
Cell contraction induces long-ranged stress stiffening
in the extracellular matrix
Yu Long Hana,1, Pierre Roncerayb,1, Guoqiang Xua, Andrea Malandrinoa,c, Roger D. Kamma,d, Martin Lenze,
Chase P. Broederszf,g,2, and Ming Guoa,2

aDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; bPrinceton Center for Theoretical Science,
Princeton University, Princeton, NJ 08544; cInstitute for Bioengineering of Catalonia, 08028 Barcelona, Spain; dDepartment of Biological Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139; eLPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France; fArnold
Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany; and gCenter for NanoScience, Ludwig-
Maximilians-Universität München, D-80333 Munich, Germany

Edited by Tom C. Lubensky, University of Pennsylvania, Philadelphia, PA, and approved March 12, 2018 (received for review January 2, 2018)

Animal cells in tissues are supported by biopolymer matrices, which
typically exhibit highly nonlinear mechanical properties. While the
linear elasticity of thematrix can significantly impact cell mechanics and
functionality, it remains largely unknown how cells, in turn, affect the
nonlinear mechanics of their surrounding matrix. Here, we show that
living contractile cells are able to generate a massive stiffness gradient
in three distinct 3D extracellular matrix model systems: collagen, fibrin,
and Matrigel. We decipher this remarkable behavior by introducing
nonlinear stress inference microscopy (NSIM), a technique to infer
stress fields in a 3D matrix from nonlinear microrheology measure-
ments with optical tweezers. Using NSIM and simulations, we reveal
large long-ranged cell-generated stresses capable of buckling filaments
in the matrix. These stresses give rise to the large spatial extent of the
observed cell-induced matrix stiffness gradient, which can provide a
mechanism for mechanical communication between cells.
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Living cells interact mechanically with their 3D microenviron-
ment. Many basic cell functions, including migration, pro-

liferation, gene expression, and differentiation, depend on how
these forces deform and shape the surrounding soft extracellular
matrix (ECM) (1–4). In addition, externally imposed forces on the
matrix can impact cell behavior, for instance in beating cardiac cells
on a 2D substrate (5–7). Such external forces may be generated by
other cells and act as mechanical signals (8–10) leading to emergent
collective cell dynamics (11, 12). Nevertheless, it remains unclear
how cell-generated forces propagate through the ECM and impact
the mechanics of their 3D extracellular environment.
The ECM is composed of several types of biopolymers (13), such

as collagen or fibrin, which are largely responsible for its mechanical
properties. Experiment and theory have shown that biopolymer
networks exhibit a highly nonlinear mechanical response (14), in-
volving the entropic elasticity of individual filaments, geometric ef-
fects due to fiber bending and buckling, and even collective network
effects governed by critical phenomena (15–21). Recent works have
indicated that this nonlinear response is highly relevant to cell–
ECM interactions (22–25). Although these nonlinear mechanical
properties of biopolymer gels have been studied extensively with
bulk rheology, the direct characterization of microscale mechanics
inside a 3D matrix in the vicinity of a cell is still lacking. Conse-
quently, the role of elastic nonlinearities in mechanical cell–ECM
interactions has remained elusive.
Ideally, cell–ECM interactions would be analyzed by determining

the stress field generated by the cell. Unfortunately, standard mi-
croscopy techniques do not reveal this information in a straight-
forward and unambiguous way. Some information about internal
network forces can be accessed by adding deformable particles (26)
or by creating an interface, for example by laser ablation, and ob-
serving the resulting deformation of the system (27, 28). However,
obtaining internal stresses with such invasive and destructive ap-
proaches requires additional assumptions about the network’s local
mechanical properties. The same is true of approaches that infer

stresses from a combination of microscopy imaging and finite ele-
ment modeling (23, 29, 30). The intrinsic heterogeneity (31–33) and
a highly nonlinear mechanical response (14, 34) of extracellular
networks pose a daunting challenge to these techniques (35).
To investigate how living cells mechanically modify their micro-

environment, we use microrheology with optical tweezers to directly
measure the local nonlinear elastic properties in a 3D ECM net-
work. We observe that remarkably far-reaching stiffening gradients
are generated toward the cell in a variety of biopolymer matrices. To
investigate this, we introduce a model-independent measurement
technique termed nonlinear stress inference microscopy (NSIM),
enabling us to determine the stress in a region around the cell and
study stress propagation inside a 3D ECM.We use a combination of
theory and simulations to demonstrate the ability of NSIM to ac-
curately measure 3D local stress with high spatial resolution. Using
NSIM, we show that the observed extended stiffness gradient around
cells results from remarkably large stresses, which are capable of
exciting the matrix’s nonlinear response over distances exceeding the
size of the cell. Our results demonstrate that contractile cells strongly
modify the mechanics of the surrounding ECM, which could be
crucial in shaping matrix-mediated interactions between cells.

Cells Strongly Stiffen Their Surrounding ECM by Actively
Contracting
To study the mechanical interactions between cells and their
surrounding ECM, we culture MDA-MB-231 cells in a 1.5 mg/mL
reconstituted 3D collagen network. The network is infused with
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4.5-μm-diameter latex beads, large enough to prevent slippage
through the mesh. The cells spread and start contracting the sur-
rounding network within 4 h (Fig. 1A). We probe the local micro-
mechanics of the matrix using optical tweezers to pull these beads
away from the cell at a constant speed of 1 μm/s (Fig. 1 B–D and SI
Appendix, Fig. S1). This low speed ensures that the viscous drag on
the bead from the background fluid is negligible compared with the
network’s restoring force, and at this speed the mechanical response
of the matrix is rate independent, fully reversible, and therefore
predominately elastic (SI Appendix, Fig. S2). Thus, this protocol
enables us to obtain the local force–displacement relationship F(x)
that characterizes the micromechanics of the matrix.
By probing a bead located far from the cell (>200 μm), we de-

termine the intrinsic response of the collagen matrix. The resulting
force–displacement relationship is shown by the black line in Fig.
1E. The nonlinear differential stiffness knl(F) = dF/dx, defined as
the slope of this force–displacement curve, increases with applied
force F, revealing a strong force-stiffening behavior. This is remi-
niscent of the well-characterized stress-stiffening behavior measured
at large scales using macrorheology on collagen gels (14, 34).
Interestingly, the matrix becomes substantially stiffer closer to

the MDA-MB-231 cell (Fig. 1E). Indeed, the local linear stiff-
ness klin of the matrix, defined as the small force limit of knl(F), is
two orders of magnitude larger near the cell than at a remote
location (Fig. 1F, red squares). This direct observation of cell-
induced matrix stiffening in the bulk of the network is consistent
with prior 2D experiments showing cell-induced stiffening of the
surface of a collagen matrix with a cell migrating on top (22), as
well as with simulations (23).
This dramatic stiffness gradient in the vicinity of the cell origi-

nates from the active forces it exerts together with the nonlinear
elasticity of the matrix. To demonstrate this, we first note that we
can rule out the effect of the passive rigidity of the cell on the
matrix stiffness, which is proven theoretically to be very short-
ranged in 3D (33). Next, we measure the stiffness gradient around
MCF-10A cells, a normal human mammary epithelial cell type
with weak contractility. In this case, we observe negligible stiff-
ening of the surrounding matrix (Fig. 1F, light blue polygons), in
stark contrast to their highly contractile counterpart. Furthermore,

inhibiting cell contractility of MDA-MB-231 cells using 2 μM cy-
tochalasin D results in a strong attenuation of the cell-induced
stiffening (Fig. 1F, blue circles). The weak residual stiffness gra-
dient we observe with weakly contractile cells is well explained by
increased ECM density near the cell, under the assumption that
the matrix rigidity scales as the square of the collagen concen-
tration c (36); by estimating c using confocal reflection micros-
copy, we determine that the enhanced matrix density near the cell
can account for a stiffening of up to a factor of ∼3 (Fig. 1F, gray
diamonds). However, the enhanced matrix concentration near the
cell clearly cannot account for the much larger stiffness gradient
generated by contractile MDA-MB-231 in collagen (Fig. 1F).
Macrorheology experiments show that the stiffness of collagen
gels increases not only with collagen concentration but also with
stress (34). To test whether this nonlinear matrix response can
account for the large stiffness gradient induced by the cell, we
measure the local matrix stiffness in the vicinity of a MDA-MB-
231 cell in a linear elastic matrix (37) with a similar macro-
rheological linear modulus to that of collagen (RGD-alginate,
5 mg/mL). In this linear elastic matrix, we observe no local stiff-
ening effect around contracting cells (SI Appendix, Fig. S5). Taken
together, our results demonstrate that active forces exerted by the
cell result in an extended stiffened region in the 3D collagen matrix,
reflecting the presence of a stress field decaying away from the cell
with stress values sufficiently large to excite the nonlinear response
of the collagen network, as illustrated in Fig. 1D.

Nonlinear Stress Inference Microscopy
To study the cell-induced stress fields, we use the network’s
nonlinear microrheological response to our advantage and infer
local stress values from our stiffness measurements. The nonlinear
stiffening evidenced in Fig. 1E originates from two contributions:
the force F exerted by the optical tweezers acting on the bead, and
the local stress σloc induced by the cell. This similar influence of
force and stress suggests that we may be able to extract σloc at a
specific distance from the cell by comparing the corresponding
force–displacement relationship to the remote measurement at
which σloc is negligible. This comparison is confounded, however,
because of force and stress being fundamentally different quantities:

Fig. 1. Far-reaching stiffness gradient of ECM caused
by a single contracting cell in a 3D collagen network.
(A) Image of a MDA-MB-231 cell (blue) in a 3D col-
lagen network (green). (Scale bar, 10 μm.) (B–D)
Schematics illustrating the force–displacement mea-
surement with laser tweezers and the relation be-
tween matrix stiffening (blue potential wells) and
the cell-generated stress field in the cell contrac-
tion direction. (E) Local force–displacement curves,
showing the local nonlinear stiffening response in
the collagen network. Different colors represent
measurements at various distances from the cell
along the contraction direction. (F) Quantification of
the linear stiffness klin of the local 3D matrix as a
function of distance to the cell r. Red squares and
yellow triangles represent measurements along and
perpendicular to the main contraction direction of
MDA-MB-231 cells, respectively. Blue circles are mea-
sured along the contraction direction of MDA-MB-
231 cells but with cell contraction inhibited by cyto-
chalasin D treatment. Gray diamonds indicate the
stiffness expected solely from the increased collagen
concentration c. Light blue polygons represent mea-
surements in the contraction direction of MCF-10A
cells. Here, “remote” stands for the locations that are
far away from the cell (>200 μm), where the matrix’s
response is not affected by cell contraction. Error bars
represent SD (n = 15).
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beyond having different dimensions, force transforms as an axial
vector under spatial symmetry operations, while stress is a rank
2 tensor. This has an essential implication for the difference in the
nonlinear response due to a force as opposed to a stress: The local
stiffness should be invariant under reversal of the force vector,
F to −F, while reversal of the stress tensor σ to −σ exchanges
compression and tension, which can have a qualitatively different
effect on the nonlinear mechanical response.
Despite these differences, here we show that a correspondence

between force and stress controlled stiffening can be established in
the strongly nonlinear regime. First, consider a simple 1D system
of nonlinear springs representing the network surrounding a bead
in a geometry with fixed network stress σ (Fig. 2A) and one with
fixed tweezer force F (Fig. 2B). For nonlinear springs that stiffen
under tension and soften under compression—a generic charac-
teristic of biopolymers (14, 18, 38)—we find that the functional
form of the stiffness curves actually becomes similar at large σloc
and F, despite being qualitatively different in the weakly nonlinear
regime. Indeed, the tensed spring in Fig. 2B dominates the dif-
ferential stiffness experienced by the bead in the strongly non-
linear regime, rendering this case similar to the stress-controlled
geometry, where the mechanical response is equally shared by two
similarly tensed bonds (Fig. 2A). This quantitative similarity be-
tween the klin vs. σloc and knl vs. F curves in the strongly nonlinear
regime enables us to use the latter, which we measure by nonlinear
microrheology, as a “dictionary” to infer local stresses.
This intuitive correspondence between the force- and stress-

controlled geometries in the nonlinear regime becomes mathemat-
ically exact when the springs’ differential stiffness has a power-law
dependence on tension, as widely observed for biopolymer networks
(34, 39) (SI Appendix, section 4). Specifically, from a measurement
of klin in a network with an unknown local stress σloc, we can obtain
an effective force Feff defined such that knl(Feff) = klin(σloc), and this
effective force is directly proportional to the local stress:

σloc ≈ a  Feff , [1]

provided large local stresses, such that klin � k0, where k0 is the
linear stiffness of the unstressed network. We determine the
proportionality factor a by assuming that nonlinearity sets in at
a similar stress σ* at a macro and microscopic level. In practice,
we adjust a to match the low- and high-stress asymptotes, in a
log–log plot, of the macroscopic differential shear modulus K
(σmacro) to those of the microrheology curve knl(F) (Fig. 2 C–E
and SI Appendix, Figs. S7 and S13). Together with Eq. 1, this
provides a procedure to infer stresses from nonlinear microrheol-
ogy, which we term nonlinear stress inference microscopy (NSIM).
To demonstrate the validity and accuracy of NSIM, we perform

simulations of the experimental scenario presented in Fig. 1. We
embed a contractile cell in a disordered 3D network of fibers with
power-law stiffening (SI Appendix, section 2). We model the cell as
a rigid ellipsoidal body that contracts along its long axis, inducing
strong stiffening in an extended conic region as depicted in Fig.
3A. We then simulate a microrheology experiment by applying a
force on a selection of network nodes to obtain a local force–
displacement curves at various distances r along the contraction
direction of the cell (Fig. 3B). From this, we determine the linear
stiffness klin of the network as a function of r (Fig. 3C), which
exhibits a dependence similar to the experimental measurements
shown in Fig. 1F. We further confirm that this dependence van-
ishes in the direction perpendicular to contraction and in the
absence of an active contractile force, as in experiments (Fig. 1F).
We infer the local stress field from these linear stiffnesses using
NSIM, as shown in Fig. 3D. We find excellent agreement with the
“true” local stress in the strong stiffening regime even when me-
chanical disorder gives rise to fluctuations in the stress field (Fig.
3E and SI Appendix, section 3), thereby validating NSIM as a
quantitative method to capture the spatial stress distribution around
a contractile cell in a disordered 3D fiber matrix (Fig. 3 D–F).

Tensile Stress Propagation Leads to Extended Stiffness
Gradients Around Cells
To unravel the mechanical origins of the far-reaching cell-
induced stiffness gradient in collagen (Figs. 1F and 4A), we use
NSIM to experimentally infer the local stresses σloc(r) around a
cell inside the matrix. The inferred stress decays with distance r
from the cell consistent with a power law σloc ∼ r−2 (Fig. 4B), in
contrast with the power law σloc ∼ r−3 expected in the far field for a
linear material (40). Our model-independent measurement of slow
stress decay is consistent with previous theoretical predictions for
models of fiber networks with various nonlinear force–extension re-
lationships (41–44), as well as with the observed deviations from linear
elasticity in experimental deformation fields (23, 29). Importantly,
however, in this specific geometry where an elongated cell exerts
opposite forces at two distant points (5, 23, 29), near-field linear
elasticity also predicts an inverse quadratic stress decay at distances
smaller than the cell diameter, rendering it difficult to distinguish
linear and nonlinear force transmission. Nevertheless, our simulations
predict that this long-ranged decay extends further than the cell size,
showing a clear deviation from the linear elastic prediction (Fig. 3F).
Conceptually, this increased range of stresses in fibrous mate-

rials found in simulation results from their asymmetric response to
tension and compression: Fibers stiffen under tension and soften
due to buckling under compression (18, 45). Simply speaking, the
matrix around a strong contractile cell effectively behaves as
a network of ropes, where only tensile forces are transmitted,

A B

C D E

Fig. 2. Nonlinear elastic responses can be used to infer cell-induced local
stresses. (A) One-dimensional system of nonlinear springs in a stress-controlled
geometry with local stress σloc. (B) Force-controlled geometry with force F applied
to the central bead, together with an expansion of stiffness dictated by sym-
metry properties of the two scenarios and a schematic of the nonlinear response.
The linear stiffness, klin, of the system in A can be measured by applying a small
perturbation to the central bead, while the nonlinear stiffness, knl, is defined as
the derivative of the force–displacement curve of the central bead in B. The
springs represent the surrounding network. (C) Schematics of linear micro-
rheological stiffness as a function of the local stress in the stress-controlled ge-
ometry on a logarithmic scale. (D) Nonlinear microrheological stiffness for the
force-controlled geometry. (E) Differential shear modulus, K, as a function of
applied shear stress σmacro as in a macroscopic rheology experiment. Our in-
ference technique exploits a correspondence between the stress-controlled and
force-controlled geometries in the strongly nonlinear regime.
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unimpeded by orthoradial compressive counterforces. Hence the
total contractile force exerted by the cell is conserved with dis-
tance, and the decay of radial stress simply reflects this force
spreading over an increasing surface area (41). This buckling-
based mechanism for long-range stress transmission is supported
by observations with confocal reflection microscopy of a larger
amount of highly curved collagen filaments in the vicinity of a
contractile cell, compared with the case where contraction is
inhibited with cytochalasin D (Fig. 4 E and F).
To explore the generality of our observations in collagen, we

perform the same nonlinear microrheological experiments with
MDA-MB-231 cells in a 2.5 mg/mL Matrigel (Fig. 4A, green cir-
cles), a blend of biopolymers more complex than pure collagen
(46), and for human umbilical vein endothelial cells (HUVECs) in
a 3.0 mg/mL fibrin gel (light blue triangles in Fig. 4A). In both
cases, we find that cells are capable of generating large extended
stiffness gradients along the cell’s contraction direction (Fig. 4A).
Using NSIM, we find that the slow stress decay consistent with
rope-like force transmission (σloc ∼ r−2) is observed in all three
cases, despite significant variability in the absolute magnitude of
the stresses (solid lines in Fig. 4B). The stresses induced by the cell
enhance the linear stiffness klin over an extended region of the
ECM (Figs. 1F and 4A), thus exciting the nonlinear elastic re-
sponse of the matrix over a distance exceeding the cell size. These
results also highlight the wide applicability of NSIM.
Cells actively modify not only the linear stiffness of their 3D

matrix environment (Fig. 4A) but also the nonlinear mechanical
response. To reveal how cell stress and probe forces combine to
stiffen the surrounding network, we measure the full nonlinear
microrheological response of the network both in the vicinity of
the cell and at a remote location in all three types of ECM model
systems, as shown in Fig. 4C. The nonlinear knl vs. F curves
measured at different distances from the cell are clearly sepa-
rated from the remote measurement. This observation cannot be
accounted for by network heterogeneities (SI Appendix, Fig. S3)
or the increase of network concentration near the cell (SI Ap-
pendix, Fig. S4), indicating a significant contribution of cell-
generated stress on the nonlinear mechanical response. This
contribution could be through nonlinear network elastic stiff-
ening or network plastic deformation (47). We note that our

stress inference is largely independent of the specifics of the
ECM’s nonlinear response but does assume a predominantly
elastic response to the forces generated by the cell. Indeed,
significant plastic deformations could imply that the ECM’s
nonlinear response is systematically modified as a function of the
distance from the cell. In the absence of plastic deformations, we
expect that further stiffening a prestressed matrix by a large
tweezer force would result in a nonlinear response that is func-
tionally similar for all levels of cell stress. To test this, we plot all
nonlinear stiffening curves as a function of the combined force
F + Feff, where the effective force Feff ∝ σloc is determined as in
Fig. 2 A and B (SI Appendix, Table S1). Remarkably, we find that
the data taken at different distances to the cell collapse in any
network composition onto a smooth master curve (Fig. 4D). The
large cell-generated stress thus locally drives the ECM into an
elastic nonlinear regime, which can be further extended by the
probe force we apply with optical tweezers.
Several studies have reported experimentally measured dis-

placement fields induced by a contracting cell in 3D contexts
(23, 29, 30, 35, 48, 49). By using these displacement fields to-
gether with a continuum elasticity model, it was suggested that
the matrix may stiffen near the cell. However, to our knowledge,
no direct measurements of the local stiffness have been done in
3D contexts, at the scale of a cell level. Furthermore, we infer the
stresses responsible for this stiffening using NSIM, a conceptually
unique inference technique that does not require knowledge of
the materials’ constitutive stress–strain relationship nor of a ref-
erence undeformed state. Due to its simplicity and insensitivity to
the detailed material’s properties, NSIM could be used in various
conditions, including embryo or tumor development. The stresses
inferred using this technique far from the cell are consistent with
prior measurements (29). Close to the cell, strong stiffening ren-
ders the technique most accurate and corresponds to stresses of
the order of 200 Pa, larger than previously reported (29). These
cell-induced stresses decay more slowly than in a linear continuum
material, which can be accounted for by buckling of fibers in the
network, impeding the transmission of compressive stresses. This
slow stress decay has also been inferred in previous studies by
using a finite-element model in conjunction with imaged de-
formation fields (23, 29). Here, we provide direct evidence for

A B C D

E F

Fig. 3. Three-dimensional simulations of cell-generated stress fields inducing nonlinear network response and validations of NSIM. (A) Simulated rigid ellipsoidal
cell contracting inside a 3D nonlinear fiber network (in green). The linear stiffness klin is depicted by the spheres in a green–white logarithmic color gradient. (B)
Local force–displacement curves, showing the local nonlinear stiffening response in the simulated network. Different colors represent measurements at various
distances from the cell along the contraction direction. (C) Local linear stiffness klin of the 3D matrix as a function of distance to the cell r from simulations. Red
and yellow symbols represent data parallel and perpendicular to the main contraction direction, respectively. Blue symbols correspond to a noncontracting rigid
cell. (D) The inferred stress depicted by spheres in a red–white logarithmic color gradient in the same simulation as in A. Absent points along the direction
perpendicular to the cell’s contraction axis correspond to soft compressed regions where the local stiffness is smaller than k0, precluding the use of NSIM. (E)
Inferred stresses from simulated data in B using NSIM vs. direct numerically determined stress, demonstrating that NSIM allows to correctly infer stresses within a
factor of order 1 in the nonlinear regime. (F) The local stress along the cell axis decays as r−2, faster than the linear elastic prediction in this geometry (dotted line).
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long-range stress transmission by using a model-independent
measurement of local stresses and their decay around a cell.
These cell-induced stresses result in far-reaching stiffness gradi-
ents as high as 50 Pa/μm over a cell diameter. Other cells in the
surrounding matrix could sense and respond to such large gradi-
ents, suggesting that cell-induced ECM stiffening could mediate
intercell mechanical communication and collective durotaxis.
These observations highlight the critical role of nonlinear matrix
mechanics not only in shaping cell–ECM interactions (8, 50) but
also for matrix-mediated interactions between cells.

Methods
Cell Culture and Matrix Preparation. Cells are maintained under 37 °C, 5% CO2

and 95% humidity. MDA-MB-231 cells were cultured in DMEM with 10% FBS,
1% penicillin and streptomycin. HUVECs (Lonza) were cultured on collagen I-
coated flasks in EGM-2 growth medium (Lonza) and used between passages
6 and 8. To prepare the collagen gel, 800 μL of type I bovine collagen solution
(3.0 mg/mL; PureCol; Advanced BioMatrix) was mixed with 100 μL of PBS (10×).
We adjusted the solution to pH 7.2 with ∼70 μL of 0.1 M NaOH. The collagen
solution is then mixed with PBS (1×) to reach a final collagen concentration of
1.5 mg/mL and polymerized in the cell culture incubator for 30min. To prepare
the fibrin gel, fibrinogen from bovine plasma (F8630; Sigma) was dissolved in
PBS at 6 mg/mL. Thrombin (T4648; Sigma) was dissolved at 2 U/mL in PBS (for
experiments without cells) or in EGM-2 (for experiments with cells). Then we
mixed thrombin and fibrinogen at 1:1 volume ratio and polymerized it in the
cell culture incubator for 15 min. For Matrigel preparation, the basement

membrane matrix (10 mg/mL; Corning) was diluted to 2.5 mg/mL with DMEM
and polymerized in the cell culture incubator for 30 min. For all cell-loaded
gels, cell and bead suspensions were added to the gel solution before poly-
merization, with a cell density around 104/mL, and all measurements were
conducted 12 h after polymerization. To inhibit contractility of MDA-MB-
231 cells, we disrupted filamentous actin structures using 2 μM cytochalasin D
(PHZ1063; Invitrogen) for 30 min.

Optical Tweezer Measurements.Weused a Thorlabs optical tweezers system to
perform all measurements. Briefly, to optically trap a bead (4.5-μm carbox-
ylate microspheres; Polyscience) that is embedded and confined in a 3D
biopolymer network, the laser beam (5 W, 1,064 nm) is tightly focused
through a series of Keplerian beam expanders and a high-N.A. objective
(100 × 1.4; oil; Leica). A high-resolution quadrant detector was used for
position detection. The linear region of the detector and the trap stiffness
(0.04 pN/nm) were calibrated with the same bead in pure cell culture media
by using an active power-spectrum method and equipartition theorem (51).
To manipulate the trapped bead, a high-resolution piezo stage (P-545; PI
nano) was moved at a constant velocity of 1 μm/s, and the relative distance
between laser and bead was recorded, from which local force–displacement
curves inside the matrix were determined (52) (see SI Appendix for details).

Bulk Rheology. We performed bulk rheology measurements on a DHR-
3 rheometer (TA Instruments) using a plate–plate geometry, with a 40-mm
glass disk as the top plate and a 60-mm Petri dish as the bottom plate with a
gap of 500 μm. All gels were formed in the gap at 37 °C and were sealed by
mineral oil to avoid evaporation. The polymerization process was monitored

Fig. 4. Nonlinear matrix stiffening and cell-generated stress propagation in various 3D biopolymer networks. (A) Local linear stiffness klin is plotted against the
distance to the cell r along its principal contraction direction in collagen (red square), fibrin (blue triangle), and Matrigel (green circle). All three different ECM
model systems exhibit a strong cell-induced stiffening gradient. (B) The stress field σ generated by the cell determined using NSIM is shown as a function of
distance to the cell r, and the dashed line indicates a slope of −2. (C) Local nonlinear differential stiffness knl is plotted against the applied probe force F for all
three ECM model systems. (D) Collapse of the data from C onto a master curve in each respective matrix obtained by plotting knl as a function of combined local
force F + Feff, where the Feff is determined using NSIM. (E) Time-lapse imaging shows the buckling process of a single fiber around a contracting cell. The fiber
undergoing buckling is highlighted in yellow. (Scale bar, 2 μm.) (F) Fiber curvature distributions (Bottom) and the cumulative probability (Top) near the cell, within
a 60-μm distance along the principal cell contraction direction, before and after cytochalasin D treatment. Error bars in A and B represent SD (n = 15).
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by strain oscillations with a strain amplitude of 0.005 at a frequency of 1 rad/s.
After polymerization, a strain ramp was applied to the gel at a rate of 0.01/s,
and the resulting stresses were measured.

Theoretical Modeling and Simulations. Numerical simulations presented in Fig.
3 are performed using a model of nonlinear springs [force–extension re-
lation f(x) = exp(μx) − 1; see SI Appendix, Figs. S10 and S11 for other types of
nonlinearities], with regular removal of springs to introduce disorder in the
network, while ensuring a fiber length Lf = 10, in a spherical system of radius
R = 50.5. The contractile cell is a rigid ellipsoidal body of size 14.2 × 2.8 × 2.8,
with force and torque balance, contracted by 50% along its long axis. The
surrounding network is flexibly clamped at the surface of the cell and at the
boundary of the system. Mechanical equilibrium is attained by minimization
of the energy using the BFGS algorithm. Further details are provided in SI
Appendix, sections 2 and 3.

Imaging of Collagen Networks and Image Analysis. The 3D collagen networks
near a contracting cell were imagedwith confocal reflectionmicroscopy using
a 63×, 1.2 N.A. water objective (Leica SP8). To determine the boundary of the
cell, the cytoplasm was stained with CellTracker Green (C7025; Thermo
Fisher) and imaged at the same time under confocal microscope. To capture
the fiber buckling process, we imaged the cell and its surrounding 3D fiber

networks at a 5-min interval for 4 h at 37 °C and with 5% CO2. To analyze
the curvature of single collagen fiber, we manually selected 20 points on
each individual collagen fiber; the fiber outline was determined by cubic
spline interpolation, from which the average curvature of the fiber was
calculated.
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