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Abstract
This review intends to uncover how information from 
large-scale genetic profiling (whole genome sequencing, 
and whole exome sequencing) of nonalcoholic fatty liver 
disease (NAFLD), as well as information from circulating 
transcriptomics (cell-free miRNAs) and metabolomics, 
contributes to the understanding of NAFLD patho
genesis. A further aim is to address the question of 
whether OMICs information is ready to be implemented 
in the clinics. The available evidence suggests that 
any new knowledge pertaining to molecular signatures 
associated with NAFLD and nonalcoholic steatohepatitis 
should be promptly translated into the clinical setting. 
Nevertheless, rigorous steps that must include validation 
and replication are mandatory before utilizing OMICs 
biomarkers in diagnostics to identify patients at risk of 
advanced disease, including liver cancer.  
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Core tip: It is expected that, in the near future, nona
lcoholic fatty liver disease patients can be diagnosed and 
treated according to their own “molecular signature”. 
Specific focus should be placed on prevention and early 
diagnosis through the application of biomarkers of 
disease risk. Selection of “personalized drugs” as well 
as tailored therapy according to the specific molecular 
signature should be further guaranteed.  
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is a chronic 
liver disease that affects adult and children populations 
around the world, with prevalence reaching alarming 
levels[1,2]. 

NAFLD may progress from a benign histological 
disease stage characterized by plain fat accumulation, 
usually referred to as simple steatosis or nonalcoholic 
fatty liver (NAFL), to a more severe histological form 
characterized by liver cell injury, a mixed inflammatory 
lobular infiltrate, and variable fibrosis named nonal­
coholic steatohepatitis (NASH)[3,4]. 

Precise histological diagnosis, including disease 
stages (NAFL and NASH), is commonly based on liver 
biopsy[2]. Nevertheless, because this method imposes 
certain limitations, including potential complications 
such as bleeding and patients’ abdominal discomfort, 
and needs to be performed in a special setting, noni­
nvasive approaches are favored and have gained 
considerable attention. It is also noteworthy that the 
histological diagnosis of the severity of NAFLD might be 
potentially biased if a small portion of hepatic tissue is 
sampled. 

Hence, significant clinical and research efforts are 
currently being directed toward the search for reliable 
biomarkers aimed at the prediction of the disease 
severity and prognosis. 

Knowledge in the field of liver diseases, particularly 
NAFLD, has benefitted in the last ten years from the 
rapid development of high-throughput technologies, 
including genomics, transcriptomics, proteomics and 
metabolomics. This review intends to uncover how 
information from large-scale genetic profiling (whole 
genome sequencing and whole exome sequencing) 
of NAFLD, as well as information from transcriptomics 
and metabolomics, and the interplay of these personal 
characteristics with dietary factors may contribute to 
the diagnosis and risk prediction of NAFLD progression. 
In addition, the question of whether OMICs informa­
tion is ready to be implemented in the clinics will be 

addressed. 
A brief description of OMICs signatures, including 

their main applications as biomarkers in clinical practice, 
is provided in Figure 1. OMICs biomarkers may be 
considered either for screening purposes to assess the 
disease risk or exposure, or for the assessment of the 
disease severity and prognosis, and/or for monitoring 
treatment response (Figure 1).   

role of genetic markers in the 
prediction of NAFLD risk and 
disease severity 
Although the pathogenesis of NAFLD is not understood 
fully, a growing body of evidence indicates that the 
disease develops from a complex process involving 
many factors, including genetic susceptibility and 
environmental insults[5,6].

In fact, the results yielded by the first genome-
wide association study on NAFLD[7] on the role of 
rs738409 C/G -a variant nonsynonymous single 
nucleotide polymorphism (SNP) of PNPLA3 (patatin-
like phospholipase domain containing 3, also known as 
adiponutrin or calcium-independent phospholipase A2-
epsilon) have significantly contributed to the knowledge 
of the genetic component of NAFLD. This finding was 
subsequently widely replicated around the world, 
confirming that the G allele in the forward strand is 
significantly associated not only with an increased risk of 
fatty liver but the histological disease severity as well[8,9] 
(OR 1.88 per G allele). In fact, rs738409 explains about 
5.3% of the total variance in NAFLD[9]. 

Furthermore, results of the first exome-wide 
association study of liver fat content indicate that 
rs58542926 (E167K), a nonsynonymous variant located 
in TM6SF2 (Transmembrane 6 Superfamily Member 
2), is significantly associated with increased liver fat 
content[10]. Nevertheless, in contrast to the effect of the 
variant located in PNPLA3, the rs58542926 exerts a 
moderate effect on the risk of NAFLD (odds ratio: 2.13)[11]. 
Subsequent studies have also revealed an association 
of rs58542926 with the disease severity[12-14], as well 
as dual and opposite role in cardiovascular disease 
prevention[11,12,15]. 

Thus, it is reasonable to speculate that genetic 
markers, particularly the 738409-G risk allele, may be 
used for individual risk assessment either alone or as a 
part of multi-score biomarkers (Figure 2). For example, 
Kotronen and coworkers evaluated the performance of 
rs738409 in predicting the risk of NAFLD by combining 
routine clinical and laboratory data and the rs738409 
genotypes[16]. The authors observed a sensitivity of 
86% and a specificity of 71% in the estimation of 
increased liver fat content[16]. Surprisingly, addition 
of the genetic information to the score improved the 
accuracy of NAFLD prediction by less than 1%. 

The incorporation of genetic markers into noni­
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nvasive tests that discriminate between NAFL and NASH 
results in a more challenging strategy; despite these 
difficulties, there have been some interesting attempts. 
For instance, a risk score comprising of both clinical and 
genetic (PNPLA3 rs738409 C>G, SOD2 rs4880 C>T, 
KLF6 rs3750861 G>A, and LPIN1 rs13412852 C>T) risk 
factors resulted in an AUROC (Area Under the Receiver 
Operating Characteristic) of 0.80 to predict NASH in 
obese children with increased levels of liver enzymes[17], 
as shown in Figure 2.  

Other examples include the NASH Clin Score that 
combines laboratory tests (AST, fasting insulin) and 
rs738409 genotypes, and the NASH ClinLipMet Score 
that combines laboratory test (AST, fasting insulin), 
circulating metabolites (glutamate, isoleucine, glycine, 
lyso PC 16:0; PE 40:6) and rs738409 genotypes[18], as 
depicted in Figure 2. 

Furthermore, promising results have been reported 
on the use of genetic markers in predicting NAFLD-
intervention response, as summarized in Figure 2. 
For example, it was observed that genetic variation 
in PNPLA3 might confer sensitivity to liver fat content 
decrease in obese patients undergoing weight loss[19]. 
The findings yielded by this study, though based on a 
small number of subjects, suggested that weight loss 
was more effective in decreasing liver fat in subjects 
who were homozygous for the rs738409-G allele[19]. 
Likewise, rs738409 correlated with changes in metabolic 
profile and intrahepatic triglyceride content (IHTG) as 
measured by proton magnetic resonance spectroscopy 
in patients enrolled in a lifestyle modification program[20]. 

Concordant results were reported regarding greater 
improvement in hepatic steatosis after bariatric surgery 
in the risk-G-rs738409 allele carriers[21] (Figure 2).

A different approach to the use of genetic testing 
based on single base variations in the DNA sequence 
requires search for variants in mitochondrial DNA 
(mtDNA). Mitochondria contain their own genetic in­
formation in the mtDNA (16.5 kb), which is maternally 
inherited; the 13 mtDNA-encoded proteins are all 
components of the oxidative phosphorylation (OXPHOS). 
A comprehensive exploration of the complete liver 
mtDNA-mutation spectrum in patients with NAFLD 
during different stages of the disease by next generation 
sequencing showed that the disease severity is associated 
with an increased liver mtDNA mutational burden, 
including point mutations in OXPHOS-genes that showed 
high degrees of heteroplasmy[22]. Given that the variability 
in the mt-genomes observed in NAFLD and NASH seems 
to originate from a common germline source, rather than 
from tissue-specific mutations, point mutations can also 
be assessed in samples of peripheral blood mononuclear 
cells[22].  

ROLE OF EPIGENETIC MODIFICATIONS 
AS NONINVASIVE BIOMARKERS OF 
NAFLD AND NASH 
The dynamic nature of epigenetic modifications is 
not only an ideal frame to explain the cross-talk 
between NAFLD and related phenotypes, including 
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Figure 1  Brief description of OMICs signatures, including their main applications as biomarkers in clinical practice. 

Disease 
risk/exposure

Disease 
severity

Response to 
intervention

NAFLD Biomarkers

OMIC signatures

Epigenetic modifications
   Chromatin signatures that potentially allow 
   dynamic assessment of the disease progression.  
   Tissue-specific. 
   Interaction with environmental factors. 

Genome variation
   Genetic markers that are present at birth. 
   Useful information for ascertain of exposure.
   Effect size: small to modest. 

Proteins associated with molecular pathways
   Potentially useful for diagnostic and 
   prognostic management 
   Potentially useful for longitudinal assessment
   Can be measured in circulation.

Coding and non-coding RNAs
   Molecular signatures that potentially allow 
   dynamic assessment of the disease condition.
   Potentially useful for longitudinal assessment. 
   Tissue-specific; can be measured in circulation.
   Probably associated with large effects/s. 

Metabolites in circulation
   Useful for diagnostic and 
   prognostic management.
   Allow longitudinal assessment 
   and dynamic exploration of 
   disease course and progression.

Genomics

Transcriptomics

Proteomics
Metabolomics
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provided by Mandel and Métais in 1948[30]; indeed, 
these authors introduced the concept of liquid biopsy. 

Basically, cfNAs refer to molecules of nucleic acids 
that circulate free of cells in the bloodstream and the 
source of which is primarily dying cells from distant 
tissues.   

Considerable efforts have been dedicated to the 
use cfDNA for the prediction of liver fibrosis associated 
with NASH and alcoholic liver disease[31]; however, 
the preliminary results indicate substantial lack of 
specificity, as they can be completely unrelated to 
NASH-biology[32]. Furthermore, the fact that cfDNA 
circulates not only at very low concentrations but is 
also highly fragmented imposes analytical and technical 
challenges that are very difficult to overcome[33]. 

Conversely, detection of microRNAs (miRNAs), 
which are highly conserved noncoding small RNAs, has 
demonstrated quite robust performance, particularly 
in the circulating compartment. In addition, unlike 
cfDNA, cfmiRNAs are resistant to degradation as well 
as to several freeze–thaw cycles, making them ideal 
biomarkers for use in the clinical setting. 

The circulating miRNA signature of NAFLD has 
been extensively explored in case-control studies, 
including patients with liver biopsy[34-37], Figure 2. 
Studies in which liver and circulating miRNA levels 
were compared demonstrated that cfmiRNAs are good 
predictors of NAFLD-disease stages[36]. Specifically, 
circulating miR122 and miR192 not only mirror his­
tological and molecular events occurring in the liver, 
but have a reliable predictive power in differentiating 
simple steatosis from NASH[36]. Thus, it can be posited 

insulin resistance[23], but is also an attractive target 
for therapeutic intervention24. Treatment-induced 
epigenetic remodeling of liver tissue was observed in 
a cohort of obese patients with NAFLD who underwent 
bariatric surgery[24]. In addition, changes in DNA 
methylation could be used as a target of a biomarker 
that allows monitoring, for instance, effectiveness 
of pharmacotherapy. Interesting results have been 
reported in the context of other non-cancer complex 
diseases, including rheumatoid arthritis[25], pediatric 
asthma[26] or anxiety disorders[27].

It is worth noting that epigenetic modifications, 
i.e. DNA methylation, are not restricted to the nuclear 
genome, but can also be found in mt-genomes[28]. In 
fact, we found for the first time that hepatic methylation 
and transcriptional activity of the MT-ND6 (mt genome-
encoded NADH deshydrogenase 6, a member of the 
OXPHOS complex 1) are associated with the histological 
severity of NAFLD[29]. This epigenetic change to mtDNA 
is potentially reversible by lifestyle interventional 
programs, as physical activity could modulate the 
methylation status of MT-ND6[29].

CELL-FREE DNA AND RNA AS 
NONINVASIVE BIOMARKERS OF NASH
Circulating molecular biomarkers, particularly cell-free 
DNA (cfDNA) and cell-free RNA (cfRNA) are focus of 
intensive research; however, the strategies employed 
in these studies are not necessarily novel. In fact, the 
first description of cell-free nucleic acids (cfNAs) was 

Figure 2  Summary of OMICs biomarkers in the prediction of nonalcoholic fatty liver disease severity.

NAFLD Disease
Severity 

NAFL NASH NASH-Cirrhosis NAFLD-HCC
OMICS biomarkers

Genomics

Transcriptomics

Proteomics

Metabolomics

Genetic  
variation

mtDNA 
variation

Circulating miRNAs

Cell-free non-coding 

RNA

Circulating 
proteins  

Circulating 
metabolites

Application in 
clinical practice

Population
 screening

Diagnostic/
predictive testing

Intervention 
response

NAFLD liver fat score: Routine clinical and biochemical data + PNPLA3-rs738409. AUROC liver fat content : 0.872[16]

Genetic risk score of NASH: Four SNPs in different locus (PNPLA3 , SOD2, KLF6  and LPIN1). AUROC NASH: 0.75[17]

NASH Clin Score: AUROC (NASH): 0.778 an NASH ClinLipMet Score: AUROC (NASH): 0.866[18]

Assessment to intervention response (rs738409): Change in liver fat content in patients enrolled in a program of 
hypocaloric low-carbohydrate diet[19], life style modification[20] or bariatric surgery[21] modified by G-risk allele status  
Accumulation of mtDNA variants in genes of the oxidative phosphorylation (OXPHOS) predict disease severity[22]

miRNA-panel (miR-122, miR-1290, miR-192 and miR-7b). AUROC NAFLD: 0.856[37] 
miR-122 AUROC NASH: 0.714 / AUROC fibrosis: 0.613[36]

Combination score of miR122, miR192, miR21, ALT, and CK-18-Asp396 AUROC NASH: 0.83[34]

Multi-component score (rs738409 + 19 clinical variables+8 proteins: ACY1, SHBG, CTSZ, MET, GNS, LGALS3BP, CHL1, 
SERPINC1). AUROC  NAFLD: 0.932[40]

Plasma lumican FSRs and Pro-C3[41]

Type IV collagen 7S + AST. AUROC NASH: 0.857[42]

Procollagen III (PIIINP). AUROC NASH: 0.77-0.82 (NASH F 0-F2) and 0.82-0.84 (NASH F0-F3)[43]

NASH Clin Score and NASH ClinLipMet Score: laboratory test +rs738409[18]

NAFLD-HCC: ↑glutamine/glutamate[51]

Hepatic S-adenosylmethionine (SAMe)[50]

Betaine +p.Ser646Pro variant in DMGDH (dimethylglycine dehydrogenase mitochondrial)[60]

11-HETE[47]

Changes in amino acids, including glutamic acid and branched-chain amino acids (BCAAs)[51,52,54,55, 57-59]
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that cfmiRNAs are reliable candidates for incorporation 
into multi-panel scores for the prediction of NAFLD and 
NASH (Figure 2). 

For example, a miRNA panel, composed by the 
detection of miR122-5p, miR1290, miR27b-3p, and 
miR192-5p) showed a high diagnostic accuracy for 
NAFLD[37] (Figure 2). A combination score that included 
miR122, miR192, miR21, ALT, and CK-18-Asp396 
exhibited an AUROC of 0.83 for the prediction of 
NASH[34] (Figure 2). 

role of circulating proteins in 
the prediction of NASH severity
The use of proteins that circulate in serum or plasma for 
predicting liver-related histological outcomes, specifically 
liver fibrosis, has been largely relegated probably 
because such approaches are technically challenging, 
while offering low performance and poor accuracy. The 
most remarkable example of this strategy is based on 
the use of plasma caspase-generated cytokeratin-18 
fragments (CK-18) as a noninvasive alternative 
biomarker of NASH. Results from a large multicenter 
study showed that plasma CK-18 has relatively good 
specificity for NAFLD (AUROC: 0.77), NASH (0.65) and 
fibrosis (0.68). Nevertheless, the overall sensitivity 
for NAFLD (63%), NASH (58%) and fibrosis (54%) is 
limited, making this test inadequate for use as a single 
noninvasive screening test[38]. 

Interesting attempts to develop multi-component 
tests that integrate clinical and laboratory data, 
including circulating proteins, have also been made. 
For example, we have tested a diagnostic model based 
on a composite index using clinical and laboratory 
data, including circulating biomarkers such as soluble 
intercellular adhesion molecule-1 (sICAM-1), which 
was able to differentiate between patients with simple 
steatosis and NASH with a post-test probability for 
NASH of 99.5% when all positive tests were present[39]. 

There are similar proposals - though restricted 
to the prediction of NAFLD but not NASH - based on 
OMICs-derived data, including genetic information 
(rs738409), clinical variables, and measurement of 
different proteins (ACY1, SHBG, CTSZ, MET, GNS, 
LGALS3BP, CHL1, SERPINC1), which - if combined - 
seem to be quite reliable in disease risk identification 
(AUROC for steatosis 0.935)[40]. Nevertheless, it seems 
that this approach has limited cost-effectiveness for 
NAFLD-screening programs.

Latest advancements in this field focus directly on 
disease phenotypes, for example liver fibrosis, which 
target the detection of excess collagen synthesis 
rate both directly in liver tissue and noninvasively in 
blood[41].  

The combination of type IV collagen 7S and aspartate 
aminotransferase (AST) in a multi-test for the prediction 
of NASH-fibrosis showed promising results[42]. Likewise, 
measurement of circulating procollagen III (PIIINP) has 

been quite accurate in the prediction of NASH (AUROC 
0.77-0.82) and NASH-fibrosis (0.82-0.84)[43]. 

Unfortunately, proteomic analysis using state of the 
art technology is currently poorly developed in the field 
of NAFLD. In fact, robust attempts to refine, replicate 
and follow-up on putative discovered proteins have not 
been done, even though some promising studies have 
been carried out. For example, using MALDI TOF/TOF 
and western blot analysis of coupled tissue and serum 
samples allowed the identification of two interesting 
protein candidates, including the mitochondrial enzyme 
CPS1 (Carbamoyl-Phosphate Synthase 1) and GRP78, 
also known as heat shock protein family A (Hsp70) 
member 5, which could stratify the different phenotypes 
associated with the disease severity[44]. Results obtained 
by using similar approaches, including SELDI-TOF mass 
spectrometry[45] and matrix-assisted laser desorption 
ionization time-of-flight mass spectrometry (MALDI 
TOF-MS)[46] have been published. Still, the identified 
peaks require validation, replication and large-scale 
testing.  

CIRCULATING METABOLITES IN NASH 
PREDICTION
Initial case-control studies on plasma metabolomics 
of NAFLD have been performed years ago by Puri 
et al[47], who conducted a comprehensive analysis of 
plasma lipids and eicosanoid metabolites quantified by 
mass spectrometry. The authors reported a stepwise 
increase in lipoxygenase (LOX) metabolites, 5(S)-
hydroxyeicosatetraenoic acid (5-HETE), 8-HETE and 
15-HETE that characterized the progression from 
normal liver to NAFL to NASH[47]. Puri and colleagues 
found that the level of 11-HETE, a nonenzymatic 
oxidation product of arachidonic (20:4) acid, was 
significantly and specifically increased in NASH but not 
in NAFL patients[47]. Subsequent studies that included 
untargeted global metabolomic analysis revealed 
marked changes in bile salts and glutathione-related 
metabolites, as well as higher levels of branched-chain 
amino acids, phosphocholine, carbohydrates (glucose, 
mannose), lactate and pyruvate, in subjects with 
severe NAFLD[48]. Regarding bile salts, a recent study 
indicated that total conjugated primary bile acids were 
significantly higher in NASH[49]. 

A novel study in which the authors combined 
metabolomic data from experimental animals and 
human samples introduced the interesting concept that 
NASH might be sub-classified into two major subtypes 
according to the circulating pattern of triglycerides, 
diglycerides, fatty acids, ceramides and oxidized fatty 
acids[50]. 

As mentioned earlier, interesting strategies that 
combine clinical, genetic and lipidomic-derived variables 
into a multi-score have shown good predictive values in 
differentiating NAFL from NASH. Specifically, Zhou and 
coworkers reported on the performance of the NASH 
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Clin Score, obtained through backward stepwise logistic 
regression analyses of biochemical variables (glutamate, 
isoleucine, glycine, lysophosphatidylcholine 16:0, 
phosphoethanolamine 40:6, AST, and fasting insulin), 
along with rs738409 genotypes[18]; this score identified 
patients with NASH with an AUROC of 0.866 (Figure 2). 

Recent explorations on changes in liver metabolism 
during NASH development[51,52], along with the findings 
from high-throughput circulating profiling of patients with 
metabolic syndrome[53] suggest that elevated levels of 
alanine (ALT) and aspartate (AST) aminotransaminases 
in patients with NAFLD are the consequence of impaired 
liver metabolism of amino acids, including glutamate 
and aromatic amino acids, rather than a mere biomarker 
of liver injury[14,52,54]. This observation is consistent with 
the fact that NASH is associated with changes in the 
level of circulating amino acids[55], including L-glutamic 
acid, 2-hydroxyglutarate and alanine / pyruvate ratio, 

which are significantly associated with NAFLD-disease 
severity[52,56]. Changes in the level of branched-chain 
amino acids were described in pediatric population[57], 
and these findings were replicated in studies on adults 
as well[58].

Interestingly, alterations in multiple aminoacids, 
gamma-glutamyl dipeptides and lipids may be related 
to common genetic variations associated with NAFLD, 
as observed in earlier in vitro studies based on knocking 
down or over-expression of the pIle148Met (rs738409) 
isoforms[59].

Finally, a two-stage multicenter case-control study 
that combined results of NAFLD-histological variables, 
levels of circulating metabolites and genetic markers 
indicated that NASH is associated with decreased levels 
of betaine in circulation. Furthermore, the disease 
severity is associated with genotypes of the missense 
variant p.Ser646Pro (rs1805074) in DMGDH gene, 

Table 1  List of pathways involved in nonalcoholic fatty liver disease selected from significant Q-values that dependent on both 
genes and metabolites analyzed jointly

Pathway name Q-joint

Solute carriers -mediated transmembrane transport 1.23E-12
Transmembrane transport of small molecules 9.66E-12
Transport of glucose and other sugars bile salts and organic acids metal ions and amine compounds 8.40E-10
Leukotriene biosynthesis 8.71E-10
Transport of glucose and other sugars bile salts and organic acids metal ions and amine compounds 1.91E-09
Transport of inorganic cations-anions and amino acids-oligopeptides 4.27E-09
Amino acid and oligopeptide SLC transporters 1.10E-08
Transport of inorganic cations/anions and amino acids/oligopeptides 2.40E-08
tRNA Aminoacylation 3.03E-08
Gamma-glutamyl cycle 3.61E-08
tRNA charging 5.96E-08
mRNA protein and metabolite induction pathway by cyclosporine A 8.47E-08
Class I MHC mediated antigen processing & presentation 1.73E-07
Na+/Cl- dependent neurotransmitter transporters 3.10E-07
Amino acid transport across the plasma membrane 3.72E-07
S-methyl-5-thio-alpha;-D-ribose 1-phosphate degradation 6.17E-07
Amine compound solute carrier transporters 6.17E-07
Protein digestion and absorption - homo sapiens (human) 2.13E-06
Amino acid interconversion 2.21E-06
Biochemical pathways part I 2.34E-06
Amino acid metabolism 3.96E-06
Aminoacyl-tRNA biosynthesis - homo sapiens (human) 6.88E-06
Metabolism of amino acids and derivatives 8.72E-06
Mineral absorption - homo sapiens (human) 1.47E-05
Cytosolic tRNA aminoacylation 2.86E-05
Mitochondrial tRNA aminoacylation 2.86E-05
tRNA Aminoacylation 2.86E-05
Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism 0.000159
Gene expression 0.000181
Tryptophan catabolism 0.000275
Phase Ⅱ conjugation 0.000426
Phenylalanine and tyrosine catabolism 0.003
Glutamine and glutamate metabolism - homo sapiens (human) 0.00376
Glutaminolysis and cancer 0.00493
Glycine metabolism 0.0052
Glutamate glutamine metabolism 0.00665
Recycling of bile acids and salts 0.00669
Glycine serine alanine and threonine metabolism 0.0101
Branched-chain amino acid catabolism 0.0103

OMICs-integrative analysis was performed using the IMPaLA (integrated molecular pathway level analysis, http://impala.molgen.mpg.de)[67] platform. A 
joined adjusted P-value (Q-value) was calculated to control for multiple testing by false discovery rate.
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which encodes for the mitochondrial dimethylglycine 
dehydrogenase[60]. Betaine (N,N,N-trimethylglicine) 
performs a critical function in the pathway of methy­
logenesis by controlling the serum methionine levels; 
thus, the results of the aforementioned study[61] might 
be used to tailor therapeutic interventions based on 
metabolites that modulate the liver methylome.

Integration of data derived 
from genomics/proteomics/
transcriptomics and metabolomics 
to predict biomarkers associated 
with NAFLD and NASH 
Integration of analyses carried out across multiple 
biological measurements or OMIC-platforms represents 
an emerging approach aimed at addressing the 
challenges imposed by the complex biochemical re­
gulation processes[62]. 

For example, application of Systems Biology app­
roaches, i.e. Gene Set Enrichment Analysis (GSEA)[63], 
to the field of genomic data has rendered novel know
ledge of shared disease-pathways between alcoholic 

and nonalcoholic liver disease[64]. Likewise, integration 
of genomic data has highlighted the shared genetic 
basis of metabolic syndrome and NAFLD[5]. 

A similar approach can be employed in the field of 
metabolomics to analyze the enrichment of metabolites 
that are overrepresented (ORA) in a query-sample 
against the whole set of metabolites in metabolic 
pathways. In this context, metabolite set enrichment 
analysis (MSEA) is the metabolomic counterpart of 
gene set enrichment. Such analysis, which can be 
performed by using either commercial or freely available 
software[65], has been applied to demonstrate alterations 
in metabolic pathways associated with NAFLD[66].  

As a proof of principle, as a part of this work, 
we performed OMICs-integrative analysis using the 
IMPaLA (Integrated Molecular Pathway Level Analysis, 
http://impala.molgen.mpg.de)[67] platform. Briefly, the 
analysis was conducted by integrating the information 
on metabolites, genes and proteins, allowing the joint 
adjusted P-value (Q-value) to be calculated. 

Specifically, we selected a list of genes previously 
associated with NAFLD[5,64], and metabolites that 
are known to be altered in NAFLD/NASH[68]. Names 
on metabolites were curated using the compound 
ID conversion of the web-based MetaboAnalyst tool 

Figure 3  Whole interactome of compounds (hexagons), chemical reactions (diamonds), enzymes (squares) and genes (circles) associated with nonalcoholic 
fatty liver disease. Details on the set of genes and metabolites that were included in the analysis can be found in the main text; terms were filtered according to the 
ones already found in the databases. The interactome was built using Metscape[73], a plug-in for the widely used network analysis software Cytoscape[74] that supports 
calculation, analysis and visualization of gene-to-metabolite networks in the context of metabolism.

Arachidonate
lipooxigenase
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(http://www.metaboanalyst.ca/)[69,70]. We found 2,827 
pathways; however, only 219 of 347 input gene-
identifiers were mapped to 219 distinct physical entities 
found in these pathways (with a gene background size 
of 12655). Similarly, only 32 of 51 input metabolite-
identifiers were mapped to 32 distinct physical entities 
found in the pathways (with a metabolite background 
size of 5340). Relevant findings, excluding data that 
was exclusively and heavily dependent on genes or 
metabolites, are shown in Table 1; pathways and the 
Q-values for gene and/or metabolite enrichment were 
jointly calculated. 

It is interesting to highlight and discuss a few 
examples in more detail. For instance, in the pathway 
“SLC-mediated transmembrane transport” (Reactome 
database), the overlapping genes and metabolites are 
CALM1 (Calmodulin 1), G6PC (Glucose-6-Phosphatase 
Catalytic Subunit), FGF21 (Fibroblast Growth Factor 21), 
GCK (Glucokinase) and GCKR (Glucokinase Regulator), 
and taurocholic acid, D-mannose, creatinine, L-lactic 
acid, L-valine, L-isoleucine, L-phenylalanine, L-aspartic 
acid, L-tyrosine, carnitine, betaine, L-glutamine, 
linoleic acid, oleic acid, L-leucine and glycocholic acid, 

respectively. 
Another interesting example is the pathway “Trans­

membrane transport of small molecules” (Reactome 
database), in which the overlapping genes and meta­
bolites are G6PC, CALM1, ATP1A1 (ATPase Na+/K+ 
Transporting Subunit Alpha 1), TF (Transferrin), ABCC1 
(ATP Binding Cassette Subfamily C Member 1), FGF21, 
GCK, GCKR, HMOX1 (Heme Oxygenase 1), ABCB1 
(ATP Binding Cassette Subfamily B Member 1), ABCC2 
(ATP Binding Cassette Subfamily C Member 2), ABCC3 
(ATP Binding Cassette Subfamily C Member 3) and 
ABCG2 ATP Binding Cassette Subfamily G Member 
2), and L-glutamine, D-mannose, creatinine, L-lactic 
acid, L-valine, L-isoleucine, L-phenylalanine, taurocholic 
acid, L-aspartic acid, L-tyrosine, carnitine, betaine, 
linoleic acid, oleic acid, L-leucine and glycocholic acid, 
respectively. 

Finally, in the pathway “Central carbon metabolism 
in cancer -Homo sapiens (human)” (KEGG database), 
the overlapping genes and metabolites are PTEN 
(Phosphatase and Tensin Homolog), EGFR (Epidermal 
Growth Factor Receptor), MET (MET Proto-Oncogene, 
Receptor Tyrosine Kinase), PIK3CA (Phosphatidylinositol-

Figure 4  The urea-cycle, glutamate, and branched-chain amino acids in the biology of nonalcoholic fatty liver disease. Sub-network analysis showing the 
urea-cycle and metabolism of amino acids (L-arginine, L-proline, L-glutamate, L-aspartate and L-asparagine) that were extracted from the interactome shown in 
Figure 3. Compounds (common names in the Human Metabolome Database, http://www.hmdb.ca), chemical reactions, enzymes (KEGG database) and genes (HUGO 
symbols) are represented by hexagons, diamonds, squares and circles, respectively. 
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Table 2  List of pathways involved in nonalcoholic fatty liver disease selected from significant Q-values independently on whether 
they represent the effect of gene/s or metabolite/s only

Pathway name Pathway source Q-joint

Adipogenesis Wikipathways 2.00E-17
Non-alcoholic fatty liver disease (NAFLD) - homo sapiens (human) KEGG 2.33E-17
Metabolism Reactome 3.72E-17
AGE-RAGE pathway Wikipathways 4.22E-17
Vitamin B12 Metabolism Wikipathways 5.24E-17
Hepatitis B - homo sapiens (human) KEGG 1.79E-16
Folate metabolism Wikipathways 1.29E-15
Selenium micronutrient network Wikipathways 3.87E-15
TNF signaling pathway - homo sapiens (human) KEGG 5.77E-15
JAK-STAT-core Signalink 1.99E-14
Adipocytokine signaling pathway - homo sapiens (human) KEGG 7.07E-14
Nuclear receptors meta-pathway Wikipathways 1.26E-13
IL1 and megakaryocytes in obesity Wikipathways 2.73E-13
AGE-RAGE signaling pathway in diabetic complications - homo sapiens (human) KEGG 3.79E-13
Spinal cord injury Wikipathways 5.44E-13
Malaria - homo sapiens (human) KEGG 7.09E-13
Metabolism of lipids and lipoproteins Reactome 7.09E-13
SLC-mediated transmembrane transport Reactome 1.23E-12
Pathways in cancer - homo sapiens (human) KEGG 1.41E-12
Inflammatory bowel disease (IBD) - homo sapiens (human) KEGG 2.25E-12
Lung fibrosis Wikipathways 2.63E-12
Integrated pancreatic cancer pathway Wikipathways 3.10E-12
PI3K-Akt signaling pathway - homo sapiens (human) KEGG 3.28E-12
Chagas disease (American trypanosomiasis) - homo sapiens (human) KEGG 4.67E-12
HIF-1 signaling pathway - homo sapiens (human) KEGG 4.67E-12
AMPK signaling pathway - homo sapiens (human) KEGG 9.56E-12
Transmembrane transport of small molecules Reactome 9.66E-12
Central carbon metabolism in cancer - homo sapiens (human) KEGG 1.41E-11
Jak-STAT signaling pathway - homo sapiens (human) KEGG 5.75E-11
DNA damage response (only ATM dependent) Wikipathways 7.27E-11
Cytokine-cytokine receptor interaction - homo sapiens (human) KEGG 1.01E-10
Longevity regulating pathway - homo sapiens (human) KEGG 1.02E-10
Toll-like receptor signaling pathway Wikipathways 2.12E-10
Toll-like receptor signaling pathway - homo sapiens (human) KEGG 3.94E-10
Toxoplasmosis - homo sapiens (human) KEGG 4.73E-10
ABC transporters - homo sapiens (human) KEGG 5.94E-10
Transport of glucose and other sugars bile salts and organic acids metal ions and amine compounds Wikipathways 8.40E-10
Leukotriene biosynthesis HumanCyc 8.71E-10
Insulin resistance - homo sapiens (human) KEGG 1.14E-09
Transport of glucose and other sugars bile salts and organic acids metal ions and amine compounds Reactome 1.91E-09
Sudden infant death syndrome (SIDS) susceptibility pathways Wikipathways 2.12E-09
Cytokines and inflammatory response Wikipathways 2.17E-09
AP-1 transcription factor network PID 2.22E-09
FoxO signaling pathway - homo sapiens (human) KEGG 3.05E-09
Leptin signaling pathway Wikipathways 3.57E-09
Transport of inorganic cations-anions and amino acids-oligopeptides Wikipathways 4.27E-09
Oncostatin M signaling pathway Wikipathways 5.72E-09
Focal adhesion-PI3K-Akt-mTOR-signaling pathway Wikipathways 6.53E-09
Amino acid and oligopeptide SLC transporters Reactome 1.10E-08
Apoptosis Wikipathways 1.41E-08
Apoptotic signaling pathway Wikipathways 1.41E-08
Photodynamic therapy-induced NF-kB survival signaling Wikipathways 1.84E-08
JAK STAT molecularvariation 1 INOH 2.04E-08
MAPK signaling pathway Wikipathways 2.04E-08
Aryl hydrocarbon receptor Wikipathways 2.35E-08
Transport of inorganic cations/anions and amino acids/oligopeptides Reactome 2.40E-08
tRNA aminoacylation Wikipathways 3.03E-08
gamma-glutamyl cycle HumanCyc 3.61E-08
Glucose homeostasis Wikipathways 4.08E-08
Validated transcriptional targets of AP1 family members Fra1 and Fra2 PID 4.13E-08
Hepatitis C and hepatocellular carcinoma Wikipathways 4.26E-08
Calcineurin-regulated NFAT-dependent transcription in lymphocytes PID 4.29E-08
Prostate cancer - homo sapiens (human) KEGG 4.29E-08
Tuberculosis - homo sapiens (human) KEGG 4.45E-08
Apoptosis - homo sapiens (human) KEGG 4.54E-08
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4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha), 
MTOR (Mechanistic Target Of Rapamycin Kinase), 
AKT2 (AKT Serine/Threonine Kinase 2) and GCK, 
and L-glutamine, L-lactic acid, L-valine, L-isoleucine, 
L-phenylalanine, L-aspartic acid, L-tyrosine and L-leucine, 
respectively.

From these few examples, we may conclude that 
some pathways such as solute carrier (SLC) transporters 
should be further explored; in fact, available experimental 
data, while limited, support the participation of ABCC-
family in NAFLD pathophysiology[71].

Nonetheless, the findings discussed above do not 

Figure 5  What to expect for the near future. A personalized nonalcoholic fatty liver disease approach by integrating OMICs big data with clinical information.

OMICs big data + Clinical features 

Biomarkers discovery

Improvement 
in patients 

diagnosis and 
treatment

Discovery 
of novel 

pharmacological 
agents 

Improvement 
in patients 

stratification 
and prognosis

tRNA charging HumanCyc 5.96E-08
Transcription factor regulation in adipogenesis Wikipathways 6.27E-08
Sterol regulatory element-binding proteins (SREBP) signalling Wikipathways 6.27E-08
Integrated lung cancer pathway Wikipathways 6.43E-08
TNF related weak inducer of apoptosis (TWEAK) signaling pathway Wikipathways 8.14E-08
mRNA protein and metabolite inducation pathway by cyclosporin A Wikipathways 8.47E-08
PPAR signaling pathway Wikipathways 9.54E-08
Immune system Reactome 9.57E-08
Regulation of lipid metabolism by peroxisome proliferator-activated receptor alpha (PPARalpha) Wikipathways 1.13E-07
AMP-activated protein kinase (AMPK) signaling Wikipathways 1.34E-07
Photodynamic therapy-induced NFE2L2 (NRF2) survival signaling Wikipathways 1.52E-07
Leptin insulin overlap Wikipathways 1.65E-07
Class I MHC mediated antigen processing and presentation Wikipathways 1.73E-07
Caspase cascade in apoptosis PID 1.99E-07
Overview of nanoparticle effects Wikipathways 2.17E-07
Alpha6Beta4Integrin NetPath 2.29E-07
VEGFA-VEGFR2 signaling pathway Wikipathways 2.30E-07
HIV-1 Nef: Negative effector of Fas and TNF-alpha PID 2.65E-07
Innate immune system Reactome 2.69E-07
Na+/Cl- dependent neurotransmitter transporters Reactome 3.10E-07
Colorectal cancer - homo sapiens (human) KEGG 3.42E-07
Regulation of toll-like receptor signaling pathway Wikipathways 3.64E-07
stress induction of hsp regulation BioCarta 3.64E-07
Amino acid transport across the plasma membrane Reactome 3.72E-07
Programmed cell death Reactome 3.85E-07
Apoptosis modulation and signaling Wikipathways 4.42E-07
SREBF and miR33 in cholesterol and lipid homeostasis Wikipathways 4.84E-07
JAK STAT pathway and regulation INOH 5.42E-07

OMICs-integrative analysis was performed using the IMPaLA (Integrated Molecular Pathway Level Analysis, http://impala.molgen.mpg.de)[67] platform. 
A joined adjusted P-value (Q-value) was calculated to control for multiple testing by false discovery rate.
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necessarily indicate that no other important pathways 
are potentially involved in the biology of NAFLD. In fact, 
Table 2 illustrates the myriad of processes involved in 
the pathogenesis of a complex disease such as NAFLD. 
In addition, Figure 3 depicts the complexity of the 
interactome among the whole set of genes, enzymes, 
chemical reactions and metabolites associated with 
NAFLD. Figure 4 shows a sub-network emphasizing 
the importance of the urea-cycle and metabolism of 
L-arginine, L-proline, L-glutamate, L-aspartate and 
L-asparagine. Specifically, features in Figure 4 highlight 
the central role played by aminotransferases and 
gamma-glutamyl transferases in the frame of altered 
L-glutamine/L-glutamate, glutathione and BCAA levels, 
as already mentioned.

Finally, additional biomarkers that target immunity-
related pathways, for example circulating levels of 
cytokines/chemokines, antibodies etc. might be use­
ful in predicting NASH progression toward advanced 
phases[72]. 

Conclusion
Implementation of OMICs-derived biomarkers in the 
management and treatment of patients with NAFLD is 
still under extensive evaluation. Knowledge gained on 
genetic signatures associated with NAFLD and NASH, 
as well as the role of circulating cfmiRNAs and plasma 
metabolites, should be promptly translated into the 
clinical setting. Nevertheless, rigorous steps that must 
include validation and replication are mandatory before 
OMICs biomarkers are ready for use as diagnostic 
markers to identify patients at risk of advanced disease, 
including liver cancer.  

What to expect for the near future: A personalized 
NAFLD approach by integration of OMICs - big data and 
clinical information (Figure 5): (1) It is expected that, in 
the near future, NAFLD patients can be diagnosed and 
treated according to their own “molecular signature”; 
(2) Specific focus should be placed on prevention and 
early diagnosis by the application of biomarkers of 
disease risk; (3) Selection of “personalized drugs” as 
well as tailored therapy should be made according to 
the specific molecular signature; and (4) Personalized 
lifestyle intervention is desirable but it is envisioned that 
the basic and general recommendations about alcohol 
restriction, healthy diet and exercise would remain the 
foundation of prevention and therapy.
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