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Abstract

Diabetes results from a loss of β-cell function. With the number of people with diabetes reaching 

epidemic proportions globally, understanding mechanisms that are contributing to this increasing 

prevalence is critical. One such factor has been circadian disruption, with shift-work, light 

pollution, jet-lag, increased screen time, all acting as potential contributory factors. Though 

circadian disruption has been epidemiologically associated with diabetes and other metabolic 

disorders for many decades, it is only recently that there has been a better understanding of the 

underlying molecular mechanisms. Experimental circadian disruption, via manipulation of 

environmental or genetic factors using gene-deletion mouse models, has demonstrated the 

importance of circadian rhythms in whole body metabolism. Genetic disruption of core clock 

genes, specifically in the β-cells in mice, have, now demonstrated the importance of the intrinsic 

β-cell clock in regulating function. Recent work has also shown the interaction of the circadian 

clock and enhancers in β-cells, indicating a highly integrated regulation of transcription and 

cellular function by the circadian clock. Disruption of either the whole body or only the β-cell 

clock leads to significant impairment of mitochondrial function, uncoupling, impaired vesicular 

transport, oxidative stress in β-cells and finally impaired glucose-stimulated insulin secretion and 

diabetes. In this review, we explore the role of the circadian clock in mitigating oxidative stress 

and preserving β-cell function.

Keywords

Circadian clock; Islet; β-cell; Insulin; Oxidative stress; Diabetes; Bmal1; Nrf2

Conflicts of interest
There are no potential conflicts of interest.

HHS Public Access
Author manuscript
Free Radic Biol Med. Author manuscript; available in PMC 2019 May 01.

Published in final edited form as:
Free Radic Biol Med. 2018 May 01; 119: 69–74. doi:10.1016/j.freeradbiomed.2018.02.022.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

There is a growing burden of T2D, reaching epidemic proportions. The WHO estimated in 

2014 that there are 422 million people with diabetes in the world with the prevalence almost 

doubling in the last 4 decades [1]. Diabetes is a result of a loss, or decrease, in insulin action. 

In type 1 diabetes (T1D) there is an autoimmune destruction of pancreatic insulin-producing 

β-cells, while in type 2 diabetes (T2D) there is often significant insulin resistance with 

varying degrees of β-cell dysfunction. Thus a decrease in β-cell mass or β-cell function, or 

both, underlie all forms of diabetes. Obesity is a common risk factor for diabetes and the 

frequent glucolipotoxicity seen with diabetes and obesity is a well-accepted cause of 

worsening β-cell dysfunction, there are many other environmental factors that are less well 

understood, contributing to ongoing β-cell dysfunction. One such factor is disruption of the 

normal circadian rhythm. The importance of having a normal circadian rhythm and the 

association with disease, if disrupted, has been known for a long time, especially in at-risk 

populations, such as in shift-workers [2] with rotational or night shift work. Strong 

associations between shift-work and risk for metabolic dysfunction, obesity and diabetes 

have been reported [3–6], with a cumulative excess risk of up to 60% of T2D [6,7]. ARNTL 
(also referred to as BMAL1), an essential core clock gene, is associated with type 2 diabetes 

(T2D) [8]. Interestingly, its expression is significantly downregulated in diabetic human 

islets [9]. In addition, genome-wide association studies have implicated MTNR1b and Cry2, 
circadian rhythm related genes, in T2D and impaired β-cell function [10–15].

However, it is only recently that with a better understanding of both β-cell dysfunction and 

the molecular mechanisms of the circadian clock, are there mechanistic connections being 

made to better understand how circadian disruption leads to diabetes and specifically β-cell 

dysfunction. With modern day lifestyle and constant work-related disruption of the body 

circadian rhythms, understanding the molecular pathways mediating circadian regulation of 

β-cell function is critical and urgently need for addressing this prevalent public health 

concern. In this review, we will present these interactions with a focus on how the circadian 

clock affects β-cell function and oxidative stress response.

2. The molecular clock

The circadian rhythm is established by the core components of the molecular clock. The 

molecular clock comprises of a transcription/ translational feedback loop comprised of the 

non-redundant transcription factor Bmal1 (Brain and Muscle Arnt like 1, or Arntl) that 

forms a heterodimer with another transcription factor, Clock (Circadian locomotor output 

cycles kaput), or its homologue Npas2, to bind to E-box elements in the promoters of target 

genes (clock-controlled genes). Four of these target genes (Per1, Per2, Cry1 and Cry2) 

encode proteins that translocate to the nucleus as heterodimers, to inhibit transactivation by 

Bmal1/Clock on their own promoters, and on those of other clock-controlled genes. The 

levels of Per1, Per2, Cry1 and Cry2 are also regulated by phosphorylation-mediated 

degradation. This slow rise in the levels of these proteins, thus sets up a feedback loop that 

gives rise to oscillations in the expression levels of clock-controlled genes – the circadian 

rhythm that has a ~ 24 h period. [16–25]. Reverbα and Reverbβ are transcriptional 

repressors that have E-box elements in their promoters and are clock-controlled genes. In 
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addition, they negatively regulate Bmal1 [26–29] to accord Bmal1 expression a circadian 

rhythm adding another layer of robustness to the core molecular clock.

3. Central and peripheral clocks

Most cell types, especially those that are differentiated, display robust clock oscillations in 

their gene expression [30]. These circadian oscillations in gene expression have also been 

demonstrated in pancreatic islets [31–36] and islets maintained, in culture, ex vivo [34]. The 

endogenous, or free-running, rhythm in the expression of clock-controlled genes can be 

entrainable by internal stimuli, such as from the circadian pace-setter located in the 

suprachisamatic nucleus (SCN) of the hypothalamus or by other external cues. The highly 

interconnected network of neurons, in the SCN, receive direct input from the retina via the 

retino-hypothalamic tract. Light is the primary driver of circadian oscillations in the SCN 

while temperature has also been shown to affect it [37]. On light exposure, the molecular 

events of transcriptional and post-translational events are set in motion, which result in the 

circadian oscillations of the expression of clock controlled genes in the SCN. These are 

communicated to the rest of the body (peripheral clocks), including the β-cells, through 

neurohumoral pathways [38,39]. While there have been mechanistic studies to characterize 

the nature of this communication between the central SCN clock and the liver peripheral 

clock [40], these are lacking for β-cells. Nevertheless, it has been recognized that those 

tissues, such as the liver, pancreas (including β-cells [41]), muscle etc. are also significantly 

influenced by, not only the cues from the central clock, regarding the time of the day, but 

also by nutritional cues [40–44], such as the time and nature of these nutrient cues. When 

the timing of food is uncoupled from the normal light/dark cycle, many of the metabolically 

active tissues, such as the liver, reset their circadian oscillations to align with the nutrient 

cues, indicating the dominance of these cues for these tissues [45,46]. Similarly, activity has 

also been shown to regulate peripheral clocks [47,48]. This is represented in Fig. 1.

4. Circadian clock regulation of metabolism

The circadian clock regulates whole-body metabolism [49] and this has been demonstrated 

in human studies, both epidemiological and interventional studies, and in animal models 

with circadian gene gain-of and loss-of-function studies. Targeted disruptions of clock genes 

result in striking metabolic disturbances [33–36,45,50–59], highlighting the central role of 

circadian regulation of cellular metabolism. ~ 10% or more of all transcripts have a circadian 

rhythm [30,60,61] that is tissue-specific, while a third of all nuclear receptors that play 

critical roles in metabolic homeostasis [26,62], display circadian rhythm. Furthermore, 

circadian control of various metabolic pathways appears to be most apparent on rate-limiting 

steps [60], compelling evidence that it is required for normal homeostasis. Interestingly, 

metabolic sensors, such as Sirt1, [63–65], AMPK [66] and PGC-1α [67,68] feed back to the 

core clock. Similar circadian rhythms of transcripts have been recently reported in β-cells 

regulating insulin secretion [69].
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5. Circadian clock and β-cell function

β-cell clock has been studied for over a decade in rodents with a robust oscillation of core 

clock genes (Fig. 2), with more recent studies demonstrating their existence and function in 

human islets [70–72]. Indeed, a large number of transcripts in β-cells are rhythmic and are 

under circadian regulation [34,69,73]. Loss-of-function studies of the components of the 

core molecular clock in β-cells demonstrated its requirement for normal function (Table 1). 

We and others have demonstrated that β-cell-specific deletion of Bmal1, embryonic period 

onwards, which abrogates all rhythmic activity of the β-cell intrinsic clock, leads to 

profound β-cell dysfunction and diabetes [34–36,69,74]. Loss of circadian function in β-

cells led to impaired substrate oxidation, a decrease in glucose-stimulated mitochondrial 

ATP production, impaired vesicular trafficking all resulting in a significantly blunted 

glucose-stimulated insulin secretion, the hallmark of β-cell failure seen in diabetes. 

Similarly, there is a profound effect on β-cell function even if the intrinsic β-cell clock is 

disrupted only in the adult life [69,75]. Mice with a loss-of-function of the β-cell clock 

induced only during adult life, have a blunted compensatory β-cell hyperplastic response in 

response to diet-induced insulin resistance, supporting evidence for the intrinsic circadian 

clock regulating β-cell proliferation [75]. All this provides convincing evidence that normal 

circadian oscillations and a functioning cell-autonomous β-cell circadian clock are essential 

throughout life to maintain normal β-cell function.

6. β-cells and oxidative stress

The primary function of β-cells is to sense glucose and secrete proportional amount of 

insulin [76]. This is achieved by an intricate cellular signaling machinery that, at its core, is 

composed of an uptake of glucose and subsequent oxidation of glucose to generate ATP. The 

levels of ATP are sensed by the ATP-dependent potassium channels to regulate membrane 

depolarization and insulin granule exocytosis. Thus, insulin secretion is tightly linked to 

plasma glucose levels in the body [77]. This synchronization requires that the glucose uptake 

into the β-cell be tightly coupled to ATP production, via increased oxygen consumption and 

mitochondrial oxidative phosphorylation. Since, mitochondrial oxidative metabolism is a 

large source of intracellular reactive oxygen species (ROS, including superoxides, hydrogen 

peroxide ec.); β-cells are exposed to potentially damaging amounts of intracellular ROS. In 

addition, other extra-mitochondrial sources of ROS, including the NADPH oxidase system, 

have also been shown to be important in β-cell oxidative stress [78]. To compound this, β-

cells comparatively have a lesser anti-oxidant capacity, only 15–38% of the ROS scavenging 

ability [79,80] of most metabolic tissues, such as the liver, putting them at risk for ROS-

induced oxidative stress. Indeed this has been hypothesized to be one of the important 

underlying causes of β-cell failure in many forms of T2D [81].

7. Circadian regulation of β-cell oxidative stress

The regulation of oxidative stress by the circadian clock and Bmal1 has been proposed in the 

context of the premature aging phenotype seen in mice with global Bmal1 deletion [82–84], 

and based on conserved E-boxes in the promoters of many antioxidant genes, it was 

proposed that Bmal1 and the molecular clock control antioxidant genes [82]. Many of the 
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antioxidant enzyme systems that defend against the damage induced by ROS are regulated 

by the leucine-zipper transcription factor, Nrf2 (Nfe2l2). We and others have shown that 

Nrf2 expression has a circadian oscillation and is directly under the control of Bmal1 and the 

circadian clock in β-cells [36] and in other tissues [85,86]. Indeed, in β-cells, there is a 

circadian oscillation of many critical antioxidant genes that are targets not only of Nrf2, but 

also Bmal1 (Fig. 2) and are dysregulated with circadian disruption [36,87]. These include 

genes in the sestrin family (Sesn2), peroxiredoxin family (Prdx3) and critical components of 

the glutathione system (Gclc and Gclm) [36]. Circadian disruption, thus leads to a 

dysregulation of mitochondrial function with increased ROS production [36], which when 

coupled with a decrease in antioxidant gene expression due to an impaired Nrf2 response, 

results in oxidative stress and β-cell dysfunction. To compound this, increased oxidative 

stress leads to an upregulation of Ucp2 in the β-cell, initially as a protective mechanism to 

diminish ROS production in the mitochondria by uncoupling substrate oxidation to 

phosphorylation of ADP to generate ATP. This uncoupling that result in a loss of oxidative 

phosphorylation, while beneficial in mitigating mitochondrial ROS production, has 

detrimental effects in β-cell function. An uncoupled β-cell is unable to couple glucose 

oxidation with ATP production and loses glucose-stimulated insulin secretion, an essential 

function. These changes have been demonstrated both in genetic and environmental models 

of circadian disruption [36]. Thus circadian disruption in the β-cell leads to increased ROS 

production, uncoupling, decreased antioxidant gene expression, and oxidative stress and 

culminates in significant impairment in β-cell function and diabetes.

8. Conclusion and future directions

Circadian disruption has become an integral part of modern lifestyle, with increasing 

number of people in occupations that demand shift-work and travel across time-zones. With 

mounting evidence demonstrating significant metabolic perturbations with circadian 

disruption, it has become imperative to decipher the molecular mechanisms underlying 

circadian regulation of pancreatic β-cells and understand how they interact with other 

tissues, to regulate whole body metabolism. Recent studies demonstrate that the circadian 

clock is critical for normal β-cell function and this regulation involves almost all aspects of 

β-cell biology (pictorially depicted in Fig. 3). However, there remain many questions that 

need to be answered in future studies. For instance, how does the circadian clock regulate 

how β-cells adapt and what are the mechanisms underlying acute and chronic adaptation? 

What is the tipping point when these adaptive mechanisms become pathological? How do β-

cells interact with other organs and the central clock? What are the pathways that can be 

leveraged to prevent, mitigate and reverse circadian disruption induced dysfunction. While 

the answers to these questions will give us a better understanding about the interactions of 

the circadian clock and beta cell biology, other studies must be carried out concurrently to 

translate findings in pre-clinical models to clinical application to prevent and cure circadian 

disruption induced diabetes.
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Fig. 1. Interaction of β-cell clock with the central clock and environmental cues
The central clock is entrained by external cues, of which light is the primary entraining 

signal. Other entraining signals include activity, temperature and food. The central clock 

regulates the β-cell clock via neurohumoral outputs.
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Fig. 2. Core clock and antioxidant gene oscillations in pancreatic islets
Relative gene expression of Bmal1, Per1 (core clock genes) and of anti-oxidant genes, 

Senstrin2 (Sesn2) and Peroxiredoxin 3 (Prdx3), are shown after normalization to house 

keeping genes, Tbp (TATA box binding protein) and topl (topoisomerases I). qRT-PCR from 

isolated islets that were collected every 4 h is shown. ZT is Zeitgeber time with ZT-0 being 

when lights are turned on at 7 A.M. Each time point represents islets collected from 4 mice. 

The gene expression data were fitted to a cosine function (using Acro software V3.5 Dr. 

Refinetti) and the cocinar parameters are presented below each panel.
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Fig. 3. 
Circadian control of β-cell function. The intrinsic β-cell clock regulated many cellar process 

critical to normal function, including, glucose sensing and substrate metabolism, 

mitochondrial function, stress responses, insulin secretion by exocytosis and proliferation. 

Hence, circadian disruption leads to as failure of stimulus-secretion coupling, poor insulin 

secretion and diabetes.
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Table 1

Genetic models of core clock gene disruption affecting β-cell function and glucose metabolism.

Gene disrupted Metabolic phenotype Refs.

Bmal1 (Global) Impaired gluconeogenesis, adipocyte differentiation, hyperlipidemia, 
glucose intolerance

[34,50]

Bmal1 – since birth (Pancreas using Pdx-1 Cre) Hyperglycemia, hypoinsulinemia, glucose intolerance, β-cell 
dysfunction

[34,35]

Bmal1 – since birth (β-cell specific using Rip-Cre) Hyperglycemia, hypoinsulinemia, glucose intolerance, β-cell 
dysfunction

[36]

Bmal1 – only in adult (β-cell specific using Mip-Cre/ERT) Impaired compensatory hyperplasia in response to diet-induced obesity [75]

Bmal1 – only in adult (β-cell specific using Pdx1-CreER) Hyperglycemia, hypoinsulinemia, glucose intolerance, β-cell 
dysfunction

[69]

Clock (Global) Hypertriglyceridemia, hypercholesterolemia, hyperglycemia, 
hyperleptinemia

[52]

Cry1&2 (Global) Glucose intolerance [55]
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