 5×3 kernels and an initial Joint-GRAPPA reconstruction 

using regularization parameter λinit = 3×10−8, which was increased to λlatter = 3×10−6 in the 

subsequent JVC iterations. For J-LORAKS, best results were obtained with a k-space 

neighborhood radius of 2 voxels and rank constraint = 600.

Fig2 compares the reconstruction results, where the phase-cycle images were combined with 

MIP. Conventional GRAPPA suffered from aliasing artifacts (yellow arrows) and noise 

amplification and yielded 13.3% RMSE. Image quality and noise suppression were 

improved with JVC-GRAPPA, and reconstruction error was reduced to 7.1%. J-LORAKS 

provided more than 2-fold RMSE improvement (6.5%) over conventional GRAPPA using 

the same calibration region size of 20 lines. Even with a more stringent calibration region of 

16 lines, J-LORAKS had similar performance as JVC-GRAPPA that used 20 ACS lines, 

(7.1% RMSE, not shown). Fig2 provides further comparison against SENSE (18.6% RMSE) 

and VC-GRAPPA (7.5% RMSE) methods, which reconstructed each phase-cycle image 

separately.

Supporting Fig S1 demonstrates the individual phase-cycles and the sampling patterns, 

where the improvement in noise reduction thanks to joint parallel imaging is more apparent. 

Yellow arrows point to more subtle aliasing artifacts in JVC-GRAPPA, which were better 

mitigated in the J-LORAKS reconstruction.

Image Reconstruction at 7-fold acceleration—Optimal kernel size and regularization 

parameters at R=7×1-fold acceleration were 7×3 and λ = 3×10−8 for conventional 

GRAPPA, and 3×3, λinit = 3×10−8 and λlatter = 3×10−6 for JVC-GRAPPA.

At R=6×1-fold undersampling with 7/8 partial Fourier, the optimal parameters for J-

GRAPPA and POCS were, 3×3 kernel size, λinit = 3×10−8 and λlatter = 3×10−7. J-LORAKS 

used a local neighborhood of 2 voxels and rank constraint = 600.

Fig3 shows reconstructed MIPs, error images as well as the k-spaces of the first phase-cycle 

reconstructed data. Conventional GRAPPA broke down at such high acceleration with 

19.0% RMSE, while JVC-GRAPPA demonstrated better artifact and noise mitigation and 

yielded 10.7% error. At the same net acceleration factor, the combination of 6-fold uniform 

and 7/8-fold partial Fourier undersampling returned 9.2% RMSE with J-GRAPPA and 

POCS. The portion of k-space that was completed with POCS appeared underestimated 

(white arrow). J-LORAKS had the best RMSE performance with 8.0%, and mitigated this 

underestimation problem.

3D Multi-Echo MPRAGE

Image Reconstruction at 12-fold acceleration—The kernel size that yielded the best 

RMSE was 3×3 for both conventional and JVC-GRAPPA. Optimal Tikhonov parameter for 

conventional GRAPPA was λ = 7×10−6. For initial Joint GRAPPA reconstruction, 
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regularization parameter was λinit = 2×10−7, and for the following JVC iterations optimal 

parameter was λlatter = 2×10−6.

J-LORAKS obtained optimal performance using a k-space neighborhood of radius = 1 and 

rank constraint of 300, with 50 pcg iterations.

RSoS combined echoes from the three reconstruction techniques are compared in Fig4. 

GRAPPA suffered from noise amplification especially in the middle of the FOV (more 

visible in Supporting Fig S2 where each echo is shown separately). The RMSE of 

conventional reconstruction was 10.3%, and this was reduced to 6.4% with JVC-GRAPPA. 

Despite substantially mitigating noise amplification, JVC suffered from a structured aliasing 

artifact (yellow arrow). This was eliminated in the J-LORAKS reconstruction, with similar 

noise mitigation and RMSE performance (6.8%). Fig4 also presents comparisons against 

SENSE and VC-GRAPPA reconstructions that were performed for each echo separately.

Supporting Fig S2 demonstrates the staggered sampling patterns and the individual echoes’ 

reconstructions, where the noise mitigation difference between the conventional and joint 

techniques can be better appreciated.

Image Reconstruction at 16-fold acceleration—Conventional and JVC-GRAPPA 

used kernels of size 3×3. Optimal RMSE’s were achieved using λ = 2×10−5 for 

conventional GRAPPA, and λinit = 2×10−7, λlatter = 7×10−6 for JVC reconstruction.

For the partial Fourier cases, optimal parameters were λinit = 2×10−7, λlatter = 2×10−6 for J-

GRAPPA, and neighborhood radius = 1, rank constraint = 300, and 100 pcg iterations for J-

LORAKS.

At this high acceleration factor, conventional GRAPPA demonstrated severe aliasing 

artifacts and noise amplification (Fig5), with an RMSE of 14.8%. JVC-GRAPPA partially 

mitigated these issues with an error of 7.8%, but some aliasing artifacts were still visible. 

Combination of J-GRAPPA and POCS used R=4×3 uniform and 6/8 partial Fourier 

undersampling to achieve the same net acceleration factor. Despite an overall improvement 

in artifact reduction, partially sampled k-space suffered from underestimation (white arrow) 

and some structured aliasing artifacts were present (yellow arrow). J-LORAKS was able to 

further address these issues to provide a cleaner reconstruction with an RMSE of 7.9%.

SMS Multi-Echo Spin-Echo

Image Reconstruction at MB-10 acceleration—FOV shift between slices was 

optimized to yield the best RMSE and was found to be FOV/4.

Optimal kernel size and Tikhonov regularization parameter for conventional Slice GRAPPA 

were 9×9 and 10−6. These were selected as 7×7 and 10−7 for JVC Slice GRAPPA.

The parameters chosen for J-SMS-LORAKS were neighborhood radius = 3 (which lead to 

circle diameter 7), rank r = 1000, with regularization parameter λ = 10−5.
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RSoS combination of reconstructed echoes are shown in Fig6. Conventional Slice GRAPPA 

yielded 5.1% error and exhibited structured aliasing artifacts (yellow arrows). JVC Slice 

GRAPPA partially mitigated these artifacts as well as reducing the noise amplification 

(better appreciated in Supporting Fig S3 where individual echo images are shown). While 

the RMSE was reduced to 3.6%, some structured artifacts were present (yellow arrows). J-

SMS-LORAKS was more successful at artifact mitigation, as well as at RMSE performance 

(3.3%).

Whereas Fig6 displays only 5 out of 10 reconstructed slices, the entire 10-slice 

reconstruction can be viewed in Supporting Fig S4.

Image Reconstruction at MB-10 acceleration with 6/8 partial Fourier—All 

reconstruction parameters for the three methods were the same as the previous MB-10 

experiment.

Reconstruction results, error images and k-space data of the first echo are compared in Fig7. 

Slice GRAPPA followed by POCS processing returned 6.0% error with aliasing artifacts as 

pointed by yellow arrows. Due to asymmetric k-space sampling, VC concept could not be 

exploited in Joint Slice GRAPPA. As such, the reconstruction was performed without the aid 

of virtual coils, and sequential POCS processing was applied to estimate the partially 

sampled portion. Despite the reduction in RMSE to 4.9%, some residual aliasing artifacts 

were still present (yellow arrows). Apart from the readout line at the edge of the partial 

Fourier sampling mask, POCS completed portion did not appear to be underestimated. This 

is because the background phase is minimal for spin-echo data, unlike the bSSFP and 

MPRAGE cases.

J-SMS-LORAKS attained the best RMSE performance (3.7%), with some structured 

aliasing artifacts at such high acceleration (yellow arrows). Estimated k-space appeared 

smooth, and devoid of discontinuity or underestimation problems.

For display purposes, Fig7 shows only 5 out of 10 slices reconstructed in this MB10 

experiment. The entire array of 10 slices can be viewed in Supporting Fig S5.

Calibrationless: 3D Multi-Echo Gradient-Echo

The parameters were tuned to minimize RMSE, where neighborhood radius = 3 for both 

cases, and the matrix rank r = 50 for single contrast and r = 300 for multi-contrast LORAKS. 

While both reconstructions were devoid of visible artifacts, observing the error maps in Fig8 

revealed a signal bias especially in the early echoes of the conventional LORAKS results. 

These were reflected in the estimated R2* parameter maps, where J-LORAKS mitigated the 

underestimation problem that single-LORAKS suffered from (yellow arrow). The 

reconstruction errors were 4.2% and 3.1% for the two algorithms.

DISCUSSION

We presented joint parallel imaging acquisition/reconstruction approaches that exploit 

similarities between multi-contrast images, as well as complementary sampling and image 
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phase priors to provide dramatic improvements over conventional techniques for highly 

accelerated acquisitions. JVC-GRAPPA made this possible by converting intensity and 

phase differences across images into extra spatial encoding and utilizing the VC concept. J-

LORAKS, sought to achieve local k-space matrices with lower rank because of the added 

redundancy from the multiple images stacked along the coil axis. Proposed joint 

reconstruction techniques thus enabled acceleration rates beyond the capability of 

conventional parallel imaging, while mitigating aliasing artifacts and reducing noise 

amplification.

JVC-GRAPPA is a straightforward extension of GRAPPA, where multi-contrast images are 

stacked in the coil axis with staggered k-space sampling and iterative VC reconstruction. J-

LORAKS addresses two main limitations of JVC-GRAPPA: (i) it allows arbitrary sampling 

patterns, and (ii) can work with parsimonious ACS size or even without calibration. We took 

advantage of (i) by using different sampling patterns in each contrast, as well as exploiting 

VC concept despite partial Fourier sampling. Mitigating drawback (ii) is especially 

important at high acceleration rates, where the span of GRAPPA kernels can be very large. 

At R=7-fold acceleration with a small kernel size of 3 samples, GRAPPA kernels would 

already span a 15-sample distance in k-space. With small ACS sizes, it becomes difficult to 

extract sufficient amount of training data because we can only slide such a large 15-sample 

window in k-space by a few samples. This also constrains the size of the GRAPPA kernel, 

e.g. we would need 30 ACS lines to be able to fit a 5-sample kernel.

In terms of reconstruction time, both algorithms perform similarly with a small advantage 

for J-LORAKS. Points where JVC-GRAPPA might be advantageous are its simplicity in 

implementation and less memory usage than J-LORAKS. Overall, J-LORAKS is superior to 

JVC-GRAPPA in most aspects, except for the relative ease of exporting it to online 

reconstruction platforms.

Joint reconstruction of calibrationless dataset showed advantages in RMSE (Fig8), which 

could be further improved using different sampling patterns across the echoes. In most 

conventional exams, calibration signal can be acquired by fully-sampling the k-space center, 

or by using a separate acquisition e.g. a low-resolution GRE. Since such separate calibration 

information is cheap, Cartesian acquisitions for high-resolution structural imaging may not 

benefit from calibrationless reconstruction.

There are, however, applications where a rapid separate acquisition may not provide suitable 

calibration information, or an integrated ACS region with Nyquist-sampling may be 

disadvantageous. For instance, inconsistencies between the separate ACS data and the 

accelerated functional imaging acquisition can reduce the temporal SNR (76), and it is not 

practical to have an integrated calibration region in echo planar trajectories. Dynamic 

imaging could be another domain where calibrationless reconstruction could be impactful 

(33), since coil sensitivity information is subject to change due to motion and it is costly to 

sample ACS data over time. Despite having potential applications, increased computational 

burden and the reduction in the achievable acceleration are some of the trade-offs in 

calibrationless imaging.

Bilgic et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because SENSE-based reconstruction does not introduce coupling between different 

contrasts, we have chosen to employ GRAPPA and LORAKS in joint reconstruction. 

However, we have combined SENSE and LORAKS in our earlier work (30), and recently 

improved on this by combining LORAKS with k-space parallel imaging constraints in 

(58,59). In particular, (58) provides a comparison of SENSE-based LORAKS versus 

autocalibrating LORAKS, where the latter has a clear advantage.

We think that VC-GRAPPA can be modified to allow partial Fourier reconstruction. Similar 

to the way that the GRAPPA kernel needs to change for each distinct local sampling pattern, 

we would need to apply a different GRAPPA kernel for the asymmetrically sampled region 

compared to the kernel used for the symmetric region. This kernel for the asymmetric region 

would employ only the actual k-space during the training and reconstruction stages. For 

simplicity, we used J-GRAPPA without VC in partial Fourier experiments. The impact of 

not using VC can be appreciated by comparing Figs6&7. With JVC Slice GRAPPA, 

reconstruction error reduced by 42% compared to Slice GRAPPA (Fig6, no partial-Fourier 

case). With Joint Slice GRAPPA (Fig7, 6/8 partial-Fourier, no VC) the improvement was 

22%. With J-LORAKS, the phase prior constraint is better incorporated into the 

reconstruction for partial Fourier acquisition to provide a 62% reduction compared to 

standard GRAPPA reconstruction. Please also see Supporting Information for further 

discussion on partial Fourier sampling in specific acquisitions. We have also explored using 

VC concept without joint reconstruction in Supplementary Figs S2&4. This has provided 

improvement over conventional GRAPPA/SENSE, but failed to reach the quality of the 

proposed joint reconstruction algorithms.

Shifted sampling patterns are helpful in providing increased collective frequency coverage. 

In the bSSFP experiments at R=6-fold acceleration (Fig2), JVC-GRAPPA would have 

yielded 8.4% RMSE if all phase-cycles were using the same undersampling pattern, 

compared to the optimal 7.1% with the staggered acquisition. For J-LORAKS, the 

reconstruction error would have increased to 7.0%, as opposed to the optimal 6.5% RMSE. 

These indicate that complementary undersampling is aiding the joint reconstruction, but both 

algorithms are robust to changes in the sampling strategy, with small degradation in the 

RMSE performance (less than 20%). Table 1 report the same analysis for MPRAGE 

reconstruction, where both techniques are seen to be robust to changes in the staggering 

amount (less than 15% degradation without shifts).

Because it stacks data from all image contrasts into the channel axis and also creates virtual 

coils, JVC-GRAPPA requires larger amount of calibration data as the number of kernels 

scale with the square of the channel count. This problem is exacerbated by shifted sampling, 

as the staggered JVC kernels span a larger k-space extent which is more difficult to fit in the 

ACS region. This is addressed in part by the iterative approach, which uses the reconstructed 

k-space to re-train the kernels. Increasing the size of calibration region however lengthens 

the reconstruction time, since the calibration matrix that needs to be inverted grows in size. 

J-LORAKS addresses this second limitation of large ACS requirement as well, and is 

capable of outperforming JVC-GRAPPA even when it uses a smaller calibration region size 

(Fig1).
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The reconstruction errors in the 2D and 3D acquisition experiments include some 

contribution from the intrinsic √R SNR penalty. This stems from the data undersampling that 

reduces the total noise averaging window of the images. Such √R penalty does not impact 

SMS acquisition in practice, since SMS k-space data are not undersampled and each slice 

experiences the same noise averaging benefit as the MB-1 case. However, because we have 

simulated SMS acceleration by collapsing separately acquired slices, our results are actually 

impacted by √MB = √10 noise penalty in Figs6&7. Since the actual SMS experiment would 

not have been affected by this additional noise, the RMSE levels would have been lower. 

Nonetheless, it would not be possible to eliminate the additional factor of √(4/3) SNR 

penalty due to partial Fourier undersampling in Fig7.

Limitations

We have employed different regularization parameters for kernel training in the initial Joint-

GRAPPA reconstruction and the following JVC iterations for optimal RMSE. It is possible 

to use the same Tikhonov parameters for the two steps without a large drop in the 

performance. For instance, using λinit = λlatter = 3×10−8 in Fig2 led to an RMSE of 7.7%, 

which is slightly higher than the optimal JVC performance (7.1%). Automatic parameter 

selection algorithms could further help address this limitation (77,78).

Another drawback in the joint parallel imaging reconstruction is the increased reconstruction 

time. For the results presented in Fig2, computation time for the four phase-cycles was 6 sec 

for GRAPPA, 6.8 min for JVC-GRAPPA, and 5.4 min for J-LORAKS. We think that there 

are several ways to reduce this 50-fold gap in performance. We have used SVD coil 

compression in the current experiments. More advanced compression techniques such as 

Geometric Coil Compression (79) would permit higher compression rates. Secondly, JVC-

GRAPPA uses the entire k-space to re-train kernels in the latter iterations. This calibration 

size could be restricted to a smaller portion of k-space to reduce the calibration time, at the 

cost of increasing the condition number of the matrix inversion. Rather than applying these 

large number of JVC kernels via convolution in k-space, an image space version could be 

implemented with a simple elementwise multiplication. Finally, the number of pcg iterations 

in J-LORAKS could be reduced to reach a better compromise between speed and accuracy.

A further limitation of the joint reconstruction is potential motion between scans. While 

multi-echo acquisitions do not suffer from this drawback, phase-cycled bSSFP could be 

impacted by potential mismatches across cycles. Since JVC-GRAPPA employs low-

resolution kernels for data interpolation, we expect this technique to be resilient against 

small amounts of motion. In the presence of larger mismatches, an initial GRAPPA could be 

applied on each phase-cycle independently, followed by retrospective motion correction and 

JVC-GRAPPA or J-LORAKS processing. The higher acceleration factors that can be 

achieved with joint reconstruction could also help mitigate some of the involuntary motion.

Extensions

A potential extension to the proposed joint parallel imaging techniques could be the addition 

of joint sparse regularization (36,43). This extension would easily fit within SPIRiT (21) or 
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LORAKS (28) frameworks. For JVC-GRAPPA, sparsity enforcing priors could be used 

either during kernel calibration (80) or reconstruction (23).

Another application where joint parallel imaging could be powerful is single-shot diffusion 

imaging, where multiple diffusion volumes at neighboring q-space positions could be jointly 

reconstructed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig1. 
Joint GRAPPA fits kernels across contrasts and employs staggered k-space sampling to 

improve parallel imaging capability. Joint Virtual Coil GRAPPA further employs extra phase 

information provided by virtual coils to synthesize the target k-space signal.
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Fig2. 
Maximum intensity projection combination of phase-cycled bSSFP reconstructions with 

four cycles at R=6x1-fold acceleration. Conventional SENSE and GRAPPA suffered from 

noise amplification and aliasing artifacts, leading to 18.6% and 13.3% RMSE, respectively. 

VC-GRAPPA made use of image phase information to improve the reconstruction with 

7.5% RMSE. JVC-GRAPPA jointly reconstructed the phase-cycles with staggered k-space 

sampling and mitigated noise and aliasing with 7.1% error. J-LORAKS further improved the 

image quality and RMSE performance (6.5%). Even when using a more limited calibration 

region of 16 samples, J-LORAKS was able to yield similar performance as JVC-GRAPPA 

using 20 lines of ACS (7.1% RMSE, not shown).

Bilgic et al. Page 21

Magn Reson Med. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig3. 
Phase-cycled bSSFP with 7-fold total acceleration. Conventional GRAPPA broke down at 

such high acceleration factor, and had 19.0% error with severe aliasing artifacts and noise 

amplification. JVC-GRAPPA was able to mitigate some of these artifacts, but still yielded a 

large error of 10.7%. Combination of 6-fold uniform and 7/8 partial Fourier sampling 

provided the same 7-fold net acceleration. In this setting, virtual coil concept was not 

applicable in Joint GRAPPA. Its combination with POCS reconstruction led to 9.2% RMSE 

and some signal underestimation in k-space (white arrow). J-LORAKS was able to 

outperform all methods with 8.0% error, and was more successful in completing the partially 

sampled k-space without the need for an additional POCS step.
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Fig4. 
Root-sum-of-squares combination of multi-echo MPRAGE reconstructions with four echoes 

and R=4x3-fold acceleration. Regularized SENSE reconstruction suffered from structured 

artifacts with 9.9% error. Conventional GRAPPA had noise amplification especially in the 

middle of the field of view with 10.3% RMSE. VC-GRAPPA provided minor improvement 

to yield 9.5% error. JVC-GRAPPA mitigated this and reduced the error to 6.4%, but at the 

expense of some structured aliasing artifact (yellow arrow). J-LORAKS provided a cleaner 

image with reduced noise amplification and 6.8% error.
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Fig5. 
Multi-echo MPRAGE reconstruction at 16-fold total acceleration. Conventional GRAPPA 

broke down at this high acceleration factor, yielding 14.8% error. JVC-GRAPPA managed to 

mitigate most of the structured artifacts and noise amplification, with 7.8% RMSE and some 

residual aliasing artifacts (yellow arrow). At the same net acceleration factor, the 

combination of R=4x3 uniform undersampling and 6/8 partial Fourier sampling was 

explored. Combination of J-GRAPPA and POCS had 8.5% error, underestimation in 

partially sampled k-space (white arrow), and structured artifact (yellow arrow). J-LORAKS 

was able to provide an improved reconstruction with 7.9% RMSE and more successfully 

completed partial k-space data.
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Fig6. 
Multi-echo Turbo Spin Echo reconstruction with six echoes and Simultaneous MultiSlice 

acceleration (displaying 5 out of 10 slices). Root-sum-of-squares combination of the echoes 

using MultiBand=10 acceleration are depicted. Conventional Slice GRAPPA with signal 

leakage constrained yielded 5.1% error and structured aliasing artifacts (yellow arrows). 

JVC Slice GRAPPA obtained a reduced RMSE of 3.6% with better noise suppression and 

artifact mitigation. However, some aliasing artifacts were still visible. Joint SMS LORAKS 

provided the lowest error 3.3% with better artifact suppression.
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Fig7. 
Multi-echo Turbo Spin Echo reconstruction with MultiBand=10 acceleration and 6/8 partial 

Fourier sampling (displaying 5 out of 10 slices). Combination of Slice GRAPPA and POCS 

had 6.0% RMSE with visible aliasing artifacts and some k-space discontinuity at the partial 

Fourier transition line. Joint Slice GRAPPA was not able to utilize virtual coil concept, and 

required POCS post-processing to estimate partially sampled data. This combination led to 

4.9% error with some reconstruction artifacts and minor k-space discontinuity. Joint SMS 

LORAKS did employ virtual coils, and incorporated partial Fourier reconstruction without 

the need for POCS processing. This allowed 3.7% RMSE performance, while not being able 

to fully mitigate aliasing artifacts at such high acceleration factor (yellow arrows).
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Fig8. 
Calibrationless multi-echo gradient-echo reconstruction at R=4-fold pseudo-random 

acceleration. Single-contrast calibrationless LORAKS yielded 4.2% error with 

underestimation in the R2* parameter map (yellow arrow). This is likely caused by the signal 

drop in the early echoes as can be better seen in the error maps. Joint calibrationless 

LORAKS had an improved RMSE performance of 3.1%, and mitigated the signal dropout 

problem in both the individual echoes and the estimated parameter map.
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Table2

Comparison of GRAPPA and the proposed joint reconstruction algorithms, where the results in Figs 2–7 are 

summarized.

RMSE%

(Slice)
GRAPPA

JVC (Slice)
GRAPPA

Joint (Slice)
GRAPPA & POCS

Joint (SMS)
LORAKS

Phase-cycled bSSFP @ R=6 13.3% 7.1% – 6.5%

Phase-cycled bSSFP @ R=7 19.0% 10.7% 9.2% 8.0%

ME-MPRAGE @ R=12 10.3% 6.4% – 6.8%

ME-MPRAGE @ R=16 14.8% 7.8% 8.5% 7.9%

ME-TSE @ MB=10 5.1% 3.6% – 3.3%

ME TSE @ MB=10 & PF=6/8 6.0% – 4.9% 3.7%
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