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Abstract

Purpose—The purpose of this work is to characterize the noise distribution of proton density fat 

fraction (PDFF) measured using chemical shift encoded magnetic resonance imaging (CSE-MRI), 

and to provide alternative strategies to reduce bias in PDFF estimation.

Theory—We derived the probability density function for PDFF estimated using CSE-MRI and 

found it to exhibit an asymmetric noise distribution that contributes to signal-to-noise (SNR) 

dependent bias.

Methods—To study PDFF noise bias we performed (at 1.5T) numerical simulations, phantom 

acquisitions, and a retrospective in vivo experiment. In each experiment, we compared the 

performance of three statistics (mean, median, and maximum likelihood estimator (MLE)) in 

estimating the PDFF in a region of interest.

Results—We demonstrated the presence of the asymmetric noise distribution in simulations, 

phantoms, and in vivo. In each experiment we demonstrated that both the median and proposed 

MLE statistics outperformed the mean statistic in mitigating noise related bias for low SNR 

acquisitions.

Conclusions—Characterization of the noise distribution of PDFF estimated using CSE-MRI 

enabled new strategies based on median and MLE statistics to mitigate noise-related bias for 

accurate PDFF measurement from a region of interest. Such strategies are important for 

quantitative CSE-MRI applications that typically operate in low SNR regimes.

Correspondence: Scott B. Reeder, M.D., Ph.D., Clinical Science Center, MC 3252, 600 Highland Avenue, E1/374, Madison, WI 
53792-3252, 608-265-9964, sreeder@wisc.edu. 

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2019 August 01.

Published in final edited form as:
Magn Reson Med. 2018 August ; 80(2): 685–695. doi:10.1002/mrm.27065.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

liver; hepatic steatosis; proton density fat fraction; bias; chemical shift encoded magnetic 
resonance imaging; probability density function

Introduction

Proton density fat fraction (PDFF) is a fundamental property of tissue that reflects tissue 

triglyceride concentration. CSE-MRI methods have used PDFF to quantify triglyceride 

content in many organs, including the liver, pancreas, thymus, bone marrow, white and 

brown adipose tissue, skeletal muscle, and heart (1). In the liver specifically, abnormal 

accumulation of intracellular triglycerides within hepatocytes (ie: hepatic steatosis) is the 

earliest and hallmark feature of non-alcoholic fatty liver disease (NAFLD). NAFLD afflicts 

an estimated 30% of the population in developed countries, including up to 100 million 

people in the United States and approximately 10% of people in developing countries (2–4). 

There is a growing and urgent need for early and non-invasive biomarkers of NAFLD, 

including accurate quantification of low liver fat content.

Chemical shift encoded magnetic resonance imaging (CSE-MRI) methods are emerging as 

well-validated, quantitative biomarkers of tissue triglyceride content (5–8). When all 

relevant confounders such as T1 bias (9), T2* decay (10–12), spectral complexity of fat 

(11,12), eddy currents (13,14), and bias related to Rician noise distribution in magnitude 

estimates of water and fat (9) have been addressed, CSE-MRI methods provide an accurate 

and precise estimate of PDFF.

Recent studies also underscore the need for both accurate and precise PDFF measurements, 

particularly at low PDFF values (0-20%) (5,6,15,16). In particular, Nasr et al found a 47% 

improvement (from 53% to 100%) in the sensitivity of PDFF for diagnosis of hepatic 

steatosis by decreasing the PDFF cut-off value by just 2% (from 5% to 3%) (16). Further, 

Rehm et al demonstrated that a hepatic PDFF threshold of 3.0% was highly predictive of the 

presence of the metabolic syndrome in adolescent girls (5). These results demonstrate that 

clinically relevant thresholds may be much lower than previously known (5). Any small bias 

in the accuracy of PDFF estimation may have significant impact on the ability of CSE-MRI 

to diagnose clinically relevant disease. With sufficient signal-to-noise ratio (SNR), CSE-

MRI provides accurate and reproducible PDFF measurements in the liver (17,18). Motosugi 

et al reports SNRs near 20 for a typical 3D CSE-MRI acquisition in the liver with voxel size 

35mm3 (18). Accounting for acquisition time differences, this corresponds to SNRs in the 

range of 5-10 for a typical sequential 2D CSE-MRI acquisition, which is commonly used in 

rapid imaging applications and described in greater detail in the Methods section. However, 

clinically accurate and precise PDFF measurements from magnitude images are confounded 

at low SNR values by a noise bias that occurs primarily at low (<≈20%) and high (>≈80%) 

PDFF values (9). In these PDFF maps, the mean value of voxels from a region of interest 

(ROI) would not reflect the true PDFF of the tissue, but would instead be biased. Liu et al 

proposed and validated two methods, “magnitude discrimination” and “phase-constrained,” 

that reduced this noise bias by addressing the effects of Rician distributed noise created by 
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the magnitude operator (9). As we show below, however, an additional source of SNR 

related bias occurs, even when using the approaches described by Liu et al.

In a more recent study, Holmes et al characterized the accuracy of current noise bias 

correction techniques (9,19). At low SNR, a persistent empirical bias in PDFF estimation 

was observed even after the effects of Rician distributed noise had been address. This will 

affect emerging applications that inherently suffer from a lack of SNR, such as highly 

accelerated breath-hold acquisitions, acquisitions in the presence of concomitant iron 

overload, or rapid free-breathing sequential acquisitions. Furthermore, the compounded 

effects of the low flip angle needed to remove T1 bias, parallel imaging, and simultaneous 

corrections for R2* confounder effects, decrease the SNR performance of CSE-MRI 

acquisitions. Thus, methods to reduce bias in low SNR PDFF maps could benefit a wide 

range of CSE-MRI protocols.

Therefore, the purpose of this work is to perform a rigorous characterization of the noise 

distribution of PDFF and to propose and validate alternative strategies to mitigate the bias in 

PDFF estimation. A complete statistical model of PDFF (as estimated by CSE-MRI) will be 

derived and used to explain and mitigate persistent noise-related bias in PDFF maps. 

Furthermore, the median and MLE statistics are proposed as alternatives to the conventional 

mean statistic for low SNR CSE-MRI applications, in order to mitigate noise-related bias for 

an accurate PDFF measurement from an ROI.

Theory

CSE-MRI techniques allow accurate and robust signal quantification from multi-echo 

acquisitions by estimating unknown parameters of a signal model (9,11–13). In our work, 

we use the spoiled gradient recalled signal model proposed by Yu et al (11,20,21):

s n; θ = (ρw + ρ f ∑
p = 1

P

αpe
i2π f ptn)eiϕe

iψtne
−R2

∗tn . [1]

Where θ = {ρw,   ρ f ,   ϕ,   ψ , R2
∗} is the set of unknown signal parameters to be estimated. 

Specifically, ρw and ρ f  are the real-valued signals from water and fat, respectively; ϕ is the 

initial phase for the fat and water signals; and ψ  is the magnetic field inhomogeneity map. 

Additionally, αp and f p are the corresponding relative amplitudes and frequencies of the P 

peak spectral model of fat, here chosen as 6 (22); and tn is the echo time.

Many CSE-MRI algorithms use nonlinear least squares (NLSQ) to determine estimates of 

the unknown signal parameters that best fit (in the least-squares sense) the acquired data. 

Our work focuses on CSE-MRI that uses either of two types of NLSQ algorithms, complex 

fitting and mixed fitting (developed for robustness to phase errors), both described in (13). 

Our work uses complex fitting NLSQ for simulations and mixed fitting NLSQ for phantom 

and in vivo acquisitions.
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Once the unknown signal parameters have been estimated ( θ = {ρw, ρ f ,   ϕ,   ψ , R2
∗}), an 

estimate of PDFF ( η) is calculated as:

η =
ρ f

ρ f + ρw
. [2]

This formulation of PDFF stems from the phase constrained method described by Liu et al 

(9). By assuming that the phase of water and fat within a voxel are equal at TE = 0 (i.e.: ϕ in 

Eq. 1), PDFF can be estimated as a real variable (Eq. 2) from complex data. This is a 

reasonable assumption that accurately reflects the physics of spoiled gradient echo pulse 

sequence acquisitions (9).

After data acquisition and image reconstruction, the standard workflow of PDFF analysis 

proceeds to ROI analysis. Typical ROI analysis consists of selecting an ROI and then 

calculating a statistical description (e.g. mean, median, etc.) of the encompassed voxels of 

the PDFF map.

Noise in the multi-echo acquisition propagates to noise in the CSE-MRI estimates of fat and 

water ( ρ f  and ρw respectively). Therefore, PDFF maps are subject to a form of structured 

noise dependent on the noise distributions of ρ f  and ρw. Our work models ρ f  and ρw as 

correlated Gaussian random variables with correlation coefficient λFW, means μF and μW, 

and standard deviations σF and σW, respectively. This modeling assumption follows from 

two characteristics of least squares theory. The first characteristic states that under 

conditions of Gaussian noise, linear least squares estimators are also normally distributed 

(23). Although our signal model is nonlinear, the fat and water signals themselves are linear 

elements within the nonlinear signal equation. While NLSQ estimators are not always 

distributed normally under non-asymptotic conditions, the second characteristic states that 

under certain requirements, NLSQ estimators are asymptotically normally distributed (23). 

Although CSE-MRI acquires a finite number of echoes, this asymptotic behavior provides 

added rationalization for employing the linear least squares result in our nonlinear least 

squares solution.

By modeling ρ f  and ρw as correlated Gaussian random variables, we were able to derive the 

previously uncharacterized structure of PDFF noise and understand the bias observed in its 

ROI analysis. This characterization of the noise distribution of PDFF is model-dependent 

and this work uses the model as described by Eqs. 1 and 2. However, this analysis remains 

generally applicable to a variety of CSE-MRI PDFF mapping applications provided that 

PDFF is calculated according to Eq. 2 and that ρ f  and ρw can be modeled as Gaussian 

random variables (an assumption tested in this work, see the Methods section below for both 

complex and mixed fitting NLSQ algorithms). Extending on the work of Fieller and Hinkley 

(24), we have determined (derivation provided in Supplementary Material, Appendix A) that 

the noise of CSE-MRI estimated PDFF (Eq. 2) has the following probability density 

function (PDF):
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Pr η = z =   b z d z
2π σFσYa3 z

Φ b z
a z 1 − λFY

2 − Φ − b z
a z 1 − λFY

2

+
1 − λFY

2

πσFσYa2 z
e

−c

2 1 − λFY
2

[3]

where

a z =   z2

σF
2 −

2zλFY
σFσY

+ 1
σY

2

b z =  
zμF

σF
2 −

λFY μF + μYz

σFσY
+

μY

σY
2

c =
μF

2

σF
2 −

2μFμYλFY
σFσY

+
μY

2

σY
2

d z = e

b2 z − c a2 z

2 1 − λFY
2 a2 z

Φ λ = 1
2π∫

−∞

λ

e

−τ2
2  dτ

μY = μF + μW

σY = σF
2 + σW

2 + 2σFσWλFW
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λFY =
σF

2 + σFσWλFW

σF σF
2 + σW

2 + 2σFσWλFW

Figure 1 contains plots of this derived distribution for two cases of PDFF (η=0% and 100%) 

over a range of SNR values (SNR=3, 5, 10, and 15). A key property of this distribution is 

that, at low SNR, it is asymmetric with a distinct heavy-tailed feature at both low and high 

PDFF values. In ROI analysis, this asymmetry explains the biased distribution of voxels 

observed in PDFF maps that can skew measurements. This ties in with a second key 

property, specifically, that computer-aided results (Maple 2016.2 Maplesoft, a division of 

Waterloo Maple Inc., Waterloo, Ontario) demonstrated that this distribution has an undefined 

expectation. The combination of heavy-tailed asymmetry and undefined moments is 

indicative of potentially unstable and unreliable sample means and variances (25), which 

helps to explain the bias observed in averaging PDFF ROI values.

Another important property of this distribution is its high SNR approximation. In his work 

on the ratio of Gaussian random variables, Hinkley (24) showed that as the probability that 

the random variable in the denominator is greater than zero approaches unity, then the 

cumulative density function (CDF) will approach a shifted and scaled standard normal CDF. 

In our work, these conditions are satisfied when 
μY
σY

∞ (i.e. high SNR). This means that 

the probability density function of PDFF from a high SNR acquisition could be reasonably 

approximated as a Gaussian distribution. Under these conditions, using the sample mean for 

ROI analysis in PDFF maps should not result in a sizable bias.

Strategies to Account for Noise-related Bias in PDFF Estimation

The remainder of this will paper will focus on the methods, results, and conclusions of 

simulations, phantom experiments and in vivo human acquisitions designed to study the 

theoretical predictions given in this section. However, we specifically evaluated three 

statistics for their use in PDFF map ROI analysis, which we will enumerate here before 

advancing to their use in subsequent experiments:

1. Mean. All published reports describing PDFF measured using CSE-MRI use the 

mean statistic as part of their analysis. We study it as a reference by which to 

compare alternative strategies.

2. Median. The median exhibits known robustness to outlying data (26). We study it 

because the heavy-tailed asymmetry of the PDFF noise distribution can be 

viewed as outlying data to the true PDFF value.

3. Maximum Likelihood Estimator (MLE). This approach uses maximum 

likelihood estimation to fit the distribution of PDFF values from an ROI to the 

PDF derived above. In practice, the MLE reduces to an optimization problem and 

is formulated as:
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θ MLE = argmin
θ

{−∑
λεΛ

log Pr η = λ; θ } . [4]

Where θ = μF, μW, σF, σW, ρFW  represents the parameter vector, Λ the set of all 

PDFF values in an ROI, λ a single PDFF value from Λ, and Pr( η=λ; θ) the 

probability density function given by Eq. 3 with parameters θ. The solution to 

this formulation returns θ MLE, the vector containing the parameters most likely 

to fit the measured data to the theoretical distribution. The components of θ MLE

can then be used to give an estimate of the true PDFF value of the ROI:

ηMLE =
μF, MLE

μF, MLE + μW , MLE
[5]

In the experiments of the following sections, we used an implementation of the 

Nelder-Mead algorithm to perform the MLE minimization given by Eq. 4 (27,28)

Methods

Modeling ρ f  and ρw as Gaussian Random Variables

In this experiment, designed to test the assumption that ρ f  and ρw can be modeled as 

Gaussian random variables, CSE-MRI data were simulated for a given PDFF value 

according to Eq. 1 with parameters including 6 echoes, TE1=1.2ms, ΔTE=2.0ms, and 

B0=1.5T. Zero-mean complex Gaussian noise, with standard deviation σnoise, was added to 

the signal to reflect a specific SNR (SNR = 
ρw + ρ f
σnoise

). 100,000 repetitions of complex fitting 

NLSQ were performed to obtain 100,000 estimates of fat and water at a specified SNR. 

These estimates were broken up into 10,000 sets of 100 fat and water estimates and each set 

was tested for normality using the Sharpiro-Wilk test (29). This process was repeated for all 

possible combinations of PDFF=0%, 50%, 100% and SNR=3, 5, 15. An alpha level 

(significance level) of 0.05 was selected for the Shapiro-Wilk tests. Finally, the experiment 

was repeated using the mixed fitting NLSQ algorithm (13).

Effect of Statistics in ROI Analysis on Bias—The following four subsections and 

their experiments are aimed to validate our theoretical work by analyzing the ability of the 

three statistics listed above to accurately estimate the true PDFF value of an ROI of uniform 

PDFF. First, the water phantom experiment will look for the presence of the derived heavy-

tailed distribution in a simple setup where the true PDFF (0%) is known with certainty. The 

simulations and phantom experiments that follow compare the performance of the three 

statistics over the entire range of PDFF (0-100%). The final subsection describes proof of 

concept experiments designed to compare the performance of the three statistics in vivo.
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Water Phantom Experiment

Four acquisitions of a 10-cm diameter cylindrical phantom filled with distilled water (true 

PDFF=0%) doped with NiCl2 (Quadrature Lower Extremity Phantom, P/N #14246, IGC – 

Medical Advances, Milwaukee, WI) were acquired on a 1.5T clinical MRI system (Signa 

HDxt, GE Healthcare, Waukesha, WI) with a single channel quadrature head coil. All 

acquisitions were performed with a multi-echo 3D spoiled gradient echo pulse sequence, 

with the following parameters: 21×14.7cm field of view and 256×180 matrix for 

0.82×0.82mm in-plane resolution, 1.7mm slice thickness, 6 echoes in one TR using a 

flyback readout with TE1=1.9ms and ∆TE=3.3ms, BW=±142.86kHz, and number of signal 

averages=1. The flip angles (varied to modify the SNR) were 3°, 5°, 10°, and 20°. As there 

is no fat in this phantom, the use of T1 weighting will not lead to T1 related bias in the 

estimated PDFF.

SNR was measured empirically in the real data of the first of the complex echo images using 

two ROIs as the average signal over the standard deviation of the noise. A mixed magnitude/

complex fitting method (13) was used to estimate parametric maps of fat and water which 

were then used to calculate PDFF maps. In each PDFF map, an ROI of approximately 

11,000 pixels was drawn and the mean, median and MLE statistics were used to compute a 

PDFF estimate, which was then compared to the true PDFF value (0%).

Numerical Simulations

The accuracy and precision of three statistics (mean, median, MLE) were assessed using two 

sets of Monte-Carlo simulations. In the first set, a large number of repetitions were 

performed allowing the evaluation of each statistic in a case where the noise distribution was 

well represented. In the second set, repeated calculations of each statistic were performed on 

ROIs allowing the evaluation of each statistic in a case that more closely replicates a typical 

acquisition.

In a first set of numerical simulations, complex-valued CSE-MRI data were simulated for a 

given PDFF value according to the signal equation shown in Eq. 1 with parameters including 

6 echoes with TE1=1.2ms and ΔTE=2.0ms, and B0=1.5T (13). Zero-mean complex Gaussian 

noise, with standard deviation σnoise, was added to the signal to reflect a specific SNR (SNR 

= 
ρw + ρ f
σnoise

). Complex fitting NLSQ of the signal equation (Eq. 1) and PDFF calculation (Eq. 

2) of 10,000 repetitions were performed. This process was repeated for each PDFF-SNR pair 

over a range of PDFF (0-100%) and SNR values (1–30). The mean, median, and MLE of 

each set of 10,000 PDFF estimates were taken and compared to the true PDFF value.

In the second set of numerical simulations, a 2D CSE-MRI numerical phantom, with 20 

regions of varying PDFF values, was simulated according to the signal equation given in Eq. 

1 with parameters including 6 echoes in one TR with TE1=1.2ms and ΔTE=2.0ms, 

optimized for B0=1.5T (13). Gaussian noise was added and a NLSQ complex fitting 

algorithm was used to estimate fat and water maps from complex valued data based on the 

signal equation (Eq. 1). A PDFF map was then calculated from the estimated fat and water 

maps according to Eq. 2. ROIs of approximately 220 pixels were then drawn in the each of 
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the 20 regions of varying PDFF (0-100%) and the mean, median, and MLE statistics were 

calculated for each ROI. These estimates were then compared against the underlying PDFF 

value of each ROI. This process was repeated 200 times for each SNR value (SNR=3 and 

SNR=5).

Fat-Water Phantom Experiments

The phantom experiments were designed to replicate the second set of numerical 

simulations. Three 2D-CSE-MRI acquisitions in an agar-based fat-water phantom (30) 

containing multiple vials with varying PDFF concentration (0-100%) were performed on a 

1.5T MRI (Optima MR450W, GE Healthcare, Waukesha, WI) using a single-channel 

quadrature head coil. The first two acquisitions acquired 100 repetitions of an axial slice at 

SNR=3 and SNR=5 (calculated empirically using the correction factor described by 

Henkelman (31) for a single channel coil). The third acquisition was a single repetition of 

the same axial slice acquired as a reference with approximate SNR=70. All acquisitions 

employed flyback readouts in a single TR. Scan parameters can be seen in Table 1.

For all acquisitions, the confounder-corrected NLSQ mixed fitting CSE-MRI algorithm (13), 

using the same signal model of Eq. 1, was used to reconstruct PDFF maps from the acquired 

data. Estimates from ROIs of approximately 310 voxels drawn within each of the 11 vials of 

the PDFF maps were taken and compared to the SNR=70 case. If fat/water swaps were 

encountered during ROI analysis, those particular ROIs were excluded to avoid the 

confounding effects of fat/water swaps on the comparison of the three ROI statistics.

In Vivo Experiment

Retrospective data from a previously reported study (32) were reanalyzed for the purpose of 

evaluating the performance of the three ROI statistics (mean, median, MLE). Briefly, the 

acquisition was performed on a 1.5T clinical MRI system (Optima MR450W, GE 

Healthcare, Waukesha, WI) using a 32-channel phased array torso coil (Neocoil, Pewaukee, 

WI). In each patient, images of the liver were acquired using a 2D sequential CSE-MRI 

sequence (32) and a 3D CSE-MRI sequence (33). In contrast to a typical interleaved 

acquisition, where all of the slices for a particular phase encode are acquired before moving 

to the subsequent phase encode, a sequential acquisition strategy acquires all phase encode 

lines for a particular slice before moving on to the next slice. This sequential acquisition 

strategy gains improved motion robustness at the expense of SNR. Additionally, single voxel 

magnetic resonance spectroscopy (MRS) was acquired in the right lobe of the liver. Both the 

image and MRS data were reconstructed offline and the same confounder corrected mixed 

fitting method (13) was used to generate PDFF maps. ROIs, corresponding to the location of 

the MRS voxel, were drawn in the higher SNR (3D CSE-MRI) and lower SNR (2D 

sequential CSE-MRI) PDFF maps. SNR values were measured in the magnitude first echo 

images of each dataset as the average signal over the standard deviation of the noise within 

an ROI co-localized with the MRS voxel.

Co-localization of the MRS voxel in the 3D CSE-MRI and MRS acquisitions was processed 

automatically as both were recorded during end-expiration breath holds. A trained 

radiologist assisted in the co-localization of the MRS voxel in the 2D CSE-MRI acquisition. 
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ROI area in the 3D CSE-MRI PDFF maps ranged between 60-70 pixels, while the ROI areas 

in the 2D CSE-MRI PDFF maps were approximately 50 pixels. Three cases (low, moderate, 

and high levels of liver fat) were selected. Mean, median, and MLE estimates of PDFF were 

calculated from the ROIs of each case and then compared between the high and low SNR 

acquisitions and against MRS-PDFF.

Results

Modeling ρ f  and ρw as Gaussian Random Variables

Results of the Shapiro-Wilk tests for the complex fitting NLSQ algorithm, summarized in 

Table 2, indicate more significant P-values (indicating not enough evidence to reject 

normality) with increasing SNR in both CSE-MRI estimates of fat and water. Near unity W-

statistic averages suggest substantial Gaussian behavior at all PDFF-SNR pairs, and all 

average P-values exceeded the 0.05 alpha threshold, although some median P-values did not. 

Additionally, Figure 2 shows plots of the distributions of the 100,000 simulated fat and 

water estimates for each PDFF-SNR pair with best-fit Gaussian curves overlaid. Nearly 

identical results were recorded for the mixed fitting NLSQ algorithm (shown in Supporting 

Table S1 and Supporting Figure S2).

Effect of Statistics on Bias in ROI Analysis

Water Phantom Experiment—The noise distributions of PDFF estimations were 

observed in a water phantom at different SNRs ranging from 5 to 28 (Figure 3). The noise 

distributions became increasingly asymmetric as SNR decreased, providing verification of a 

theoretically derived property of the PDFF noise distribution. The asymmetric noise 

distribution at low SNR (i.e. SNR=5 and SNR=8) caused a bias in the mean PDFF statistic. 

This bias was reduced when a median or MLE PDFF statistic was used.

Numerical Simulations—Figure 4 shows the bias in the PDFF estimate of the mean, 

median, and MLE statistics over a range of SNR and PDFF in the case where the noise 

distribution is well sampled. The results show that the median and MLE statistics provide 

accurate estimates of the PDFF across all PDFF even at low SNR values where the mean 

statistic is biased. It should be noted that these large-sample results reflect a best-case 

situation that is atypical for in vivo applications.

Figure 5 shows the bias and precision of the mean, median, and MLE statistics in the case 

where the noise distribution is sampled with the number of voxels contained in a more 

typical ROI thereby simulating the conditions of a ROI analysis. At both SNR=3 and 

SNR=5, substantial PDFF dependent bias was observed with the mean statistic. The median 

and MLE statistics mitigate this bias.

Linear regression analysis of the second set of numerical simulations (shown in Supporting 

Fig. S3) showed the median and MLE statistics to be better predictors of true PDFF at both 

SNR=3 and SNR=5. In the SNR=3 case, the mean statistic was shown to exhibit a strong 

bias (intercept=−17.7%) and large variability (R2=0.01). The variability in the mean statistic 

was greatly reduced in the SNR=5 case (R2=0.99, matching the median and MLE), but bias 

Roberts et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



remained (intercept=−2.1% compared to 0% and −0.1% of the median and MLE statistics, 

respectively).

Phantom Experiments—Figure 6 shows the bias and precision of the mean, median, and 

MLE statistics from PDFF map ROI analysis of fat-water phantom acquisitions. Consistent 

with the simulated results, the median and MLE estimates outperform the mean statistic for 

PDFF estimation. Our analysis found 4 ROIs with fat/water swaps in the SNR=3 case, which 

were then removed from our calculations.

Linear regression analysis (again shown in Supporting Fig. S3) showed the mean statistic to 

be a poor predictor of true PDFF in the lowest SNR regime (SNR=3) with a slope=1.2, 

intercept=−6.4% and R2=0.18. At the same SNR, the median and MLE statistics were much 

more predictive of true PDFF with slopes=0.99 and 0.99, intercepts=−0.3% and −0.7% and 

R2=0.99 and 0.99, respectively. At SNR=5, linear regression showed improved performance 

of the mean statistic (slope=1.0, intercept=−1.5%, R2=0.99) with the median and MLE 

statistics exhibiting similar slopes and R2 values, but with intercepts closer to 0%.

In Vivo Experiments—Finally, composite PDFF estimates were made in three in vivo 

cases. SNR ranged from 5-7 in the conventional 2D sequential CSE-MRI maps and from 

10-15 in the 3D CSE-MRI maps. Using the median or MLE statistics in ROI analysis of the 

three cases of low, medium, and high liver fat content patients, yielded average PDFF 

estimation improvements of 1.7%, 1.1%, and 1.2%, respectively, when compared to MRS. 

The calculated ROI statistics for each of the three in vivo cases are shown in Figure 7.

Discussion

In this work we have successfully characterized the noise distribution of PDFF as quantified 

using CSE-MRI, and have provided a closed form expression of its probability density 

function. We demonstrated that this SNR- and PDFF-dependent asymmetric noise 

distribution leads to bias when measuring the average value of an ROI placed in a low SNR 

PDFF map. To address this, we provided two strategies that mitigated noise-related bias in 

PDFF estimation. We showed that fitting ROI voxel values to the derived PDFF noise 

distribution (using the MLE) or using the median improved the accuracy of PDFF ROI 

analysis in simulation and in phantom acquisitions.

Our derivation began by modeling the estimated fat and water signal components ( ρ f  and 

ρw, respectively) of CSE-MRI as Gaussian. We verified this assumption in digital 

simulations and phantom experiments at 1.5T. Given that the physics of CSE-MRI is 

fundamentally the same as at 3.0T and the fact that PDFF estimation is independent of field 

strength (8,34), it is likely that the results from this work also extends to 3.0T, although 

further work would be needed to demonstrate this rigorously. Using this model, we were 

able to derive a closed form expression for the PDFF noise distribution. In this work, we do 

not claim to have characterized the non-asymptotic behavior of ρ f  and ρw, but rather, we 

recognize that the premise of correlated Gaussian random variables provided a good 

foundation for characterizing the PDFF noise distribution. Additionally, our analysis 
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employed a signal equation (Eq. 1) that required estimating fat and water before calculating 

PDFF (Eq. 2); however, PDFF can be estimated directly by rewriting this signal equation as 

a function of PDFF multiplied by a scaling factor as shown by Horng et al (35). In an 

analysis not presented in this paper, we determined that the distributions of PDFF estimates 

for either formulation of the signal equation share identical distributions and biases and that 

both are characterized by the derived distribution presented in this work.

We have shown that the distribution of PDFF values in ROI analysis, and accompanying 

bias, depends strongly on the SNR of the underlying source data. Specifically, we have 

demonstrated that the bias is reduced as SNR increases. To that end, we generally 

recommend a minimum SNR of 10 when using the mean statistic in PDFF ROI analysis to 

ensure absolute errors less than 1%; however, we recognize that this requirement could vary 

based on the application and need for accuracy. The derived distribution of the noise of 

PDFF, combined with the results of this work, should be a powerful tool in determining 

application specific SNR thresholds. Future work is required to validate this guideline for 

various in vivo circumstances.

Viewed in the context of current literature, this work extends on the work done by Liu et al. 

The “magnitude discrimination” method described by Liu et al resulted in a large reduction 

of noise bias in comparison to the original approach that used magnitude estimates of fat and 

water signals to calculate PDFF maps (9). However, as the use of CSE-MRI techniques has 

expanded into applications that utilize low SNR acquisitions (due to breath-hold limitations, 

low flip angle needed to remove T1 bias, parallel imaging, and simultaneous corrections for 

R2* confounder effects, etc.), substantial noise dependent bias is still observed. Our study 

derived, from first principles, the underlying statistical noise model of PDFF estimation and 

thus characterized the previously undescribed source of PDFF bias. From that 

characterization we were able to propose strategies that reduce bias in PDFF ROI analysis. 

The results of this study highlight the importance of understanding the noise distribution of 

parametric maps where quantitative measurements are taken, particularly in low SNR 

acquisitions. Similar analysis, involving MLE statistics, could be applied to a wide range of 

currently accepted MR biomarkers.

Our study had several limitations. First, this manuscript is focused on characterizing the 

noise distribution of PDFF and validating improved estimation techniques using simulations 

and phantom acquisitions. For this reason, the in vivo analysis was limited in number and 

focused exclusively in the liver. As noted in the introduction, PDFF can be used to quantify 

triglyceride content in many organs, not just the liver. Therefore, subsequent work will 

examine the effect of noise dependent bias in PDFF in both the liver and other organ 

systems. For our purposes, the in vivo experiment included served as a proof of concept for 

the application of the techniques described in this paper to be applied in vivo. The relatively 

minor bias observed in the mean statistics of the low SNR images in this experiment is 

consistent with what we would expect based on the SNR measurements and suggests that the 

median and MLE would still effectively reduce bias in even lower SNR acquisitions. Future 

studies are being planned to perform rigorous clinical evaluation of these strategies in vivo 

to determine their performance in CSE-MRI acquisition and PDFF reconstruction protocols 

and to study their SNR requirements.
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Our study was also limited in comparing of the performance of the median and MLE 

statistics. Both the median and MLE statistics resulted in improved PDFF ROI analysis 

estimation accuracy and stability compared to the mean statistic; however, the relative 

performance between the median and MLE statistics remains unclear. While a single 

calculation of an MLE algorithm can estimate PDFF quickly (we averaged less than one 

second per ROI for ROIs of approximately 500 pixels), it requires special and specific 

programming. The median, on the other hand, is a simple calculation, which is functionally 

present in many analysis software packages. The convenience of the median statistic, 

coupled with the inability of our current work to distinguish their relative performance, 

would suggest that it is preferable over the MLE in practice.

There is some precedent to using the median instead of the mean in ROI analysis, and past 

MRI studies have used the median to report values in ROI analysis (36–38). More 

specifically, Holmes et al made the observation that the median would better represent the 

non-Gaussian distribution observed in PDFF (19). We note that use of the median statistic 

does not negate the importance of understanding the underlying statistical model. Future 

work may reveal a more optimal estimation method based on the statistical modeling or fully 

assess the relative performance of the median and MLE statistics.

In contrast to other noise performance studies for CSE-MRI, this work has largely ignored 

the effects of echo time choices. Optimization of echo times can be used to maximize SNR 

performance. We recognize that the choice of echo times plays an important role in 

determining the bias of PDFF; however, our work has largely relied on that effect being 

encompassed by SNR. Future work will examine the role, if any, that echo time selection 

could have on noise related PDFF bias. Our simulations used the echo times suggested by 

Hernando et al (13) for optimizing SNR performance. However, we note that we used a 

phase constrained signal equation and therefore it is possible that our choice of echo times 

may be non-optimal. An additional limitation of our work was that the choice of echo times 

used for simulations did not precisely match those for our phantom experiments. While we 

anticipate this discrepancy should have a negligible effect on our results, a more careful 

analysis of the impact of echo times on noise related PDFF bias is needed.

In all numerical simulations, NLSQ estimates were performed with a complex fitting 

method (see Hernando et al (13) for comparison of fitting methods). Complex fitting is the 

preferable choice given our signal model (Eq. 1) and definition of PDFF (Eq. 2); however, in 

phantom acquisitions we found the mixed complex/magnitude fitting (13) to produce PDFF 

estimates (mean, median, and MLE) with less bias than those that resulted from a purely 

complex fitting. Mixed fitting algorithms are almost equivalent to a pure complex fitting 

algorithm, but they ignore the phase on the first echo of multi-echo acquisitions to avoid bias 

created by the presence of eddy currents (13). We hypothesize that this may be why the 

mixed fitting performed better in our phantom experiments. As the in vivo experiment is 

mainly proof of concept, we also used the mixed complex/magnitude fitting to be consistent 

with the phantom acquisitions.

Magnitude fitting is another method for computing NLSQ. Magnitude fitting is common, but 

leads to a known SNR reduction in the resultant fat and water maps (13). Preliminary 
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magnitude fitting simulations, not presented in this paper, indicate significant P-values and 

high W-statistics from Sharpiro-Wilk tests (29) performed on the estimated fat and water 

maps, suggesting Gaussian behavior. As this was the only assumption required to 

characterize the PDFF distribution, it follows that the same statistical analysis could apply to 

PDFF maps generated using a magnitude fitting method. However, the methods presented in 

this paper correct bias in estimated PDFF maps, not bias in the fat and water maps. 

Therefore, should the estimated fat or water maps incur a bias as a result of magnitude 

fitting, then the mean, median, and MLE statistics in the PDFF map would all yield 

inaccurate results. Future work is being planned to study more closely the effects of fitting 

methods on the PDFF noise distribution.

In conclusion, this work provides improved characterization of the noise distribution of 

PDFF estimated using CSE-MRI. This characterization enabled the development of new 

strategies for mitigating SNR dependent noise-related bias in PDFF maps. These strategies 

may have important application in emerging CSE-MRI fat quantification techniques that 

operate at low SNR.
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Figure 1. 
The probability density function of CSE-MRI estimated PDFF becomes increasingly 

asymmetric as SNR decreases. These plots show the derived noise distribution of PDFF over 

a range of SNR values. μF and μW, shown in each plot, were adjusted to select the true PDFF 

(η). λFW, σF, and σW (here shown with λFW=0.0, σF=σW) were adjusted to modulate the 

SNR (as approximated by SNR = (μF+μW)/(σF
2+σW

2+2σFσWλFW)1/2). While these plots 

show λFW=0.0, it should be noted that the distribution remains asymmetric as λFW is varied.
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Figure 2. 
The noise distributions of separated water and fat signals closely follow a Gaussian 

distribution, particularly at higher SNR and lower PDFF. In this simulated example, the 

distributions of all three PDFF values appear strongly Gaussian at SNR=10 and 15 for both 

fat and water signals. Further, the noise distributions for water and fat signals at very low 

SNR (SNR=3) appear more Gaussian for PDFF=0% than for either PDFF=50% or 100%. 

For this simulation 100,000 individual CSE-MRI pixel simulations were performed for each 

SNR/PDFF pair over a range of SNR (3,5,10,15) and PDFF values (0%, 50%, 100%). For 

each SNR/PDFF pair, the histograms of the resulting estimates of fat and water were plotted 

along with their respective Gaussian best-fit curves. Note that outliers outside the range of 

−100 to 200 were excluded.

Roberts et al. Page 18

Magn Reson Med. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The noise distribution of PDFF estimation, as shown in a water phantom, becomes more 

asymmetric as SNR decreases. The heavy-tailed asymmetry of the distribution (seen clearly 

in the SNR=4.8 histogram) is a preliminary indicator that PDFF estimates obtained by 

averaging may be biased. Shown are histograms and corresponding PDFF Maps from 

sequential 3D CSE-MRI acquisitions of a water phantom (PDFF=0%). The blue bars of the 

histogram represent roughly 11,000 pixel values taken from within the water region of the 

PDFF map. The red line is the MLE fitting of the derived PDFF noise distribution.
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Figure 4. 
Median and MLE estimators provide accurate PDFF quantification even at very low SNRs, 

where the mean estimator is biased. Each rectangular pixel represents the result of using the 

mean, median, or MLE estimator, respectively, on the equivalent of an ROI of roughly 

10,000 pixels of a particular PDFF at a specified SNR. The colors map the absolute error of 

the estimators from 0% to a capped error of 1%.
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Figure 5. 
In simulation, the mean of an ROI in a PDFF map tends to underestimate low PDFF values 

and overestimate high PDFF values. In contrast, note the apparent unbiased quality of both 

the median and MLE in determining an estimate of the true PDFF. Each point represents a 

statistical analysis (median, 25th and 75th percentiles) of the PDFF estimation error of the 

three estimators on 200 noisy realizations of a simulated ROI. Signed absolute errors are 

plotted.
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Figure 6. 
Consistent with the results of the simulated data, in phantom acquisitions the mean 

underestimates low PDFF values and overestimates high PDFF values in ROIs, while both 

the median and the MLE remain largely unbiased. Two sets (SNR=3 and 5) of 100 back-to-

back CSE-MRI acquisitions of an axial slice of a PDFF phantom containing 11 vials of 

varying PDFF values were compared against a high-SNR acquisition (SNR=70). Each point 

represents a statistical analysis (median, 25th and 75th percentiles) of the error of the three 

estimators on 100 corresponding ROIs. Signed absolute errors are plotted.
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Figure 7. 
In vivo, the median and MLE ROI statistics of the lower SNR acquisitions return more 

accurate composite PDFF measurements than the mean when compared against the MRS 

PDFF values. Specifically, median and MLE statistics in the lower SNR PDFF maps (2D 

sequential CSE-MRI) made average estimation improvements over the mean of 1.7%, 1.1%, 

and 1.2%, respectively, when compared to MRS. As expected, mean, median, and MLE 

estimates show reduced bias in the higher SNR PDFF maps (3D CSE-MRI).
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