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Abstract

Activated fibroblasts are key players in the injury response, tumorigenesis, fibrosis, and 

inflammation. Dichotomous outcomes in response to varied stroma-targeted therapies in cancer 

emphasize the need to disentangle the roles of heterogeneous fibroblast subsets in physiological 

and pathophysiological settings. In wound healing, fibrosis, and myriad tumor types, fibroblast 

activation protein (FAP) and alpha-smooth muscle actin (αSMA) identify distinct, yet overlapping, 

activated fibroblast subsets. Prior studies established that FAPHi reactive fibroblasts and αSMAHi 

myofibroblasts can exert opposing influences in tumorigenesis. However, the factors that drive this 

phenotypic heterogeneity and the unique functional roles of these subsets have not been defined. 

We demonstrate that a convergence of ECM composition, elasticity, and transforming growth 

factor beta (TGF-β) signaling governs activated fibroblast phenotypic heterogeneity. Furthermore, 

FAPHi reactive fibroblasts and αSMAHi myofibroblasts exhibited distinct gene expression 

signatures and functionality in vitro, illuminating potentially unique roles of activated fibroblast 

subsets in tissue remodeling. These insights into activated fibroblast heterogeneity will inform the 

rational design of stroma-targeted therapies for cancer and fibrosis.
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1.1 Introduction

In development and homeostasis, fibroblasts synthesize extracellular matrix (ECM), which 

regulates cell differentiation and behavior. As sentinel cells, fibroblasts respond to injury and 

neoplasia by differentiating to highly secretory, proliferative, or contractile phenotypes. This 
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heterogeneous activated fibroblast population orchestrates injury resolution. However, in 

fibrosis and cancer, the aberrant accumulation of activated fibroblasts and ECM disrupts 

organ function [1–5].

Fibroblast activation protein (FAP) is a marker of activated fibroblasts in the injury 

response[6], fibrotic and inflammatory conditions [7–9], and myriad tumor types [10–14]. In 

most epithelial-derived tumors, FAP and alpha smooth muscle actin (αSMA; the canonical 

myofibroblast marker) identify distinct, yet overlapping, fibroblast subsets [11,12,15–17]. 

Importantly, FAPHi fibroblasts and αSMAHi myofibroblasts diverge in their impact on 

tumorigenesis. FAPHi fibroblasts accelerate the growth of multiple tumor types by 

promoting intratumoral desmoplasia, angiogenesis, and immunosuppression [11,18–20]. In 

contrast, αSMAHi myofibroblasts reportedly can curb pancreatic cancer aggressiveness by 

restraining epithelial-mesenchymal transition, cancer stem cell generation, and 

immunosuppression [15]. FAP and αSMA similarly mark distinct fibroblast subsets in 

fibrotic conditions, including idiopathic pulmonary fibrosis and liver cirrhosis [7,8]. 

However, the conditions regulating this phenotypic heterogeneity and the unique functional 

roles of these phenotypically distinct subsets are not yet known. Disentangling these 

complexities will clarify the roles of heterogeneous fibroblast subsets in physiological and 

pathophysiological settings.

ECM composition and mechanics exhibit spatiotemporal heterogeneity in acute injury, 

fibrosis, and cancer [21–26]. Notably, both granulation tissue and intratumoral desmoplasia 

evolve from elastic, fibronectin (FN)-rich to stiff, collagen I (COL 1)-rich ECM [25,27–30]. 

Therefore, we hypothesized that ECM properties directly regulate fibroblast heterogeneity. 

To test this hypothesis, we assessed fibroblast activation on substrata of defined stiffness and 

composition. Gene expression analysis revealed distinct signatures, illuminating potentially 

unique functional roles of FAPHi fibroblasts and αSMAHi myofibroblasts in tissue 

remodeling, consistent with the distinct functionalities we observed in vitro. These insights 

will help foster the rational design and clinical application of stromal cell-targeted therapies 

in cancer and fibrosis.

1.2 Results

1.2.1 Substratum directs activated fibroblast phenotypic heterogeneity

Primary murine adult pulmonary fibroblasts were cultured on tissue culture-treated plastic 

for 2 passages, which generated a heterogeneous population of activated fibroblasts with 

variable levels of FAP and αSMA (data not shown). These fibroblasts were reseeded on 

plastic and the impact of soluble mediators thought to promote fibroblast activation [31–33] 

on Fap and Acta2 (αSMA) gene expression was assessed. Consistent with prior studies [5], 

treatment with a variety of fibrotic and inflammatory mediators (in 1% serum to minimize 

exogenous growth factors) modulated Acta2 expression (Table S1). Unexpectedly, none of 

these mediators modulated Fap expression, except ascorbic acid, which promoted Fap 
expression at both the mRNA (Table S1 and Fig. 1A) and protein level (Fig. 1B).

Ascorbic acid (Vitamin C), an essential cofactor for lysyl and prolyl hydroxylation, 

promotes stable deposition of collagen (Fig. 1C) by ensuring proper folding of its triple 
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helical structure [34]. Thus, we hypothesized that ascorbic acid regulates FAP expression by 

promoting ECM deposition. To test this hypothesis, fibroblasts were cultured on FN- and 

fibrillar collagen-rich fibroblast-derived matrices (FDMs), which had a mean elasticity of 

1.5 kPa (Figs. 1D and S1). Interestingly, relative to culture on plastic, fibroblasts cultured on 

FDMs markedly up-regulated Fap gene expression (Fig. 1E). Flow cytometric analysis 

further demonstrated that culture on FDMs versus plastic enriched for FAPHi fibroblasts 

(Fig. 1F). Moreover, a concomitant reduction in αSMAHi fibroblasts was observed on FDMs 

versus plastic (Fig. 1F). These data demonstrate that varying substrata can enrich for 

phenotypically distinct subsets of activated fibroblasts.

1.2.2 ECM composition and elasticity govern activated fibroblast phenotypic heterogeneity

Compared to plastic, FDMs constitute a more physiologically relevant substratum with 

respect to multiple parameters, including ECM compliance, architecture, and composition 

[35]. To delineate the roles of ECM elasticity and composition in driving activated fibroblast 

heterogeneity, we employed polyacrylamide hydrogels (where ECM ligand and elasticity 

can be independently controlled [36]). We primarily utilized 2 and 20 kilopascal (kPa) 

hydrogels, which encompasses the range of stiffness found in pathophysiological conditions, 

including tumors and lung fibrosis [23,24]. Hydrogels were coated with FN or COL I to 

simulate early versus late stages, respectively, of wound repair, fibrosis, and tumorigenesis 

[27–29,37].

The elasticity of FN-coated hydrogels impacted fibroblast morphology, with reduced cell 

spreading and cytoskeletal organization after 72 hours of culture on 2 versus 20 kPa FN-

coated hydrogels (Fig. 2A), consistent with previous reports [38,39]. Compared to 20 kPa 

FN-coated hydrogels, 2 kPa FN-coated hydrogels promoted higher FAP and lower αSMA 

expression, at the mRNA (Fig. 2B) and protein (Fig. 2C) level. Across the 

pathophysiological stiffness range, Fap gene expression inversely correlated, while Acta2 
gene expression directly correlated with the stiffness of FN-coated hydrogels (Fig. 2D, top 

panel). The full spectrum of activated fibroblast phenotypic differentiation 

(FAPHiαSMALow, FAPHiαSMAHi, and FAPLowαSMAHi subsets) was observed on 2, 5, 12, 

and 20 kPa FN-coated hydrogels, as evidenced by flow cytometric analysis at the single cell 

level (Fig. 2D, bottom panel). However, our data clearly illustrate a shift in prevalence from 

the FAPHiαSMALow reactive fibroblast phenotype to the FAPLowαSMAHi myofibroblast 

phenotype with increasing stiffness (Fig. 2D, bottom panel).

Unlike FN-coated hydrogels, both 2 and 20 kPa COL I-coated hydrogels promoted cell 

spreading and actin stress fiber formation after 72 hours of culture (Fig. 2A). Moreover, both 

2 and 20 kPa COL I-coated hydrogels promoted low Fap and high Acta2 gene expression 

(Fig. 2B), thereby enriching for FAPLowαSMAHi myofibroblasts (Fig. 2E). Taken together, 

these data indicate that an integrated response to ECM composition and elasticity governs 

activated fibroblast heterogeneity.

1.2.3 FAPHi and αSMAHi fibroblasts exhibit morphologic and phenotypic plasticity

To assess the potential plasticity of these morphologic and phenotypic fibroblast subsets, we 

performed serial passage experiments. Specifically, fibroblasts were first cultured on either 2 
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or 20 kPa FN-coated hydrogels for 72 hours. These cells were recovered and then cultured a 

second time on either 2 or 20 kPa FN-coated hydrogels for an additional 72 hours.

By phase contrast microscopy, we found that the cell morphology associated with the first 

culture on 2 versus 20 kPa hydrogels (rounded versus spread cells, respectively) was 

retained when cultured on hydrogels of the same stiffness for a second time (Fig. 3A). In 

contrast, cells from 2 kPa hydrogels that were re-cultured on 20 kPa hydrogels displayed a 

morphology resembling that of cells initially cultured on 20 kPa hydrogels. Similarly, cells 

cultured on 20 kPa hydrogels that were re-cultured on 2 kPa hydrogels displayed a 

morphology resembling that of cells initially cultured on 2 kPa hydrogels. Combined, these 

data suggest that fibroblasts, with respect to their cell morphology, possess the ability to 

switch phenotypes when changing from soft to stiff substrata, and vice versa. This was 

further supported by flow cytometric analysis (Fig. 3B): cell populations re-cultured on stiff 

hydrogels (2 to 20 kPa FN, or 20 to 20 kPa FN) were enriched for αSMA (αSMAHI), 

showing comparable levels of αSMA to those cells seeded on stiff hydrogels in the first 

culture (20 kPA FN). Furthermore, the cell populations re-cultured on stiff hydrogels were 

not enriched for FAP, even when originating from a FAPHi-enriched population (2 to 20 kPa 

FN).

1.2.4 Fibroblast differentiation in response to transforming growth factor beta (TGF-β) is 
governed by ECM composition and elasticity

To dissect the role of growth factors in regulating fibroblast heterogeneity, fibroblasts were 

cultured in low (1%) serum (to minimize exogenous growth factors) on FN- or COL I-coated 

hydrogels (2 or 20 kPa) for 72 hours. ECM stiffness regulated Acta2 expression, even in 1% 

serum (Fig. 4A). In contrast, Fap expression was comparably low in fibroblasts on all 

substrata in 1% serum (Fig. 4A), unlike in 10% serum (Fig. 2). Serum contains appreciable 

levels of TGF-β, a pro-fibrotic cytokine thought to promote fibroblast activation. Therefore, 

we investigated the role of TGF-β-mediated signaling in ECM-dependent regulation of FAP 

expression by using both gain- and loss-of-function approaches. Addition of recombinant, 

active TGF-β to 1% serum was sufficient to promote the FAPHiαSMALow reactive fibroblast 

phenotype on 2 kPa FN-coated hydrogels. Conversely, TGF-β promoted the 

FAPLowαSMAHi myofibroblast phenotype on 2 kPa COL I-coated hydrogels and 20 kPa 

hydrogels coated with either FN or COL I (Fig. 4A–B).

To determine whether generation of either activated fibroblast phenotype could be 

attenuated, fibroblasts in 10% serum were treated with calcipotriol, a vitamin D receptor 

(VDR) agonist that inhibits TGF-β/SMAD signaling via genomic competition and reverts 

activated stromal cells to more quiescent phenotypes [40]. The expression of Cyp24a1, a 

VDR target gene, was measured as a positive control for calcipotriol efficacy. Interestingly, 

calcipotriol induced higher Cyp24a1 expression in fibroblasts cultured on 2 versus 20 kPa 

FN-coated hydrogels (Fig. 4C), indicating that high ECM stiffness can confer resistance to 

calcipotriol. Furthermore, calcipotriol attenuated high Fap and Acta2 gene expression in 

fibroblasts on 2 and 20 kPa FN-coated hydrogels, respectively (Fig. 4C). These findings 

demonstrate that VDR agonists can curtail both activated fibroblast phenotypes.
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1.2.5 Neither ROCK nor FAK activity are required to induce the FAPHi reactive fibroblast 
phenotype

Both Rho kinase (ROCK) and focal adhesion kinase (FAK) activity can promote αSMAHi 

myofibroblast differentiation. ROCK activity facilitates the actin cytoskeletal reorganization 

necessary for myofibroblast differentiation in response to ECM stiffening [41]. FAK activity 

facilitates TGF-β-induced myofibroblast differentiation [42]. Furthermore, FN-mediated 

FAK activation depends on stiffness, since exposure of the cryptic FN synergy site requires 

mechanical tension [43]. Therefore, we assessed whether ROCK or FAK activity similarly 

regulate FAPHi reactive fibroblast differentiation. FAPHi fibroblasts (on 2 kPa FN) and 

αSMAHi myofibroblasts (on 20 kPa FN) were treated with a ROCK (Y-27632) or FAK 

(PF573228) inhibitor. As expected, ROCK inhibition attenuated actin stress fiber formation 

(Fig. S2A) and Acta2 expression (Fig. S2B) on 20 kPa FN-coated hydrogels. In contrast, 

ROCK inhibition had no effect on Fap expression on 2 or 20 kPa FN-coated hydrogels (Fig. 

S2B). Treatment with PF573228 diminished FAK activity, as indicated by reduced phospo-

FAKTyr397 levels (Fig. S2C). However, FAK inhibition did not revert either the FAPHi or 

αSMAHi phenotype on 2 or 20 kPa FN, respectively (Fig. S2D). Thus, FAK activity does 

not appear to be required for the induction of either activated fibroblast phenotype in 

response to changes in the elasticity of FN-coated hydrogels.

1.2.6 Gene expression profiling indicates that FAPHi reactive fibroblasts predominantly 
synthesize and proteolyze ECM, while αSMAHi myofibroblasts mediate contraction

To identify potentially unique functional roles of fibroblast subsets in tissue remodeling, we 

compared gene expression profiles of fibroblasts cultured in 10% serum on 2 (enriched for 

FAPHi reactive fibroblasts) versus 20 (enriched for αSMAHi myofibroblasts) kPa FN-coated 

hydrogels. FAPHi fibroblasts exhibited a more ECM proteolytic phenotype, with higher gene 

expression of most matrix metalloproteinases (Mmps) and tissue plasminogen activator 

(Plat; Fig. 5A). Meanwhile, gene expression of most tissue inhibitors of metalloproteinases 

(Timps) was comparable or reduced in FAPHi compared to αSMAHi fibroblasts (Fig. 5A). 

FAPHi fibroblasts also exhibited higher gene expression of many ECM and matricellular 

constituents, including collagens I (Col1a1) and III (Col3a1), decorin (Dcn), extra domain A 

FN (EDA-Fn1), thrombospondin 2 (Thbs2), and osteopontin (Spp1; Fig. 5A–B). Notably, 

αSMAHi myofibroblasts on 20 kPa (FN- or COL1-coated) and 2 kPa COL 1-coated 

hydrogels exhibited comparably low gene expression of ECM proteases and components 

(Fig. S3). Thus, regardless of the stiffness and/or composition of the underlying substratum, 

αSMAHi myofibroblasts seem to consistently exhibit a tissue remodeling gene expression 

signature distinct from that of FAPHi fibroblasts. Collectively, these results implicate FAPHi 

fibroblasts in the dynamic ECM deposition and turnover characteristic of desmoplastic 

tissue.

On the other hand, FAPHi fibroblasts showed lower gene expression of constituents of the 

actomyosin contractile apparatus, such as smooth muscle myosin heavy chain (Myh11; Fig. 

5B) and beta actin (Actb; Fig. 5C). Furthermore, the gene expression of mediators known to 

promote fibroblast contractility, including caveolin-1 (Cav1) and endothelin (Edn1), was 

attenuated in FAPHi compared to αSMAHi fibroblasts (Fig. 5C). The reduced gene 

expression of most integrin subunits in FAPHi fibroblasts (Fig. 5C) also indicates reduced 
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contractile capacity, considering the necessity of integrins for fibroblasts to exert contractile 

force on ECM [25]. The gene expression of lysyl oxidase (Lox), an enzyme that crosslinks 

collagen, was also reduced in FAPHi fibroblasts (Fig. 5C). Taken together, these results 

suggest that FAPHi reactive fibroblasts have a diminished capacity to contract and crosslink 

ECM compared to αSMAHi myofibroblasts.

FAPHi reactive fibroblasts and αSMAHi myofibroblasts also diverged with respect to their 

gene expression of growth factors, inflammatory mediators, and regulators of cell cycle 

progression. Compared to αSMAHi myofibroblasts, FAPHi fibroblasts expressed lower 

mRNA levels of autocrine growth factors that can promote myofibroblast differentiation and 

expansion, including connective tissue growth factor (Ctgf), platelet derived growth factor α 
(Pdgfa), Tgfb2, and Tgfb3 (Fig. 5D). Conversely, FAPHi fibroblasts expressed higher mRNA 

levels of hepatocyte growth factor (Hgf), a paracrine growth factor known to promote 

epithelial proliferation and survival (Fig. 5D). FAPHi fibroblasts also expressed higher 

mRNA levels of most inflammatory mediators assessed in our fibrosis array, however, they 

were expressed at low levels, exhibited relatively high variability, and did not achieve 

statistical significance at a confidence level of 95% (Table S2). Lastly, FAPHi fibroblasts 

exhibited lower gene expression of pro-proliferative transcription factors, such as jun 

oncogene (Jun; Fig. 5D) and myelocytomatosis oncogene (Myc; Fig. 5D), and mediators of 

cell cycle progression, such as cyclin A2 (Ccna2; Fig. 5B), suggestive of a less proliferative 

phenotype.

We then performed functional assays to corroborate the unique functionality of αSMAHi and 

FAPHi fibroblasts indicated by gene expression profiling. Assessment of cellular gelatinase 

activity using DQ gelatin demonstrated that FAPHi fibroblasts exhibited higher gelatinase 

activity than αSMAHi myofibroblasts (Figs. 5E and S4). Furthermore, atomic force 

microscopy demonstrated that FAPHi fibroblasts exhibit lower intracellular tension than 

αSMAHi myofibroblasts (Fig. 5F). Taken together with our gene expression data, these 

results further suggest that FAPHi fibroblasts display a more highly ECM proteolytic 

phenotype than the more highly contractile αSMAHi myofibroblasts.

1.3 Discussion

In summary, we delineated features of remodeling tissues that direct activated fibroblast 

heterogeneity. In our proposed model (Fig. 6), a convergence of ECM composition, 

elasticity, and TGF-β signaling governs FAPHiαSMALow, FAPHiαSMAHi, and 

FAPLowαSMAHi fibroblast phenotypic heterogeneity. These data help explain the activated 

fibroblast heterogeneity observed in vivo, where FAP and αSMA identify distinct, yet 

overlapping, fibroblast subsets. This heterogeneity likely stems from the spatiotemporally 

dynamic variation in ECM composition and elasticity in injury, fibrosis, and cancer [21–

26,28]. Furthermore, our data from gene expression profiling and functional tests indicate 

potentially unique functionality of these fibroblast subsets in tissue remodeling. FAPHi 

reactive fibroblasts exhibited an ECM synthetic and proteolytic phenotype, while αSMAHi 

myofibroblasts exhibited a contractile and proliferative phenotype.
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Extrapolating our model to the well-characterized progression of acute injury resolution [22] 

illuminates ECM-dependent regulation and diverse functionality of fibroblast subsets in 

tissue remodeling. In early wounds, the highly elastic, FN-rich environment likely promotes 

FAPHi fibroblast differentiation. The gene expression and functional profile of FAPHi 

fibroblasts suggests that they orchestrate early phases of wound resolution by secreting: (1) 

ECM proteases to facilitate cell migration into the wound, (2) paracrine growth factors to 

support re-epithelialization, and (3) ECM and matricellular components to replace 

provisional ECM with COL 1-rich connective tissue. Thereafter, the stiff, COL 1-rich 

environment of late granulation tissue likely promotes αSMAHi myofibroblast 

differentiation. The gene expression and functional profile of αSMAHi myofibroblasts 

suggests that they orchestrate late phases of wound resolution, including fibro-proliferation 

(via secretion of autocrine growth factors) and wound closure (via contraction). We are now 

conducting studies utilizing murine models of tissue injury to assess this proposed model of 

temporal regulation and diverse functionality of FAPHi and αSMAHi fibroblasts in wound 

resolution.

Comparable regulation and functionality of FAPHi and αSMAHi fibroblast subsets likely 

occur in tumors, considering the parallels between the wound healing response and 

tumorigenesis [27–29]. Previous studies have characterized diverse mechanisms by which 

carcinoma-associated fibroblasts promote tumor growth. However, the diverse roles of 

fibroblast subsets in tumorigenesis remained unclear. Our gene expression and functional 

analysis suggests that FAPHi and αSMAHi fibroblasts diverge in their tumor-promoting 

functions. For example, αSMAHi myofibroblasts express higher mRNA levels of Lox, an 

enzyme that stiffens ECM by crosslinking collagen, which promotes focal adhesions, PI3K 

signaling, and consequently, tumor invasion [44]. αSMAHi myofibroblasts also exhibit 

higher gene expression of Cav1, which promotes Rho-dependent contraction, ECM 

alignment and stiffening, and consequently, tumor invasion [45]. Meanwhile, FAPHi 

fibroblasts exhibit higher gene expression of many tumor-promoting ECM proteases, 

including Fap itself and most Mmps. Extensive research has previously demonstrated 

fundamental roles of these stromal proteases in tumor invasion [46], angiogenesis [47,48], 

proliferation [47,49,50], and epithelial-mesenchymal transition [51,52]. Moreover, compared 

to αSMAHi myofibroblasts, FAPHi fibroblasts exhibit higher gene expression of Hgf, a 

previously described mechanism by which stromal fibroblasts promote oncogenesis and 

resistance to targeted cancer therapies [53,54].

Importantly, our study addresses the ongoing controversy regarding intratumoral fibroblasts 

as therapeutic targets [55,56]. A number of laboratories have employed diverse approaches 

to deplete FAPHi fibroblasts in murine tumor models [11,20,57–62]. Virtually all these 

studies illustrated that depletion of FAPHi fibroblasts disrupts desmoplastic stroma and 

impedes tumor progression, corroborating the data presented herein and the correlation 

between high FAP expression and poor prognosis in myriad solid tumor types [63–79]. On 

the contrary, the net effect of αSMAHi myofibroblasts in tumor progression remains 

obfuscated due to conflicting reports. Although many studies have demonstrated a pro-

tumorigenic role for αSMAHi myofibroblasts[80,81], one recent study utilizing αSMA-

thymidine kinase transgenic mice demonstrated that depletion of proliferating αSMAHi 

myofibroblasts (via systemic ganciclovir administration) accelerated pancreatic ductal 
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adenocarcinoma aggressiveness [15]. Importantly, αSMAHi myofibroblast depletion did not 

diminish the prevalence of FAPHi fibroblasts [15], a population that possesses unique tumor-

promoting capabilities. In contrast, FAPHi fibroblast depletion also eliminated most 

intratumoral αSMAHi myofibroblasts [11]. Thus, FAPHi fibroblast depletion may have 

demonstrated superior anti-tumor efficacy than αSMAHi myofibroblast depletion because it 

eliminated heterogeneous, tumor-promoting populations of activated fibroblasts. Alternately, 

the net benefit of FAPHi fibroblast depletion may have overcome the potential detrimental 

effect of αSMAHi myofibroblast depletion. Our results from serial passage experiments 

suggest that FAPHi and αSMAHi fibroblasts exhibit morphologic and phenotypic plasticity. 

However, future studies should further investigate the lineage, interdependence, and 

plasticity of these activated fibroblast subsets in vivo. FAPHi fibroblasts may facilitate the 

generation and/or recruitment of αSMAHi myofibroblasts, or myofibroblast precursors may 

express FAP.

Unraveling the complex regulation of fibroblast heterogeneity will hasten the successful 

application of therapies that target fibroblasts. In fact, our findings may help explain recent 

failures in clinical trials of a few molecularly targeted approaches. For example, simtuzumab 

(an antibody that blocks LOXL2 enzymatic activity) failed in clinical trials for colorectal 

adenocarcinoma [82], metastatic pancreatic adenocarcinoma[83], and idiopathic pulmonary 

fibrosis [84,85]. The clinical use of simtuzumab aimed to curb tumor and fibrosis 

progression by reducing ECM stiffness and myofibroblast generation. Our finding that 

FAPHi fibroblasts prevail at low stiffness might help explain the inefficacy of simtuzumab, 

considering the tumor- and fibrosis-promoting propensities of FAPHi fibroblasts. The 

attenuation of myofibroblast generation via inhibitors of sonic hedgehog signaling may have 

failed in clinical trials for similar reasons [86–88]. Intriguingly, calcipotriol-mediated 

blockade of TGF-β/SMAD signaling (currently being evaluated in clinical trials) has shown 

promise in pre-clinical models of both pancreatic ductal adenocarcinoma and liver cirrhosis 

[40,89]. We have now demonstrated that calcipotriol can attenuate fibroblast activation to 

both the FAPHi and αSMAHi phenotype, which helps explain the efficacy of calcipotriol in 

treating both fibrosis and cancer. Overall, our findings underscore the importance of 

comprehensive monitoring of heterogenous fibroblast populations in response to stroma-

targeted therapies to identify optimal treatment modalities.

1.4 Methods

1.4.1 Isolation of murine lung fibroblasts

Lungs were harvested from 10- to 16-week-old male or female C57BL/6 (Charles River) 

mice. Lungs were finely minced, then digested in a cocktail of collagenases I, II, and IV 

(Worthington; each at 250 μg/ml in DMEM) at 37°C for 2 hours. The collagenase solution 

was quenched with an equivalent volume of 10% heat-inactivated fetal calf serum (FCS) 

DMEM. The digested tissue was sequentially strained through 70 and 40 μm cell strainers 

then spun at 1200 r.p.m. for 10 minutes at 4°C. The cell pellet was re-suspended in 10% FCS 

DMEM (containing HEPES, L-glutamine, penicillin-streptomycin, fungizone, and 

gentamicin) and plated on tissue culture-treated plastic (polystyrene). Cells were maintained 

at 37°C with 5% CO2 in a humidified incubator. The next day, cell monolayers were washed 
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several times with PBS to remove non-adherent cells. Cells were maintained in 10% FCS 

DMEM on tissue culture-treated plastic for two passages. Second passage fibroblasts were 

used for all experiments.

1.4.2 Fibroblast-derived matrices (FDMs)

Decellularized FDMs were generated as described previously [90], using murine lung 

fibroblasts cultured at confluence in the presence of 75 μg/ml ascorbic acid for 8 days.

1.4.3 Hydrogels

Polyacrylamide hydrogels of varying stiffness were prepared and coated overnight at 4°C 

with bovine FN (EMD Millipore; 5 μg/ml) or COL I (PureCol; Advanced BioMatrix; 10 

μg/ml) as described previously [36]. Hydrogels were rinsed twice with PBS and unreacted 

N-hydroxysuccinimide was blocked with 1 mg/ml heat-inactivated bovine serum albumin in 

serum-free DMEM for 30 minutes at 37°C. Hydrogels were rinsed twice with PBS before 

cell seeding.

1.4.4. RNA isolation and quantitative real-time polymerase chain reaction (qRT-PCR)

Cells were rinsed with PBS, lysed in 1 ml Trizol (Invitrogen), and processed for RNA 

extraction according to manufacturer’s instructions. After quality assessment by agarose gel 

electrophoresis, reverse transcription was performed following the standard protocol for the 

TaqMan Reverse Transcription kit (Applied Biosystems). Transcript levels were assayed via 

the StepOnePlus Real-Time PCR System (Applied Biosystems) using SYBR Green 

(Invitrogen). mRNA levels for all genes of interest were normalized to Hprt1 mRNA levels. 

Primer sequences: Fap-F, 5’-cacctgatcggcaatttgtg; Fap-R, 5’-cccattctgaaggtcgtagatgt; Acta2-

F, 5’-ccagagcaagagagggatcct; Acta2-R, 5’-tgtcgtcccagttggtgatg; Hprt1-F, 5’-

tgacactggtaaaacaatgca; Hprt1-R, 5’-ggtccttttcaccagcaagct; Tnc-F, 5’-ggacttacgggtgtctgaaacc; 

Tnc-R, 5’-tgaggcggtaacgatcaaact; Cyp24a1-F, 5’-ccagcggctagagatcaaac; Cyp24a1-R, 5’-

cacgggcttcatgagtttct; Spp1-F, 5’-ccctcgatgtcatccctgtt; Spp1-R, 5’-tgccctttccgttgttgtc; Myh11-

F, 5’-gacaactcctctcgctttgg; Myh11-R, 5’-gctctccaaaagcaggtcac; Ccna2-F, 5’-

tggatggcagttttgaatcacc; Ccna2-R, 5’-ccctaaggtacgtgtgaatgtc; EDA-Fn1-F, 5’-

cgagccctgaggatggaat; EDA-Fn1-R, 5’-agctctgcagtgtcgtcttcac; Has2-F, 5’-

cggtcgtctcaaattcatctg; Has2-R, 5’-acaatgcatcttgttcagctc; Col1a1-F, 5’-

cccaaggaaaagaagcacgtc; Col1a1-R, 5’-acattaggcgcaggaaggtca; Col3a1-F, 5’-

gaaagagtggtgacagaggag; Col3a1-R, 5’-tgatgccattagagccacg; Mmp2-F, 5’-
cccatgaagccttgtttacca; Mmp2-R, 5’-tggaagcggaacgggaact.

1.4.5 Fibrosis gene expression array

RNA was extracted as described above. RNA purification was performed following the 

standard protocol for the RNeasy Mini Kit with on-column DNase digestion (Qiagen). After 

quality assessment by agarose gel electrophoresis, cDNA was synthesized (using 1 μg RNA 

per sample) with the RT2 First Strand Kit (Qiagen). Both RNA and cDNA quality were 

confirmed using the Murine RT² Profiler Quality Control Array (Qiagen). Transcript levels 

were assessed with the RT² Profiler Mouse Fibrosis PCR Array (Qiagen) using RT2 Sybr 
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Green ROX qPCR Mastermix (Qiagen). RNA levels for all genes of interest were 

normalized to β2 microglobulin (β2M) mRNA levels.

1.4.6 Flow cytometry

For hydrogel (Figs. 2–4) and Vit. C (Fig 1B) experiments, cells were trypsinized to obtain a 

single cell suspension. For FDM experiments (Fig. 1F), cells (on plastic or FDM) were 

trypsinized, and then incubated with 500 μg/ml collagenase I (Worthington) for 30 minutes 

at 37°C to obtain a single cell suspension. Flow cytometric analyses were performed on an 

LSR-Fortessa using FACSDiva software (BD Bioscience) and data were analyzed using 

FlowJo (Tree Star).

1.4.7 Antibodies used for flow cytometry

Biotinylated anti-FAP (Clone 73-3) antibody was generated in-house, and detected using 

Streptavidin-APC (BioLegend). The specificity of the anti-FAP antibody was verified based 

on reactivity with cells from wild-type but not FAP-null mice. Dead cells were excluded by 

using the Live/Dead Fixable Violet Dead Cell Stain Kit (Molecular Probes). Staining with 

anti-αSMA antibody (Sigma, clone1A4, FITC) was performed after permeabilizing cell 

suspensions with the Cytofix/Cytoperm Fixation/Permeabilization Kit (BD Biosciences), as 

per the manufacturer’s instructions.

1.4.8 Treatment with inhibitors or soluble factors

For indicated experiments, cells were treated with recombinant human active TGF-β 
(R&D), PF573228 (Tocris), Y-27632 (Sigma), calcipotriol (Tocris), L-ascorbic acid (Vit. C; 

Fisher), basic fibroblast growth factor (bFGF; Peprotech), interleukin (IL)-1β (Peprotech), 

IL-3 (Peprotech), interferon gamma (IFNγ; R&D), IL-6 (Peprotech), tumor necrosis factor 

alpha (TNFα; Peprotech), high molecular weight hyaluronan (HMW HA; Healon), low 

molecular weight hyaluronan (LMW HA; ICN Biochemicals), periostin/OSF-2 (R&D), 

buthionine-sulfoximine (BSO; Sigma), tiron (Sigma), trichostatin A (Sigma), pleiotrophin 

(R&D), angiotensin II (Sigma), and platelet-derived growth factor-bb (PDGFbb; 

Calbiochem).

1.4.9 Immunoblot

Total cell lysates were prepared from fibroblasts cultured on hydrogels by placing coverslips 

face down on 4X NuPAGE LDS Sample Buffer (Invitrogen; supplemented with 10 mM 2-

mercaptoethanol) for 2 minutes. Cell lysates were then heated at 70°C for 10 minutes. Equal 

amounts of extracted protein were resolved on NuPAGE 4–12% Bis-Tris gels (Invitrogen) 

and the fractioned proteins were transferred onto PVDF membranes. Membranes were 

probed with antibodies to FAK (Cell Signaling, 3285) and phospo-FAKTyr397 (Cell 

Signaling, 3283), followed by HRP-conjugated goat anti-rabbit secondary antibody (Sigma, 

A0545).

1.4.10 Microscopy

Imaging of fibrillar collagen in decellularized fibroblast-derived matrices was based on 

second harmonic generation utilizing a Leica SP5 confocal/multiphoton microscope (Leica 
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Microsystems) at 20X magnification, as described previously[91]. Immunofluorescent (IF) 

and phase contrast images were obtained with a Nikon Eclipse Ti-E inverted microscope at 

10X (FN, phase contrast) or 20X (phalloidin; DQ gelatin, phase contrast) magnification.

1.4.11 Hydroxyproline assay

Collagen content in FDMs produced by lung fibroblasts (in the presence or absence of 75 

μg/ml ascorbic acid) was quantified by measuring hydroxyproline levels (normalized to cell 

number as measured by calcein AM levels), as previously described[92].

1.4.12 IF

For FN IF, FDMs produced by lung fibroblasts were incubated with rabbit anti-FN antibody 

(Sigma, Clone F3648), followed by Alexa Fluor 658 goat anti-rabbit antibody (Invitrogen). 

For visualization of the actin cytoskeleton, lung fibroblasts on 2 and 20 kPa hydrogels were 

fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton-X-100, then stained with 

Alexa Fluor 594-conjugated phalloidin (Molecular Probes) and DAPI.

1.4.13 Atomic Force Microscopy

The elastic moduli of cells, FDMs, and hydrogels were measured using a Catalyst Bioscope 

AFM mounted on a Nikon Eclipse TE 200 microscope. Samples were indented with a 

standard silicon nitride cantilever (spring constant =0.07 N/m) with a 1 μm spherical tip 

using a maximum force of 7 nN. AFM force curves were analyzed by fitting the sample 

indentation to the Hertz model for a sphere making contact with a homogeneous elastic half 

space. Three measurements of intracellular stiffness were collected at regions of the cell 

between the nucleus and the periphery, and ten cells were measured per condition. AFM 

force curves were analyzed and converted to Young’s modulus using NanoScope Analysis 

software from Bruker.

1.4.14 Gelatinolysis Assay

Cells were seeded onto 2 or 20 kPa FN-coated hydrogels and incubated for 48 hours. 

Growth medium was then removed and replaced with a 1:1 ratio of growth medium:reaction 

buffer (50 mM Tris, 150 mM NaCl, 5 mM CaCl2, 0.2 mM NaN3) containing 20 μg/ml DQ 

gelatin (D12054, Thermofisher). Cells were incubated for a further 24 hours before being 

fixed with 4% paraformaldehyde, and counter-stained with DAPI. Hydrogels were imaged in 

phase contrast / fluorescence at 20x magnification. DQ intensity levels were analyzed using 

NIS Elements software as follows: integrated fluorescent intensity levels for DQ gelatin 

were calculated per cell (150 cells per group; 2 groups per experiment; 3 independent 

experiments). Mean relative DQ intensities per cell area were then calculated for the 3 

independent experiments.

1.4.15 Statistics

All results are reported as mean (of the indicated number of independent experiments) +/− 

standard error of the mean (SEM). Statistical analysis was performed using one-way 

analysis of variance (ANOVA) with the Tukey’s multiple comparison test or two-tailed 
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Student’s t test (Prism 7.0, GraphPad Software). Asterisks denote statistical significance: 

**** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.
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Highlights

• Fibroblast activation protein (FAP) and alpha-smooth muscle actin (αSMA) 

identify distinct, yet overlapping, activated fibroblast subsets in a variety of 

pathophysiological settings, including wound healing, fibrosis, and 

tumorigenesis.

• A convergence of extracellular (ECM) composition, elasticity, and 

transforming growth factor beta (TGF-β) signaling governs activated 

fibroblast phenotypic heterogeneity.

• Low stiffness, fibronectin-rich ECMs promote the FAPHiαSMALow reactive 

fibroblast phenotype.

• Stiff and/or collagen I-rich ECMs promote the FAPLowαSMAHi 

myofibroblast phenotype.

• Gene expression profiling indicates unique functionality of FAPHi and 

αSMAHi activated fibroblast subsets in tissue remodeling.
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Figure 1. Substratum directs activated fibroblast phenotypic heterogeneity
QRT-PCR (A) and representative flow cytometric analysis (B) of FAP and αSMA 

expression in fibroblasts cultured in 10% serum on tissue culture-treated plastic in the 

presence or absence of 75 μg/ml ascorbic acid (Vit. C) for 4 days. Data were compiled from 

4 independent experiments and bar graphs depict the mean +/− SEM. (C) Collagen levels (as 

measured via hydroxyproline content) in FDMs deposited by fibroblasts in the presence or 

absence of 75 μg/ml Vit. C. Data were compiled from 2 independent experiments and bar 

graphs depict the mean +/− SEM. (D) Representative IF staining of FN and two-photon 

second harmonic generation imaging of fibrillar collagen in lung FDMs. QRT-PCR (E) and 

representative flow cytometric analysis (F) of FAP and αSMA expression in fibroblasts in 

10% serum on tissue culture-treated plastic or FDM for 4 days. Data were compiled from 4 

independent experiments and bar graphs depict the mean +/− SEM.
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Figure 2. ECM composition and elasticity govern activated fibroblast phenotypic heterogeneity
Representative phalloidin staining of the actin cytoskeleton (A) and Fap and Acta2 gene 

expression (B) in fibroblasts cultured in 10% serum on 2 versus 20 kPa FN- or COL I-coated 

hydrogels for 72 hours. Data were compiled from 4 independent experiments and bar graphs 

depict the mean +/− SEM. (C) Representative flow cytometric analysis, including 

quantification of relative median fluorescent intensities (MFI) for FAP and αSMA 

expression in fibroblasts cultured in 10% serum on 2 kPa (blue) versus 20 kPa (red) FN-

coated hydrogels for 72 hours. Data were compiled from 3 independent experiments and bar 

graphs depict the mean +/− SEM. (D) QRT-PCR (top) and flow cytometric analysis (bottom) 

of FAP and αSMA expression in fibroblasts cultured in 10% serum on 2, 5, 12, and 20 kPa 

FN-coated hydrogels for 72 hours. Data were compiled from 2 independent experiments and 

bar graphs depict the mean +/− SEM. (E) Representative flow cytometric analysis, including 

quantification of relative MFI for FAP and αSMA expression in lung fibroblasts cultured in 

10% serum on 2 kPa (blue) versus 20 kPa (red) COL I-coated hydrogels for 72 hours. Data 

were compiled from 3 independent experiments and bar graphs depict the mean +/− SEM.
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Figure 3. FAPHi and αSMAHi fibroblasts exhibit morphologic and phenotypic plasticity
Fibroblasts were serially cultured (in 10% FCS DMEM) first on either 2 or 20 kPa FN-

coated hydrogels for 72 hours, and then cells recovered by trypsinization from each of these 

groups were cultured for a second time on either 2 or 20 kPa FN-coated hydrogels for an 

additional 72 hours. At both rounds 1 and 2, cell monolayers were analyzed by phase 

contrast microscopy and cell suspensions were analyzed by flow cytometry. Representative 

phase contrast images (A) and flow cytometric analysis (B), including quantification of 

relative MFI for FAP and αSMA expression, are shown.
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Figure 4. Fibroblast differentiation in response to TGF-β is governed by ECM composition and 
elasticity
QRT-PCR (A) and flow cytometric analysis (B) of FAP and αSMA expression in fibroblasts 

that were seeded in 1% serum on 2 versus 20 kPa COL I- or FN-coated hydrogels, allowed 

to adhere overnight, and subsequently treated with 2 ng/ml TGF-β for 48 (A) or 72 hours 

(B). Data were compiled from 4 independent experiments and bar graphs depict the mean +/

− SEM. (C) QRT-PCR analysis of Fap, Acta2, and Cyp24a1 gene expression in fibroblasts 

that were seeded in 10% serum on FN-coated hydrogels (2 or 20 kPa), allowed to adhere 

overnight, and subsequently treated with calcipotriol (Cal; 100 or 500 nM) or vehicle control 

for 48 hours. Data were compiled from 3 independent experiments and bar graphs depict the 

mean +/− SEM.
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Figure 5. Gene expression profiling and functional tests indicate that FAPHi reactive fibroblasts 
predominantly synthesize and proteolyze ECM, while αSMAHi myofibroblasts mediate 
contraction
Comparison of gene expression profiles, assessed via Qiagen Fibrosis Gene Expression 

Array (A, C, and D) and independent qRT-PCR analyses (B), of fibroblasts cultured in 10% 

serum on 2 (FAPHi fibroblasts) or 20 kPa (αSMAHi fibroblasts) FN-coated hydrogels for 72 

hours. Relative gene expression (FAPHi/αSMAHi fibroblasts) of ECM proteases (A), ECM 

protease inhibitors (A), ECM and matricellular components (A and B), contractile mediators 

(B and C), integrin subunits (C), growth factors (D), and proliferative mediators (B and D). 

Data were compiled from 3 independent experiments and bar graphs depict the mean +/− 

SEM. (E) Quantification of relative DQ intensity of fibroblasts that were cultured on 2 or 20 

kPa FN-coated hydrogels for 48 hours, and then incubated with DQ gelatin for an additional 
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24 hours. Data were compiled from 3 independent experiments and bar graphs depict the 

mean +/− SEM. (F) Atomic force microscopy (AFM) measurements of intracellular tension 

in fibroblasts cultured in 10% serum on 2 or 20 kPa FN-coated hydrogels for 72 hours. Bar 

graph depicts the mean +/− SEM (n=10 cells).
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Figure 6. A convergence of ECM composition, elasticity, and TGF-β signaling governs activated 
fibroblast phenotypic heterogeneity
In FN-rich ECMs of low stiffness, TGF-β promotes the FAPHiαSMALow reactive fibroblast 

phenotype. Conversely, TGF-β promotes the FAPLowαSMAHi myofibroblast phenotype in 

the context of stiff and/or COL I-rich ECMs. Gene expression profiling indicates unique 

functionality of these divergent fibroblast subsets in tissue remodeling, with FAPHi reactive 

fibroblasts exhibiting an ECM synthetic and proteolytic phenotype, and αSMAHi 

myofibroblasts exhibiting a contractile and proliferative phenotype.
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