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Abstract

Human experience often involves continuous sensory information that unfolds over time. This is 

true in particular for speech comprehension, where continuous acoustic signals are processed over 

seconds or even minutes. We show that brain responses to such continuous stimuli can be 

investigated in detail, for magnetoencephalography (MEG) data by combining linear kernel 

estimation with minimum norm source localization. Previous research has shown that the 

requirement to average data over many trials can be overcome by modeling the brain response as a 

linear convolution of the stimulus and a kernel, or response function, and estimating a kernel that 

predicts the response from the stimulus. However, such analysis has been typically restricted to 

sensor space. Here we demonstrate that this analysis can also be performed in neural source space. 

We first computed distributed minimum norm current source estimates for continuous MEG 

recordings, and then computed response functions for the current estimate at each source element, 

using the boosting algorithm with cross-validation. Permutation tests can then assess the 

significance of individual predictor variables as well as features of the corresponding spatio-

temporal response functions. We demonstrate the viability of this technique by computing spatio-

temporal response functions for speech stimuli, using predictor variables reflecting acoustic, 

lexical and semantic processing. Results indicate that processes related to comprehension of 

continuous speech can be differentiated anatomically as well as temporally: acoustic information 

engaged auditory cortex at short latencies, followed by responses over the central sulcus and 

inferior frontal gyrus, possibly related to somatosensory/motor cortex involvement in speech 

perception; lexical frequency was associated with a left-lateralized response in auditory cortex and 

subsequent bilateral frontal activity; and semantic composition was associated with bilateral 

temporal and frontal brain activity. We conclude that this technique can be used to study the neural 

processing of continuous stimuli in time and anatomical space with the millisecond temporal 

resolution of MEG. This suggests new avenues for analyzing neural processing of naturalistic 

stimuli, without the necessity of averaging over artificially short or truncated stimuli.

* brodbeck@umd.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2019 May 15.

Published in final edited form as:
Neuroimage. 2018 May 15; 172: 162–174. doi:10.1016/j.neuroimage.2018.01.042.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

magnetoencephalography; minimum norm estimate; speech representation; impulse response; 
temporal response function; reverse correlation

1 Introduction

In a natural environment, the brain frequently processes information in a continuous fashion. 

For example, when listening to continuous speech, information is extracted incrementally 

from an uninterrupted acoustic signal at multiple levels: phonetically relevant sound patterns 

are recognized and grouped into words, which in turn are integrated into phrases which are 

meaningful in the context of a larger discourse (e.g. Gaskell & Mirkovic, 2016). Contrary to 

this continuous mode of functioning, neuroimaging experiments typically isolate phenomena 

of interest with short, repetitive trials (for many examples, see e.g. Gazzaniga, Ivry, & 

Mangun, 2009). While such research unquestionably leads to valuable results, the lack of 

naturalness of the stimuli is associated with uncertainty of how generalizable such results are 

to real world settings (see e.g. Brennan, 2016). Consequently, there is a need for 

complementary research with more naturalistic stimuli.

Brain responses to continuous speech have been studied with functional magnetic resonance 

imaging (fMRI) (Brennan et al., 2012; Brennan, Stabler, Van Wagenen, Luh, & Hale, 2016; 

Chow et al., 2014; Willems, Frank, Nijhof, Hagoort, & van den Bosch, 2016). 

Hemodynamic changes have been shown to track inherent properties of words, such as word 

frequency, as well as properties of words in context, such as contextual probability of 

encountering a given word. However, the low temporal resolution of fMRI, typically 

sampled at or below 1 Hz, imposes several limitations on the phenomena that can be 

modeled. While the studies cited above suggest that the resolution is adequate to model 

responses with a timescale of individual words, this is not the case for processes at faster 

timescales such as phonetic perception, where relevant events last only tens of milliseconds. 

In addition, fMRI responses can be modeled in terms of brain regions which are or are not 

sensitive to a given variable, but the relative and absolute timing of different components of 

the response remain obscure. Thus, even when word-based variables are analyzed, 

hemodynamic responses are modeled as instantaneous effects of the relevant variable, 

convolved with the hemodynamic response function, but without taking into account the 

temporal relationship between the stimulus and different components of the brain response 

(e.g. Brennan et al., 2016; Willems et al., 2016).

In contrast to fMRI, electroencephalography (EEG) and magnetoencephalography (MEG) 

have the temporal resolution to track continuous processing with millisecond accuracy. 

Previous research has established that the dependency of the MEG or EEG response on a 

continuous stimulus variable can be modeled as a linear time-invariant system (Lalor, 

Pearlmutter, Reilly, McDarby, & Foxe, 2006). This technique has been originally developed 

for relating neurons’ spiking behavior to continuous sensory stimuli (see Ringach & 

Shapley, 2004), but can be extended to MEG/EEG signals by modeling the response as a 

linear convolution of a stimulus variable with an impulse response function (see Figure 1). 
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Given a known stimulus and a measured response, one can then estimate the optimal 

response function to predict the measured response from the stimulus. This technique has 

been used to model EEG responses to continuously changing visual stimuli, by modeling 

continuous EEG signals as the convolution of moment-by-moment stimulus luminance with 

an appropriate response function (Lalor et al., 2006). An analogous procedure has been used 

to estimate responses to amplitude modulated tones and noise (Lalor, Power, Reilly, & Foxe, 

2009). As an extension of this procedure, the response to continuous speech has been 

modeled as a response to the level of momentary acoustic power, the acoustic envelope 

(Lalor & Foxe, 2010).

While the original formulation focused on purely sensory neurons, i.e. neurons whose 

response is a linear function of sensory input (Ringach & Shapley, 2004), the same method 

has also been applied successfully to determine cognitive influences on sensory processing. 

This can be achieved by modeling the signal as a response to a continuous predictor variable 

that represents a specific property of interest of the input stimulus. Thus, besides the acoustic 

envelope, the EEG response to continuous speech has been shown to reflect categorical 

representations of phonemes (Di Liberto, O’Sullivan, & Lalor, 2015). Furthermore, using 

stimuli in which speech from multiple talkers is mixed, it has been shown that the response 

function to the acoustic envelope can be divided into an earlier component around 50 ms that 

responds to the acoustic power in the overall stimulus, and a later component around 100 ms 

that responds to the acoustic envelope of the attended speech stream but not the unattended 

one (Ding & Simon, 2012b, 2012a).

While this research shows that response functions for continuous stimuli can be estimated, 

and that they can track not just sensory but also cognitive processes, all the above studies 

estimated response functions using only sensor space data. Topographic distributions of 

response functions have been assessed using equivalent current dipole localization (Lalor et 

al., 2009; Ding & Simon, 2012a) but this does not use the full localizing power of MEG. For 

investigating cognitive processing of sensory signals in particular, better source localization 

has the potential to separate response functions to different stimulus properties through 

anatomical separation of the brain response. In this paper, we propose to use distributed 

minimum norm source estimates to localize MEG data before estimating response functions. 

We developed a procedure in which source estimates are computed for continuous raw data, 

response functions are estimated independently at each virtual current dipole of the source 

model, and these individual response functions are then recombined to create a picture of the 

brain’s responses to different functional aspects of the continuous stimulus, in both time and 

anatomical space. In other words, source localization is used to decompose the raw signal 

based on likely anatomical origin, and this decomposition is then used to estimate each 

potential source location’s response to a particular stimulus variable.

To test and demonstrate this procedure, we analyzed data from participants listening to 

segments of a narrated story. We show that 6 minutes of data per participant is enough to 

estimate response functions that are reliable across subjects. In order to demonstrate the 

ability to localize responses in different brain regions, we focused on predictor variables 

with clearly different predictions for their anatomical localization and temporal response 

characteristics (see Figure 2): the response to the acoustic envelope of the speech signal 
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should be associated with at least two strong components around 50 and 100 ms latency, in 

auditory cortex; previous studies suggest that the latter component is posterior to the former 

(Ding & Simon, 2012a). Responses associated with word recognition were assessed via 

lexical frequency, which is known to be one of the strongest predictors of lexical processing 

in general (see e.g. Baayen, Milin, & Ramscar, 2016). Higher frequency is associated with 

faster recognition of spoken words (e.g. Connine, Mullennix, Shernoff, & Yelen, 1990; 

Meunier & Segui, 1999; Dahan, Magnuson, & Tanenhaus, 2001) and is associated with 

lower amplitudes in event related potentials to single spoken words (Dufour, Brunellière, & 

Frauenfelder, 2013). FMRI investigations indicate a corresponding reduction in left-

hemispheric temporal and frontal activity when processing more frequent compared to less 

frequent words in a narrated story (Brennan et al., 2016). Responses associated with higher 

levels of language processing beyond word recognition were assessed with an estimate of 

the amount of semantic combinatory processing over the course of the speech stimulus. This 

estimate was based on the presence of constructions associated with semantic composition 

operations, which previous MEG studies localized to the anterior temporal lobe (Bemis & 

Pylkkänen, 2011, 2012; Westerlund, Kastner, Al Kaabi, & Pylkkanen, 2015). This variable 

is relatively coarse and likely to be correlated with other variables reflecting structural 

integration, such as constituent size, associated with left temporal and inferior frontal 

activity (e.g., Pallier, Devauchelle, & Dehaene, 2011; Brennan et al., 2012). Consequently, 

this variable was treated as a rough estimate of multi-word integration processes during story 

comprehension, likely to be associated with anterior temporal and frontal responses.

2 Methods

2.1 Testing dataset

We analyzed a subset of the data described in detail by Presacco and colleagues (Presacco, 

Simon, & Anderson, 2016). In brief, 17 adults (aged 18–27 years) recruited from the 

Maryland and Washington, D.C. areas listened to one-minute long segments of an 

audiobook recording of The Legend of Sleepy Hollow by Washington Irving (https://

librivox.org/the-legend-of-sleepy-hollow-by-washington-irving/), narrated by a male 

speaker, and sampled at 44,100 Hz. Audio segments were modified to remove pauses longer 

than 300 ms. Stimuli were delivered diotically through foam earphones inserted into the ear 

canal at ~70 dB sound pressure level, with a sound delivery system equalized for an 

approximately flat transfer function from 40 to 3,000 Hz. Each segment was repeated three 

times. While the recording sessions included conditions with two-speaker audio, for the 

present analysis, only two one-minute long segments of single speaker audio in quiet were 

used, for a total of 6 minutes of data from each participant. To maximize attention to the 

stimuli, participants were asked before presentation of each segment to silently count the 

number of times a specific word or name was mentioned.

Handedness of the participants was assessed with the Edinburgh handedness scale (Oldfield, 

1971). The scale measures a lateralization quotient, which can range from −1 (complete left-

dominance) to 1 (complete right-dominance). Results indicated right-dominance in the 

majority of our sample, with 15 out of 17 participants having a lateralization quotient > 0. To 

exclude the possibility that the tests for lateralization of brain responses were biased by 
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including left-handers, these tests were repeated including only participants with a 

lateralization quotient of 0.5 or larger (n = 13). While this did not reveal any additional 

significant effects, lateralization of the early acoustic response become non-significant as 

reported in the appropriate section below.

2.2 Predictor variables

Stimulus variables were created reflecting three cognitive levels of speech processing: 

acoustic power, word frequency and semantic composition. For linear kernel estimation, 

predictor variables were sampled at the same rate as the dependent variable, i.e. the source 

localized MEG data, at 100 Hz.

2.2.1 Envelope—An auditory spectrogram representation was generated for each stimulus 

using a model of the auditory periphery (Yang, Wang, & Shamma, 1992). The auditory 

spectrogram is a frequency by time matrix reflecting the representation of the acoustic signal 

in the brainstem. This representation was averaged across frequency bands to generate a 

univariate continuous predictor reflecting momentary acoustic power at each time point.

2.2.2 Word frequency—Phonemes in the speech stimuli were labeled using the Gentle 

forced aligner (Ochshorn & Hawkins, 2016), and phoneme boundaries were manually 

adjusted using Praat (Boersma & Weenink, 2017). In the analysis reported here, only word 

boundaries were used. Logarithmic word frequencies (log10wf) were retrieved from the 

SUBTLEX database (Brysbaert & New, 2009). They were encoded into a continuous 

predictor with value 0 during silence, and 6.33 – log10wf for the duration of each word. This 

value was chosen to code infrequent words as high values, and very frequent words as low 

values; the highest log10wf entry in the database is 6.329.

2.2.3 Semantic composition—A variable approximately tracking the amount of 

semantic composition across the speech stimulus was created by identifying all word groups 

corresponding to the semantic composition patterns identified by Westerlund et al. (2015): 

adjective-noun, adverb-verb, adverb-adjective, verb-noun, preposition-noun and determiner-

noun pairs. The second word of each pair was marked. Simple articles (the, a) were ignored 

when identifying determiners because of their low semantic content. In patterns with 

multiple modifiers, the head word was marked in the same way; for example, in a substantial 
Dutch farmer, with two adjectives modifying the same noun, the noun farmer was marked. 

Words associated with semantic composition were coded as 1 for the duration of the word, 

all other time points as 0.

2.2.4 Correlations between regressors—Time-point by time-point, both word-based 

predictor variables were only weakly correlated with the acoustic envelope predictor variable 

(word frequency: r = .08; semantic composition: r = .09). The correlation between the two 

word-based variables was larger (r = .39), owing to the fact that only content words were 

candidates for our semantic composition predictor, and content words tend to have lower 

frequencies than function words (the correlation is positive because lower frequency was 

coded with higher values).
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2.3 MEG data acquisition and preprocessing

Before the experiment, each participant’s head shape was digitized with a Polhemus 

3SPACE FASTRAK system, including 3 fiducial points and 5 marker positions. Five marker 

coils attached to the subject’s head at the position of the marker points were used to localize 

the head position relative to the MEG sensors at the beginning and end of the recording 

session. These head position records were also used to verify that participants’ head had not 

moved excessively over the course of the recording session. The average distance between 

pre- and post-experiment marker positions was 4.7 mm, with two participants exceeding 10 

mm (10.6 mm and 14.8 mm).

During the recording, participants were resting in supine position, in a dimly lit magnetically 

shielded room. Data were acquired on a 157 axial gradiometer whole head MEG system 

(KIT, Kanazawa, Japan) at University of Maryland, College Park and recorded with an 

online 200 Hz low pass filter and a 60 Hz notch filter at a sampling rate of 1 kHz.

Data were pre-processed with mne-python 0.14 (Gramfort et al., 2013, 2014). Flat channels 

were automatically detected and excluded. Extraneous artifacts were removed using 

temporal signal space separation (Taulu & Simola, 2006), and data were band-pass filtered 

between 1 and 40 Hz with a zero-phase FIR filter (with mne-python’s default settings). The 

six 60 second long data epochs corresponding to stimulus presentation were extracted and 

downsampled to 100 Hz. At that point, channels were inspected based on their average 

correlation with neighboring sensors in the raw data; no channel had an average neighbor 

correlation coefficient below 0.3. For graphical display only, time series were upsampled to 

500 Hz to minimize visual discretization artifacts.

2.4 Source localization

Head position measurements from the beginning and end of the MEG recording session 

were averaged and used to localize the subject’s head shape relative to the MEG sensors. 

The digitized head shape was used to coregister the ‘fsaverage’ brain model provided by 

FreeSurfer (Fischl, 2012) to each subject’s head using uniform scaling, translation and 

rotation. A source space was defined on the white matter surface of the fsaverage model 

using four-fold icosahedral subdivision, with virtual current dipoles oriented perpendicular 

to the cortical surface. These were used to compute a cortically constrained distributed 

minimum ℓ2-norm inverse operator (Dale & Sereno, 1993; Hämäläinen & Ilmoniemi, 1994) 

using a noise covariance estimated from empty room data and depth weighting parameter of 

0.8 (Lin et al., 2006). Filtered MEG data were projected to source space. Dipoles lying on 

subcortical structures along the midline were removed, leaving a total of 4731 dipoles.

While the current study employed minimum ℓ2-norm source estimates because they are 

widely used and well established, other approaches generating distributed source models 

could be substituted. One caveat concerns dipole orientations: Analysis of evoked responses 

often relies on source estimates that compute absolute dipole amplitude while discarding the 

direction of the current. This is appropriate when an increase in current is expected in 

response to a unique event. However, when analyzing continuous responses, where high pass 

filtering replaces baseline correction, a change of the sign in the current estimate is 
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important information. Hence, directional (“fixed orientation”) source estimates, which 

preserve information about the dipole orientation, are preferable.

Since the current estimates were normalized for kernel estimation at each source dipole, 

corrections that weight data by source location, such as dSPM noise normalization (Dale et 

al., 2000), are not applicable.

2.5 Linear kernel estimation

The linear model relating rt, the response at time t, to the stimulus is given by

rt = ∑p ∑d hp, dsp, t − d + et

Where sp,t is the value of the stimulus variable for predictor p at time t, hp,d is the value of 

the kernel for predictor variable p at delay d, and et is the prediction error (residual) at time t. 
The range of d determines which time points in the stimulus can influence the response at 

any time. For the results presented here, d ranged from 0.00 to 0.99 s, thus, for example, the 

predicted response at time t=20.0 was modeled as a weighted average of the values of the 

predictor variables at the time points from t=19.01 to t=20.0.

We used boosting with cross-validation and ℓ1 error norm to estimate sparse response 

functions unbiased by the autocorrelation in the stimulus (for details see David, Mesgarani, 

& Shamma, 2007). The precise implementation is available in the Eelbrain source code 

(Brodbeck, 2017). Briefly, data were first divided into 10 equal contiguous parts along the 

time axis, and 9 parts were used as training data, the remaining part as test data. The 

boosting algorithm started with a response function of h0 = 0 for its entire duration, which 

was iteratively modified at a single time point in increments of a constant Δ. Given a kernel 

and a stimulus array, the response is predicted by:

r t = ∑p ∑d hp, dsp, t − d

In each iteration, the training data was used to determine that element of h in which a change 

lead to the largest ℓ1 error reduction; the resulting new kernel was then evaluated as to 

whether it reduced the error for the testing data. Iteration stopped when the error for the 

training data could not be reduced any further, or when the error for the testing data 

increased in two successive iterations. When iteration stopped, the kernel from the iteration 

with the smallest error on the testing data was retained.

This procedure was repeated 10 times, with each of the 10 data segments serving as test 

segment once. The 10 resulting kernels were averaged.

To make the iterative changes comparable across predictor variables, all stimulus as well as 

response variables were centered and normalized by dividing by the mean absolute value, 

and the change step was set to Δ= 0.005.
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2.6 Incremental model comparison

The quality of the prediction of the signal at each virtual current dipole can be expressed by 

the correlation between the predicted and the actual response. This implies a straight-

forward method for comparing the predictive power of different models across brain regions 

by comparing correlation maps.

To test whether adding a given predictor to the model leads to significant improvement, two 

models were fit for each subject: one with all three predictors of the full model, and a second 

one that was identical except that the predictor under investigation was temporally permuted 

to remove the relationship with the response data. For each of the one-minute long stimuli, 

the predictor was split in the middle and the first half, i.e. the first 30 seconds, of the 

stimulus was used to predict the neural response to the second half of the stimulus, and vice 

versa. This procedure removed the temporal relationship to the neural data while, while 

keeping the local temporal structure of the stimulus identical between the true and the 

permuted model. The Pearson correlation coefficients, expressing the fit between the 

predicted and the actual responses, were rescaled with Fisher’s z-transform, and one-tailed t-
test were used to test whether the correctly aligned predictor improved the prediction of the 

neural data.

To control for multiple comparisons when testing for correlation coefficient differences at a 

large number of virtual current dipoles, we used nonparametric permutation tests (Nichols & 

Holmes, 2002; Maris & Oostenveld, 2007) based on the threshold-free cluster-enhancement 

algorithm (TFCE; Smith & Nichols, 2009). The precise implementation is available in the 

Eelbrain source code (Brodbeck, 2017). First, a t-value was computed for each virtual dipole 

based on the difference in correlation values across subjects. The resulting t-map was then 

processed with TFCE, an image processing algorithm that enhances contiguous areas of 

large values compared to isolated spikes, based on the assumption that meaningful 

differences have a larger spatial extent than noise. To determine a statistical distribution for 

the resulting TFCE values, we repeated the procedure in 10,000 random permutations of the 

data. In each permutation, condition labels were flipped for a randomly selected set of 

subjects, without sampling the same set of subjects twice (i.e., in each of the 10,000 

permutations, the labels for at least one, and at most all, subjects were flipped). The t-test 

and TFCE were repeated for each permutation, and the largest value from the cluster-

enhanced map was stored as an entry in the distribution. Thus, we computed a 

nonparametric distribution for the largest expected TFCE value under the null hypothesis. 

Any value in the original TFCE map that exceeded the 95th percentile of the distribution was 

considered significant at the 5% level, corrected for multiple comparisons across the whole 

brain.

2.7 Evaluation of response functions

In addition to the model fit, the boosting algorithm results in an estimated response function 

at each virtual dipole for each predictor. These response functions contain information about 

the time course with which the information in different predictors affected different brain 

regions. Because boosting tends to result in temporally sparse response functions (cf. Figure 

1), response functions for each subject were smoothed with a 50 ms (5 sample) Hamming 
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window to make them more amenable to group analysis. Since the window was centered, 

distortions of peak latencies are not expected, but effects might appear slightly more 

temporally extended than they are in individuals’ responses.

Since directional current estimates were used, the expected mean of each source was 0. 

Response functions were thus tested with two-tailed one-sample t-tests against 0. Control for 

multiple comparisons across time and anatomical space was implemented with the same 

method as for model comparisons, except that the data had the additional dimension of time.

In MEG source localization, the signal at several thousand virtual current dipoles is 

estimated based on measurements at a much smaller number of sensors, in our case 157 

axial gradiometers. Source localization accuracy is thus inherently limited; minimum ℓ2-

norm estimates tend to be spatially smeared. Since the minimum ℓ2-norm inverse operator is 

a linear matrix operation, the source localization accuracy can be characterized by the point 

spread function (Hauk, Wakeman, & Henson, 2011). The point spread function describes the 

source estimate for a hypothetical point source, by projecting the activity in that one source 

dipole to the MEG sensors, and then applying the inverse solution to project the estimated 

magnetic fields back to the current source dipoles of the source space. Figure 3 illustrates the 

point spread function of the KIT 157 sensor MEG system and its influence on source 

localization at the group level. These exemplary plots illustrate that the spatial extent of the 

current estimates must be interpreted with care.

Due to the spatial dispersion, anatomically separate sources only lead to cleanly separated 

source estimates if their spatial separation is large relative to the point spread function. 

Consequently, typical response function estimates may contain multiple, partially 

overlapping activations, making interpretation of raw plots of source space responses more 

difficult. A critical part of interpreting response functions thus consists in disentangling 

overlapping responses, and in determining which activations reflect true independent neural 

sources, and which merely reflect artefactual spatial dispersion from a genuine source to 

nearby areas. In order to facilitate this task, we tested two methods for identifying unique 

sources of variability in the response functions: hierarchical clustering, and sparse principle 

component analysis (sPCA). Both methods make use of the excellent temporal resolution of 

MEG to identify separable sources of variability in the time course. However, they do so 

using different constraints: Hierarchical clustering attempts to find a small number of 

average cluster time courses, and can use a spatial constraint to generate contiguous clusters. 

A downside is that current directionality (negative or positive current) has to be discarded to 

prevent the sign from dominating the cluster mean (compare with the striping in Figure 3). 

SPCA, on the other hand, accommodates current direction reversals through components 

with negative weights; however, it cannot impose a spatial contiguity constraint, leading to 

distributed and partially overlapping components. Because each method has advantages and 

disadvantages, we present both for comparison. Both methods were implemented with 

functions from scikit-learn 18.1 (Pedregosa et al., 2011).

2.7.1 Hierarchical clustering—Hierarchical clustering (Ward, 1963) was used to group 

dipoles with similar time courses (for an application to fMRI data see Thirion, Varoquaux, 

Dohmatob, & Poline, 2014). First, response functions were masked at the 5% significance 
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level (based on the spatio-temporal TFCE test described in Section 2.7) to restrict clustering 

to aspects of the responses that were reliable across subjects: Non-significant elements were 

set to zero, and dipoles that included no significant element at any time point were 

discarded. Because clustering was based on the mean time course in each cluster, the 

absolute values of all response functions were used for clustering. This was done to avoid 

distorting clusters based on anatomical features, which lead to source estimates with 

alternating sign across gyri and sulci due to alternating cortical surface orientation (compare 

Figure 3).

The clustering algorithm successively merged sources to minimize the sum squared error 

from cluster means, until a complete tree incorporated all sources. Links were constrained 

such that no direct links could be formed between sources further apart than 10 mm in 3-

dimensional space. This distance criterion was chosen over geodesic adjacency to account 

for the fact that, due to the orientation constraint of the source estimates, sources could be 

similar at elements of adjacent gyri with corresponding orientation, with intervening 

elements with a different orientation. This is particularly relevant for auditory activity, which 

may “leak” from the superior temporal gyrus across the Sylvian fissure into adjacent parts of 

the inferior parietal and frontal cortices. The hierarchical tree was then traversed from the 

root until implementing the next branching would have reduced the sum squared error by 

less than 1% of the total sum squared.

Because clustering is based on the cluster mean, whereas source estimates have a smooth 

center-surround shape, this procedure frequently leads to spurious clusters that form low 

amplitude “halos” surrounding other, higher amplitude peaks. Since such halos are due to 

spatial dispersion and do not reflect effects of interest, it was desirable to remove them for 

visualization. Two methods were employed to detect halo clusters: First, clusters whose time 

course peak was more than one standard deviation below the mean were flagged for 

removal. Second, pairs of clusters with a time course correlation larger than 0.9 were flagged 

for closer examination; if one constituted a clear halo of the other, it was removed. If both 

clusters exhibited independent spatial centers, they were merged into one cluster (this 

occurred only once, for cluster S1cl, whose parts likely reflect the same underlying neural 

source, but were not connected by the clustering algorithm due to the large spatial separation 

across the Sylvian fissure). Only clusters that conformed to the following criteria were 

classified as halos and removed: 1) a large spatial extent, surrounding one or more other 

clusters rather than covering its own center 2) markedly lower amplitude than the cluster at 

its center 3) no distinct peaks, except at the time points of the peaks of the cluster at the 

center (and with lower amplitude).

2.7.2 Sparse PCA—Sparse PCA finds spatial components that optimally reconstruct the 

data with an iterative procedure, adding a sparsity constraint through an ℓ1 penalty on the 

components (Mairal, Bach, Ponce, & Sapiro, 2009). The iterative algorithm attempts to 

minimize, for a given number of components, the error function

e(U, V) = 1
2‖X − UV‖2

2 + α‖V‖1
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where X is the spatio-temporal response to be explained, U is the matrix of time courses and 

V is the matrix of sparse components. Analogously to the clustering procedure, response 

functions were masked by significance at the 5% level before submitting them to sPCA. The 

α parameter controlling sparsity was set to the largest (i.e., most sparse) power of 10 at 

which models still regularly converged: 10−4. The number of components was initialized 

with 1, and additional components were added until adding another component would have 

decreased the error by less than 1% of the total sum squared.

For visualization, sPCA components were normalized by setting the largest absolute value 

on each component map to 1, and component amplitude time courses were scaled 

appropriately. For display only, anatomical component maps were smoothed with a Gaussian 

with 5 mm standard deviation.

2.8 Test of lateralization

We tested for functional lateralization of responses by comparing response functions in the 

left and the right hemisphere. To perform a continuous spatio-temporal comparison, 

response functions had to be projected (“morphed” in FreeSurfer terminology) to a common 

hemisphere, i.e., data from one hemisphere had to be “mirrored” onto the other. While the 

fsaverage brain used for source estimation is slightly asymmetric, FreeSurfer also provides 

an exactly symmetrical brain, labelled “fsaverage_sym”, for the express purpose of 

hemispheric comparison (Greve et al., 2013). Because the fsaverage brain model is not 

precisely symmetric, projecting from one hemisphere to the other is not precise on the level 

of gyri and sulci (for example, the crown of a gyrus in one hemisphere might come to lie on 

the wall of the gyrus in the other). Thus, to avoid spurious differences due to current 

direction, response functions were first transformed to absolute values and Gaussian 

smoothing was applied with a full width half maximum of 10 mm. The resulting response 

functions from both hemispheres were then projected to the left hemisphere of the 

fsaverage_sym brain and used to compute left-right difference values at each source 

element, for each subject (projecting to the right instead of the left hemisphere did not 

substantively alter any results).

The left-right difference maps were masked to include only points in time and space at 

which the response function was significant in at least one hemisphere. For this, the original 

response functions were converted into a binary map at a threshold of p = .05 and projected 

to the left fsaverage_sym hemisphere. Since this resulted in some smoothing, the map was 

again binarized using a threshold of 0.5.

The resulting masked left-right difference maps were tested with two-tailed t-tests against 0, 

using the same permutation procedure with TFCE as for other tests to correct for multiple 

comparisons across space and time.

For visualization purposes, the resulting maps were again binarized at p = .05, and elements 

with negative differences were removed from the left hemisphere and projected to the right 

hemisphere. The resulting significance map covering both hemispheres was projected back 

to the fsaverage brain, and again thresholded at 0.5, resulting in a map of significant 

lateralization in space and time.
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3 Results

The model fit was evaluated using the Pearson correlation between the actual and the 

predicted responses. Each of the three predictor variables was evaluated as to whether it 

significantly improved the model, by comparing the fit of the full model with the fit of a 

model in which this variable was deliberately misaligned, using the first half of the stimulus 

to predict the second half of the response and vice versa. Whole brain maps of the difference 

were tested for significance with one-tailed t-tests, correcting for multiple comparisons using 

permutation tests with threshold-free cluster enhancement (TFCE; Smith & Nichols, 2009).

Figure 4 shows the regions where each predictor had significant explanatory power. Results 

indicated highly significant contributions from each of the three predictors (all p < .001). 

The plots in Figure 4 are suggestive of localization differences, with semantic composition 

showing more anterior peaks than the acoustic envelope and word frequency. However, the 

large spatial extent of the effects, in particular of the acoustic envelope, also raises the strong 

possibility of leakage due to the spatial dispersion of MEG source estimates. While it may 

be that the response to the acoustic envelope is more distributed than the response to the 

other two variables, it is also quite possible that the acoustic representation in auditory 

cortex has a higher signal to noise ratio (SNR), and hence leads to spurious significant 

correlations at more distant sources due to spatial dispersion. This ambiguity also limits the 

usefulness of direct statistical comparisons of r-maps for testing hypotheses of localization 

differences between different predictors, because differences in SNR can obscure differences 

in localization.

In contrast to the model improvement maps, which condense all responses into a single 

anatomical map, the estimated response functions partition predictive contributions over 

time. Response functions thus have the potential to better show more nuanced distinctions 

between contributions from different brain regions via their processing latency differences. 

Furthermore, because all response functions were computed concurrently as a 

multidimensional kernel, the predictors were practically competing for explaining variance 

in the response. Consequently, each response function should reflect those components of 

the response that were best explained by the corresponding predictor, and exclude 

components that were better explained by other predictors in the model.

Figure 5 shows the response function to the acoustic envelope, masked by significance at the 

p = .05 level, and Figure 6 shows responses to the two word-related predictors. Response 

functions for each predictor were tested for regions with significant deviation from zero 

across anatomical space and response time with permutation tests, using TFCE. While 

response functions were estimated and tested for time delays from 0 to 1000 ms, they are 

shown in plots from 0 to 800 ms only because the last 200 ms were generally flat. The 

response functions exhibit some clearly identifiable peaks, which are localized more 

distinctly than the peaks of the correlation maps due to temporal separation of different 

peaks.

The acoustic envelope was associated with a first response peak around 40 ms, centered on 

auditory cortex bilaterally, and a second peak around 100 ms, localized slightly posterior to 
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the first. Even though the second peak appears larger in the right hemisphere, the difference 

between hemispheres was not significant (superior temporal and Heschl’s gyrus, between 75 

and 125 ms, p = .449). Around 60 ms, after the first response in auditory cortex, the response 

appeared to shift bilaterally to lateral Rolandic cortex, dorsal to auditory cortex, and to the 

inferior frontal gyrus. While this dissociation is harder to isolate in the raw response 

function, it was confirmed in the hierarchical clustering (c.f. clusters A1cl and A2cl in Figure 

7) as well as the sPCA analysis (components A2pca and A3pca in Figure 8). These effects are 

clearly distinguishable from the auditory cortex response by their latency, and are unlikely to 

be due to spatial dispersion because the response in auditory cortex at 60 ms was much 

reduced. Thus, response functions were able to separate what looked like one large effect in 

the correlation maps presented above into multiple temporally distinct response components 

with clearly different neural sources.

The lateralization test indicated a marginally stronger response in the anterior STG of the 

right hemisphere at 10 ms (p = .036). While the extent was small (the significant region 

encompassing only two source elements and one time point), numerically the difference 

extended throughout the M50 response (compare the 40 ms plots in Figure 5). This result 

could thus indicate a slightly stronger and/or earlier onset of an anterior component of the 

auditory response in the right compared to the left hemisphere; however, due to its marginal 

size we hesitate to interpret this effect further. When the test was repeated including only 

righthanded participants with a lateralization quotient of 0.5 or larger (n = 13), the 

lateralization test for the acoustic response lost significance (p = .098).

Word frequency was associated with a strongly left-lateralized response peak over auditory 

cortex around 170 ms. This peak was significantly larger in the left hemisphere than in the 

right hemisphere (p = .002). Areas with significant lateralization are shaded yellow in the 

anatomical plots of Figure 6. This response was followed by responses in the frontal cortex 

of both hemispheres.

The semantic composition predictor was associated with a progression of responses from 

anterior superior temporal gyrus to the lateral frontal lobes. The left hemisphere response 

exhibited clearer peaks, with a peak in the temporal lobe around 180 ms and an inferior 

frontal response peak around 250 ms, but hemispheric differences were not significant (p = .

159). In addition, the left hemisphere response function exhibited late, weaker auditory 

cortex activation after 400 ms.

While response functions are more informative than model fit, it can be challenging to 

interpret them in terms of underlying neural sources due to the spatial dispersion, which can 

create a spatially complex pattern of results from a single neural source. However, source 

localization does not distort the time course of neural activity. We sought to utilize this fact 

to infer independent sources underlying the observed response functions based on the time-

course of the responses. We tested two approaches for decomposing response functions into 

underlying sources based on their time course: hierarchical clustering and sparse principle 

component analysis (sPCA).
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The first approach was based on hierarchical clustering of dipoles with similar time-course, 

while enforcing a realistic spatial layout by constraining possible groupings by anatomical 

proximity (Figure 7). This procedure identified 6 clusters in the acoustic envelope response 

function (after 2 halo artifacts were excluded). Clusters A3cl in the left, and A4cl-A6cl in the 

right hemisphere confirm the distinct localization of the two response peaks in auditory 

cortex. In addition, A1cl and A2cl identified a distinct response over Rolandic and inferior 

frontal areas of both hemispheres, with a slightly delayed peak compared to the early 

auditory cortex response. For word frequency, 7 clusters were identified (2 excluded halo 

artifacts). While the raw response function displayed in Figure 6 suggested one large peak in 

left auditory cortex, clusters L1cl –L4cl suggest that this response is actually made up of 

distinct components, starting with a more posterior response in auditory (L1cl) and possibly 

sensory-motor cortex (2cl), which is followed by a more anterior peak (L4cl); L3cl might 

reflect a blend of L2cl and L4cl. In addition, the clusters L5cl –L7cl draw attention to weaker 

but consistent frontal responses in both hemispheres. For semantic composition, 6 clusters (3 

excluded halo artifacts; one cluster created from merging 2 others) were identified. In the 

left hemisphere, cluster S1cl likely reflects an underlying source in the superior anterior 

temporal lobe with spatial dispersion across the Sylvian Fissure; S2cl and S3cl show a 

progression of activity to more anterior regions in the inferior frontal gyrus, while S4cl might 

indicate later feedback to auditory regions. The right hemisphere showed a more 

homogeneous anterior temporal and inferior frontal response in clusters S5cl and S6cl.

The second approach to isolating the sources underlying the response functions employed 

sparse principle component analysis (sPCA) to decompose response functions into a small 

number of spatially fixed patterns with time-varying amplitude. For the response to the 

acoustic envelope, sPCA isolated 4 components (Figure 8). In addition to reproducing the 

auditory cortex peak responses at 40 ms (A1pca) and 100 ms (A4pca), the results suggested 

that the intermediate response over the central sulcus can be divided into two components. 

A2pca identified a slightly more dorsal peak around 50 ms, and A3pca identified a slightly 

more ventral peak at 70 ms. Because the sPCA procedure did not impose any constraints on 

the spatial topography of the components, finding largely symmetrical components suggests 

that the effects were bilateral with very similar time course. The results for the lexical 

frequency response (Figure 9) confirmed the split of the left-dominant response into a main 

component over posterior STG (L1pca), and a more dorsal (L2pca) and a more anterior 

(L3pca) secondary component. This is interesting for the more dorsal L2pca in particular, 

because components in sPCA are not formed based on amplitude but only based on the time 

course, thus, unlike in hierarchical clustering, weaker amplitude cannot be the sole 

explanation for a separate component. Rather, this result suggests the possibility that the 

response to lexical frequency is also associated with a component in left Rolandic cortex. A 

comparison of the primary response to lexical frequency, L1pca, with the primary acoustic 

response, A1pca, suggests closely aligned neural sources in the left hemisphere. Late frontal 

cortex responses with lower amplitude were also identified (L4pca and L5pca). The 6 

components identified in the semantic composition response suggest very similar 

conclusions as the hierarchical clustering (Figure 9). A single component centered on the 

superior anterior temporal lobe (S1pca) indicates that the clusters merged into S1cl were 

indeed due to the same underlying source.

Brodbeck et al. Page 14

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Discussion

We described a procedure for combining linear kernel estimation with distributed MEG 

source localization to estimate the brain response to continuous stimuli as a function of 

delay time and anatomical space. We demonstrated the utility of this procedure by analyzing 

responses to continuous speech. Using just 6 minutes of MEG data per subject, we found 

reliable responses reflecting variables related to different cognitive levels of speech 

comprehension, including acoustic, lexical and semantic processing. Examination of the 

response functions revealed a detailed picture of the spatio-temporal evolution of cortical 

responses to continuous speech.

The spatial resolution of the estimated response functions is limited by the underlying 

inverse model, which infers current flow over a large surface area from measurements at a 

comparatively limited number of sensors (cf. Figure 3). One possible approach to this issue 

is thresholding results to emphasize peaks, which are more accurate than the extent of 

activation estimates (e.g. Hauk et al., 2011). However, thresholding responses composed of 

separate peaks with different signal strength may also hide peaks with lower amplitude. Here 

we illustrate a different approach, identifying effects with different underlying neural 

sources by separating sources of variation in the time course of activity. Hierarchical 

clustering and sPCA both allowed visualization of separate, more specific activation 

patterns, likely arising from different neural sources (e.g. Figure 8). Still, interpretation of 

the results should be guided by an awareness of the spatial resolution of the current 

estimates: The center of a given activation cluster can be assumed to be comparatively 

reliable, while the extent is likely exaggerated due to spreading of the minimum norm 

estimates.

4.1 Response functions to speech

Not surprisingly, we found a robust response to the acoustic envelope of the speech signal. 

This variable has been shown to be associated with brain signals measured with EEG (Lalor 

& Foxe, 2010) and MEG (Ahissar et al., 2001; Ding & Simon, 2012b), as well as 

intracranial measurements (Nourski et al., 2009; Mesgarani & Chang, 2012). Response 

functions to acoustic power were significant from the earliest time points. While the earliest 

responses could be due to the smoothing of the response functions, short latency responses 

to acoustic properties of speech are consistent with data suggesting that cortical responses to 

sounds occur within about 20 ms (Nourski et al., 2014; Parkkonen, Fujiki, & Mäkelä, 2009).

Previous studies have shown an earlier response component with a peak latency around 50 

ms that follows acoustic power in the stimulus regardless of attention, and a later response 

component around 100 ms that reflects acoustic power in the attended speech stream rather 

than the raw acoustic stimulus (Ding & Simon, 2012b, 2012a, 2013; Akram, Simon, & 

Babadi, 2016). Our results suggested that the earlier response is in fact separable into two 

components, with a first peak around 40 ms, localized in auditory cortex, and a subsequent 

response within 10–30 ms over the central sulcus, dorsal to auditory cortex, and the IFG in 

both hemispheres. The location of this second component over the central sulcus is broadly 

consistent with the mouth region of the somatosensory homunculus (Nakamura et al., 1998). 

Motor cortex involvement in speech perception is predicted by the motor theory of speech 
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perception (see Galantucci, Fowler, & Turvey, 2006) and has been demonstrated with 

meaningless syllables and single word stimuli (Pulvermüller et al., 2006; Schomers, Kirilina, 

Weigand, Bajbouj, & Pulvermüller, 2015; Wilson, Saygin, Sereno, & Iacoboni, 2004). 

Recent evidence suggests that this functional integration is supported by tight anatomical 

connections between Heschl’s gyrus and primary motor and somatosensory cortex (Skipper 

& Hasson, 2017). Our result of rapid bilateral responses related to the speech envelope is 

compatible with a bilateral mechanism for a unified sensory-motor representation of speech 

(Cogan et al., 2014) through responses tied to acoustic, more than phonemic or motor, 

properties (Cheung, Hamilton, Johnson, & Chang, 2016). This system is contrasted with 

more abstract mappings between acoustic and motor representations thought to be left-

lateralized (Hickok & Poeppel, 2004; Saur et al., 2008) and, as evidenced by patients with 

left-lateralized brain lesions, is probably not necessary for speech comprehension (Rogalsky, 

Love, Driscoll, Anderson, & Hickok, 2011). Our results thus suggest that involvement of 

bilateral motor regions in speech processing is not restricted to the somewhat unnatural 

discrete listening tasks frequently used in research, but occurs also during processing of 

natural connected speech, and with a short latency relative to the acoustic signal.

Results also revealed a consistent response associated with the lexical frequency of the 

words being processed. This response was localized primarily to the auditory cortex of the 

left hemisphere, followed by frontal modulations of lower amplitude. This is consistent with 

fMRI results on auditory story comprehension, which found significant association with 

word-frequency in left STG and IFG (Brennan et al., 2016) as well as weaker right-

hemispheric activity (Brennan et al., 2012). A comparison of sPCA components A1pca and 

L1pca suggests that the strongest response to word frequency originated from a location only 

slightly ventral to the primary auditory response. Language-specific processing in early 

auditory areas is consistent with the observation of selective responses to speech sounds 

early in the cortical hierarchy in STG (Nourski et al., 2014; Hullett, Hamilton, Mesgarani, 

Schreiner, & Chang, 2016) and is consistent with models placing lexical processing of 

speech in a hierarchy between the STG and the middle temporal gyrus (e.g. Overath, 

McDermott, Zarate, & Poeppel, 2015). The lateralization test revealed significant 

lateralization of this response component towards the left hemisphere. This suggests that in 

contrast to acoustic processing, lexical processing, as indexed by lexical frequency, is 

lateralized to the language-dominant hemisphere.

Semantic composition was associated with temporal and frontal lobe activity. Previous MEG 

research, using visually presented, strictly controlled minimal phrases, suggested that 

activation associated with semantic composition localizes most consistently to the anterior 

temporal lobe (Bemis & Pylkkänen, 2011; Westerlund et al., 2015). A study that compared 

responses to spoken and written two-word stimuli also found activity in a superior posterior 

temporal region comparable to our sPCA component S4pca (Bemis & Pylkkänen, 2012). 

Lateral prefrontal cortex activation was not described in these studies. One possible 

explanation for this divergence is that the increased demand imposed by continuous speech 

leads to more extensive brain involvement for the same process. However, semantic 

composition in natural speech is also correlated with other structural properties of language, 

which have been associated with lateral prefrontal activation (Brennan et al., 2016; Nelson et 

al., 2017). While our stimuli do not provide enough variation to distinguish between 
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different related variables, our demonstration that MEG is sensitive to these variables in 

continuous speech opens up new possibilities to disentangle contributions from different 

semantic and structural variables. Finally, response functions allow comparisons of the time 

course of processing of different variables.

Precise comparison between the acoustic envelope and the word-related predictors is 

difficult due to the temporal nature of the respective variables. Acoustic power was coded as 

momentary acoustic power with millisecond resolution, while words were coded as events 

that could be temporally extended over hundreds of milliseconds. Indeed, this is not just a 

matter of coding, but also of the time scale at which the information unfolds, with words 

reflecting integration of information over a larger time interval. Thus, while the acoustic 

power is clearly associated with an earlier response than word properties, direct comparison 

of peak latencies is difficult. On the other hand, the two word-related predictors were coded 

with the same temporal structure and can be directly compared. The main response to 

semantically composable words in the anterior temporal lobe peaked around 180 ms, only 

10–20 ms after the main response to lexical frequency. This is consistent with the 

observations in two-word studies that composition-related activity can have a short latency, 

peaking 225 to 250 ms after visual word onset (Bemis & Pylkkänen, 2011, 2012; Westerlund 

et al., 2015). Together, these observations support the notion that lexical information is 

integrated quickly with the information that is already available from the preceding speech 

signal.

More generally, previous research suggests that low-frequency phase-locked brain activity is 

related to higher levels of language processing, consistent with higher level information 

occurring at slower rates (e.g. Ding, Melloni, Zhang, Tian, & Poeppel, 2015). In the present 

analysis, this is reflected in the predictor variables for word frequency and semantic 

composition, which are both dominated by temporal variations in the delta band (1–3 Hz). 

However, the linear filter model implies that a predictor cannot predict brain activity at 

frequencies it does not model; While the present results are thus consistent with low 

frequency phase locked activity in higher level language comprehension, this is a 

consequence of the model, and does not preclude the possibility of a cognitive process that 

could be modeled at higher frequencies. A challenge for future work will be modeling 

predictors for different aspects of the comprehension processes more accurately.

4.2 Using source localization with linear kernel estimation

Our results confirm the viability of combining source localization with linear kernel 

estimation to estimate brain responses to continuous stimuli. Significant contributions from 

different stimulus variables could be identified, and response functions provided more 

details on the anatomical and temporal properties of the brain’s response.

The present analysis described neural response functions by testing for responses that were 

significantly non-zero across participants. While this is useful for demonstrating that brain 

activity tracks a given stimulus variable at all, and for determining which brain regions are 

involved in processes related to this variable, more fine-grained analyses will be possible by 

comparing response functions to the same variable under different experimental conditions. 

Such statistical analysis would be a straightforward extension of the approach shown here, 
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replacing the one-sample t-tests used for analyzing the response functions with two sample 

t-tests or ANOVAs. The present analysis suggests that robust response functions can be 

estimated from just 6 minutes of MEG data per subject, demonstrating that future 

experiments could estimate response functions for multiple experimental conditions.

Robust responses were discovered for predictor variables reflecting not only acoustic 

properties of the speech stimulus, but also lexical and semantic properties, attesting to the 

possibility of studying not only sensory, but also cognitive processing of continuous stimuli. 

Computing response functions for source localized data allowed us to separate the brain 

responses associated with different properties of the same speech stimulus anatomically. In 

addition, response functions revealed dynamics over the course of the response to each 

variable, with different brain regions responding at different latencies. Based on the fact that 

the temporal resolution of MEG source estimates exceeds their spatial resolution, it should 

be possible to identify different neural sources by the unique sources of variation over the 

time courses at different dipoles. We tested two such methods, hierarchical clustering and 

sPCA, with largely convergent results. On the whole, though hierarchical clustering leads to 

simpler visualization (see Figure 7), sPCA has the advantage of preserving current direction 

and allowing for spatially overlapping components. As a consequence, sPCA is able to 

separate underlying sources more cleanly, and is not susceptible to halos and blended 

clusters. For example, sPCA modeled the M50/M100 distinction as two overlapping 

components (A1pca and A4pca), whereas hierarchical clustering resulted in three clusters, 

with an additional cluster for the region of overlap blending both components (A4cl–A6cl).

While the correlation between the acoustic predictor variable and the lexical and semantic 

variables was relatively low (r ≤ .09), the correlation between word frequency and semantic 

composition was higher (r = .39). This underlines the importance of modeling contributions 

from different predictors together, rather than independently. The present approach using 

boosting addresses this issue in two ways: First, one multidimensional kernel is estimated to 

predict the response from all predictors simultaneously, i.e., the predictors compete for 

explaining variance in the response. And second, by fitting a permuted baseline model for 

each predictor, we specifically test that adding the predictor improves the model after 

accounting for the other predictors of the full model.

The ability to detect temporally and anatomically distinct response components offers new 

possibilities for future research. Often, distinct response components correspond to different 

cognitive processing steps. For example, two response components to the speech envelope 

with peaks around 50 and 100 ms differ in their sensitivity to attention, suggesting that only 

the latter is sensitive to top-down attentional modulation and thus reflects a more invariant 

auditory object representation (Ding & Simon, 2012a). Thus, the ability to distinguish 

response components is instrumental in delineating cognitive processing stages.

For analyzing response to continuous stimuli this technique complements fMRI, which can 

localize slower hemodynamic changes with high spatial accuracy, but does not have the 

temporal resolution of MEG critical for rapidly evolving processes like language 

comprehension. For example, a study that assessed similar variables with fMRI (Brennan et 

al., 2012) sampled neural data and predictors at 0.5 Hz. The hemodynamic response was 
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directly compared with predictor variables convolved with the hemodynamics response 

function, without modeling dynamic response functions for neural responses. While fMRI 

thus allowed more accurate anatomical localization, it did not allow comparisons involving 

the temporal evolution of the neural responses as were revealed by our results. For example, 

while fMRI could localize the effects of word frequency to the left temporal and frontal 

cortices (Brennan et al., 2016), our results detected a temporal progression, with temporal 

lobe responses preceding frontal lobe responses.

4.3 Limitations

A major limitation of distributed minimum norm estimates of MEG employed here is the 

comparably low spatial accuracy. Ultimately, the actual accuracy depends on a variety of 

factors, from the MEG system used to the choice of inverse solution, and is not uniform 

across the brain (see e.g. Hauk et al., 2011). This issue directly affects the analyses presented 

here, and results should be interpreted accordingly. The issue of spatial dispersion can be 

partly addressed by using the estimated current time course to group dipoles that are likely 

to reflect the same underlying neural source. We showed that two such methods, clustering 

and sPCA, provided useful summaries of the response functions. A comparison of sPCA 

components with the point spread function (Figure 3) suggests that many sPCA components 

could potentially be the result of a single localized neural source. In sum, while informative 

at larger scales, localization results should be interpreted with care at a scale below a few 

tens of millimeters.

A related limitation specific to the present study is the substitution of scaled average brains 

for source reconstruction. Structural MRIs, when available, would allow source estimates to 

be computed on more accurate, subject-specific anatomical models.

Finally, a number of specific data processing methods used in the current analysis could 

easily be exchanged for alternatives. In particular, the present analysis uses boosting to 

estimate response functions; other methods, such as ridge regression (Lalor et al., 2006), 

would constitute viable alternatives and might even be better suited for different designs. 

Similarly, the present analysis was based on assuming a linear filter model, but it could be 

extended to nonlinear filters to test more advanced hypotheses.

5 Conclusion

We demonstrated that linear kernel estimation can be combined with distributed minimum 

norm source estimates to map brain response to continuous speech in time and anatomical 

space. While we developed and tested this technique for studying speech processing, it is 

applicable to other continuous stimuli. Kernels can be estimated with multiple predictor 

variables competing for explanatory power, which makes it possible to model responses to 

suspected covariates and test whether variables of interest explain variance in the responses 

above and beyond the covariates. This makes it amenable to investigate a range of sensory 

and cognitive processes with more natural stimuli than hitherto possible.
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Figure 1. 
Linear filter model. The linear filter model r = h * s assumes that the response r is the 

convolution of the stimulus s with a response function, or kernel h. A) Illustrates the linear 

filter model for a simple stimulus with three discrete impulses. Since the impulses are 

spaced far apart relative to the size of the kernel, the shape of the kernel is apparent in the 

response. B) If the stimulus varies continuously, the convolution leads to a response in which 

the kernel is not discernible by eye. The response shown is obtained by convolving the 

stimulus with the same kernel as in A. C) If the stimulus as well as the response are known, 

different methods exist to estimate a kernel that optimally predicts the response given the 
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stimulus. In the illustration, the simulated response is obtained by convolving the stimulus 

with the kernel shown under A and adding noise. The kernel is then estimated from the 

stimulus and the simulated response using boosting (see Methods). The modeled response, 

i.e. the stimulus convolved with the estimated kernel, can be compared to the actual response 

to determine the explanatory power of the model.
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Figure 2. 
Stimulus coding for kernel estimation. Illustration of the first 4 seconds of one of the two 

speech stimuli. The text at the top indicates the transcript; the next four lines show the raw 

acoustic waveform data and the three continuously coded predictor variables. The bottom 

illustrates the source localized MEG data from three arbitrary source dipoles from a 

representative participant, averaged across the three presentations of the stimulus. The 

analysis modeled the brain signal at each source dipole based on the three predictor variables 

using convolution with a kernel of 1 second length.
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Figure 3. 
Point spread function. The point spread function is a theoretical estimate of the maximum 

spatial precision that can be expected in MEG source estimates. It is specific to a given 

MEG sensor configuration and head geometry; these plots are based on the specific details 

of the present study. Given that both forward operator and inverse operator are linear matrix 

operators, transforming data from source space to sensor space and back, forward and 

inverse operators can be combined to give the hypothetical source estimate for a single 

active dipole (left). Point spread functions can be locally summed to give the hypothetical 

source estimate for an area of active dipoles (middle). Finally, individual subjects’ point 

spread functions can be combined for an estimate of the spatial accuracy of group results 

(right). In the plots above, active dipoles are circled in yellow. Source current was 

normalized so that the sum of all currents was 1 in each of the 3 plots. Forward and inverse 

solutions were taken from the 17 subjects whose data were analyzed.
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Figure 4. 
Significant model contributions. Each predictor variable was assessed for significant model 

contributions by comparing the fit of the full model to a model in which the predictor under 

investigation was temporally misaligned with the response. Each plot shows the difference in 

correlation-coefficient between the correct and the misaligned model at each dipole. Maps 

are thresholded by statistical significance, corrected for multiple comparisons across the 

whole brain, at p = .001 for the acoustic envelope and p = .05 for word-related predictors 

(the different thresholds account for the difference in signal to noise ratio in the neural 

representation of the predictors, and are used for graphical display purposes only).
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Figure 5. 
Acoustic envelope response function. Each black line reflects the response function at one 

virtual current dipole, averaged across subjects. Lines are separated by whether the 

corresponding dipole is part of the left or the right hemisphere. All values not significant at 

the 5% level, corrected across the whole brain, were set to zero. Anatomical plots show 

current distributions at visually obvious peaks, as well as peaks that emerged in the 

clustering analysis. Anatomical plots are rendered on the inflated surface of the fsaverage 

brain (for anatomical labels see Desikan et al., 2006). Numbers next to brain plots indicate 

time in ms.
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Figure 6. 
Word-related response functions. Plots are analogous to, and scale is identical with Figure 5. 

Areas of significant lateralization are indicated with yellow on the hemisphere with higher 

amplitude in the anatomical plots. The only plot with significant lateralization is the left 

hemisphere for word-frequency at 170 ms.
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Figure 7. 
Responses grouped with hierarchical clustering. Each cluster is plotted with a color 

corresponding to the time course plot in the same color (with arbitrary numbering). The 

normalized activation (alpha) of the cluster reflects relative source amplitude within the 

cluster. The time course was computed as a weighted average of source time course, with 

weights determined by norm of each source. Clusters are labeled with a prefix corresponding 

to the predictor: (A) acoustic envelope, (L) lexical frequency, (S) semantic composition.
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Figure 8. 
Acoustic response sparse PCA. Anatomical plots show the weights in the sPCA components, 

and time courses show the loading of the response function on the relevant component at 

each time point. All components are normalized such that the largest absolute value on each 

anatomical map is 1, and the time courses are shown to scale relative to each other. The sign 

of the components is inherently arbitrary, because simultaneously flipping the sign of a 

component and the corresponding time course leads to identical results; to make the 

components more comparable, the sign of overlapping components was manually adjusted 

to align the current direction in the area of overlap.
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Figure 9. 
Word-related response sparse PCA. Details as in Figure 8, except that the response time 

courses were scaled by a factor of two.
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