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Abstract

Layer-by-layer cell printing is useful in mimicking layered tissue structures inside the human body 

and has great potential for being a promising tool in the field of tissue engineering, regenerative 

medicine, and drug discovery. However, imaging human cells cultured in multiple hydrogel layers 

in 3D-printed tissue constructs is challenging as the cells are not in a single focal plane. Although 

confocal microscopy could be a potential solution for this issue, it compromises the throughput 

which is a key factor in rapidly screening drug efficacy and toxicity in pharmaceutical industries. 

With epifluorescence microscopy, the throughput can be maintained at a cost of blurred cell 

images from printed tissue constructs. To rapidly acquire in-focus cell images from bioprinted 

tissues using an epifluorescence microscope, we created two layers of Hep3B human hepatoma 

cells by printing green and red fluorescently labeled Hep3B cells encapsulated in two alginate 

layers in a microwell chip. In-focus fluorescent cell images were obtained in high throughput 

using an automated epifluorescence microscopy coupled with image analysis algorithms, 

including three deconvolution methods in combination with three kernel estimation methods, 

generating a total of nine deconvolution paths. As a result, a combination of Inter-Level Intra-

Level Deconvolution (ILILD) algorithm and Richardson-Lucy (RL) kernel estimation proved to be 

highly useful in bringing out-of-focus cell images into focus, thus rapidly yielding more sensitive 

and accurate fluorescence reading from the cells in different layers.

Correspondence concerning this article should be addressed to M-Y. Lee at m.lee68@csuohio.edu.
Sean Yu and Pranav Joshi contributed equally to this work.

HHS Public Access
Author manuscript
Biotechnol Prog. Author manuscript; available in PMC 2019 March 01.

Published in final edited form as:
Biotechnol Prog. 2018 March ; 34(2): 445–454. doi:10.1002/btpr.2591.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Image deconvolution; microarray 3D bioprinting; layered cell printing; fluorescent cell imaging

Introduction

Three-dimensional (3D) bioprinting offers tremendous advantage for developing 3D tissue 

constructs with various applications in research areas including tissue engineering, 

regenerative medicine, disease modeling, cancer research, and drug discovery. Bioprinting 

allows high control over the microenvironments of bioprinted tissue constructs and thus 

enables more accurate representations of in vivo tissue structure.1,2 This technology further 

facilitates the use of bioprinted tumor/tissue models for preclinical drug testing with 

potential for replacing the use of inaccurate animal models for drug testing. For example, a 

3D co-culture of primary hepatocytes with non-parenchymal cells such as Kupffer cells have 

already been shown to predict in vivo response more accurately than two-dimensional (2D) 

cell monolayer cultures, reaffirming the idea that the interaction between hepatocytes and 

surrounding cells plays an important role in hepatocyte function.3 The ability to form tissue-

like structures is highly inhibited in 2D, and cells cultured in 2D rapidly lose some of their 

phenotypic properties when compared to 3D cultures aimed to mimic tissues in vivo.4,5 

Nonetheless, imaging human cells cultured in 3D poses an inherent challenge because of 

opaque bioprinted tissue constructs in relatively large dimensions (typically 1 cm3 or larger). 

In addition, imaging human cells printed in multiple hydrogel layers using conventional 3D 

bioprinters have been problematic and cumbersome due to cells spread in X and Y directions 

as well as the Z direction, completely lacking a single focal plane. This may lead to 

inaccurate measurement and analysis of target specific signals, cellular morphologies, 

reporter signals, and phenotype profiling.6

One way to address these issues is to culture human cells in miniature 3D spheroids on a 

chip via microarray bioprinting. The microarray bioprinting technology refers to printing an 

array of human cells in biomimetic hydrogels rapidly either on functionalized glass slides or 

on microarray chip platforms such as a micropillar chip and a 384-pillar plate.7,8 For 

example, miniaturized 3D culture of human liver cells encapsulated in Matrigel has been 

demonstrated on the micropillar chip by printing nanoscale volume of cell samples (typically 

30 – 60 nL) using an automated microarray spotter.9 The micropillar chip with printed cells 

was then sandwiched with a complementary microwell chip that contained typically 950 nL 

of growth media, recombinant viruses, test compounds, and fluorescent dyes. Microarray 

bioprinting offers clear advantages, which include extremely small amounts of cells, natural 

and synthetic hydrogels, extracellular matrices (ECMs), growth factors (GFs), compounds, 

and reagents required for creating and evaluating 3D cultured cells.10 Ultrahigh-throughput 

printing allows to test a variety of 3D cell culture conditions and individual drugs/mixtures 

of drugs in combinations, which makes it well suited for early stage, high-throughput 

screening (HTS) in pharmaceutical industries. Cell encapsulation protocols developed on the 

microarray chip platforms are flexible and allow for culturing multiple cell types from 

different tissues in hydrogels on the chip, consequently providing more insight into potential 

tissue-specific toxicity of compounds. Finally, acquiring images of cell spheroids from 
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small, transparent spots in approximately 600 μm diameter and 100 μm thickness is easy and 

straightforward because the whole sample depth fits within the focus depth of a normal 

objective. As a result, this technology has found a niche in wide range of studies from 

metabolism-induced toxicity9,11–13 and anticancer drug screening2,14 to immunofluorescent 

cell imaging15 and RNAi16 in a relatively short period of time.

Nonetheless, human cell printing on the micropillar chip and the 384-pillar plate has been 

limited to a single cell spot per pillar for 3D spheroid cultures due to the small area of the 

pillar tip, and the spheroid cultures may not represent tissue structures in vivo. To better 

mimic in vivo microenvironments for tissue regeneration and disease modeling, human cell 

types can be printed directly into the microwell chip at higher volume (typically 300 – 1000 

nL) by layer-by-layer approaches.8 As compared to conventional 3D bioprinting as well as 

mixed cell co-culture, layered cell printing in the microwell chip is still advantageous in 

creating mini-tissues due to its small dimensions. However, acquiring cell images from 

transparent hydrogel layers in approximately 1200 μm diameter and up to 1000 μm thickness 

is now challenging because the whole sample depth in the Z direction does not fit within the 

focus depth of a normal objective.8

Imaging technologies such as confocal microscopy and light-sheet microscopy are highly 

desired for 3D image acquisition due to their ability to obtain high resolution images at 

different optical sections.17–20 However when it comes to cost effectiveness, versatility, and 

high throughput, epifluorescent microscopes are still an imaging system of choice. Rapid 

image acquisition which is important for high-throughput compound screening can be 

achieved with epifluorescent microscopes. However, the resolution of cell images obtained 

might be compromised when the cells are on multiple focal planes due to the spatial 

distribution of cells in 3D, resulting in out-of-focus images. To obtain better focused images 

while maintaining high throughput and low cost, several deconvolution algorithms have been 

developed to reverse the effect of blurring from the images and yield more accurate 

information.21–23 Deconvolution aims to deblur the images by virtually bringing the subjects 

into the same plane, leading to yielding more accurate fluorescence data.24

In the present study, we have established an optimum deconvolution pathway using 

fluorescent images acquired from miniaturized tissue constructs in the microwell chip and 

enhanced the quality of out-of-focus cell images by comparing a combination of three kernel 

estimation methods and three deconvolution methods (Fig. 1). Our approach may enable 

better understanding of tissue regeneration at cellular and molecular levels and mechanistic 

assessment of drug toxicity and efficacy on 3D printed tissues.

Methods

Cell Culture

Hep3B cells were cultured in RPMI-1640 medium (Sigma Aldrich, R8757) supplemented 

with 10% fetal bovine serum (FBS) (Corning, 35-010-CV), 1% penicillin/streptomycin, and 

0.1% gentamicin in T-75 flasks in a 5 % CO2 incubator at 37°C. The cells were sub-cultured 

when they reached 80 – 90% confluency, and 1 million cells were seeded in 15 mL of the 

growth medium in a new T-75 flask.
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Cell Staining

To test the efficiency of various deconvolution methods, Hep3B cells in T-75 flasks were 

stained with Hoechst 33342 (Thermo Fisher Scientific, H1399), a blue nucleus dye and 

tetramethylrhodamine methyl ester (TMRM) (Thermo Fisher Scientific, T-668), a red-

orange mitochondrial dye separately. Briefly, Hep3B cells in T-75 flasks were incubated 

with 25 μM of Hoechst 33342 and 0.5 μM of TMRM for 30 minutes at 37°C and then 

detached with 1 mL of 0.05% Trypsin-EDTA. Both the Hoechst-stained and TMRM-stained 

Hep3B cells were suspended in 10 mL of RPMI-1640 containing 10% FBS and centrifuged 

at 220g for 4 minutes (1200 rpm in A-4-38 Eppendorf 5702) each. After removing the 

supernatant, the cell pellets were re-suspended in complete RPMI, and the number of cells 

were counted to prepare Hep3B cell suspension at 3 million cells/mL. Cells in RPMI were 

2-fold serially diluted with 3% (w/v) alginate to prepare cell samples at seeding density 

ranging from 1.5 million cells/mL to 0.094 million cells/mL in 0.75% (w/v) alginate for 

printing.

Cell Printing

Cell printing was done in a microwell chip made of polystyrene, which is manufactured via 
plastic injection molding technology (SODIC PLUSTECH injection molder from Samsung 

Electro-Mechanics Co., Suwon, Republic of Korea). The microwell chip contains 532 

microwells in 1.2 mm diameter and 1.5 mm microwell-to-microwell distance. The Hoechst-

stained cells and the TMRM-stained cells were printed alternately in two layers to create two 

test conditions. The cell printing process is outlined in Fig. 2. For in situ gelation of alginate, 

a solution of barium chloride (BaCl2) (Sigma Aldrich, 529591) was prepared in sterile 

deionized water at a concentration of 20 mM and printed at 320 nL volume in the microwell 

chip using a microarray spotter (S+ Microarrayer, Samsung Electro-Mechanics Co.). The 

microwell chip containing 320 nL of BaCl2 was left to dry for 24 hours, followed by printing 

320 nL of either the Hoechst-stained or the TMRM-stained Hep3B cells in 0.75% (w/v) 

alginate at five different cell concentrations (1.5, 0.75, 0.375, 0.188, 0.094 million cells/mL) 

and a control region with no cells. The microwell chip was then placed in a humid chamber 

for 15 minutes to ensure complete gelation of alginate after cell printing. Once the gelation 

was achieved, another layer of 320 nL of either the TMRM-stained or the Hoechst-stained 

Hep3B cells in 0.75% alginate were printed at the same cell concentration ranges as the first 

layer. The microwell chip was then placed in the humid chamber for 15 minutes to ensure 

complete gelation. The viability of Hep3B cells in 0.75% alginate printed in the microwell 

chip was measured by staining the cells with calcein AM (Thermo Fisher Scientific), and 

their viability found to be greater than 90%.

Cell Image Acquisition

Immediately after cell printing, the microwell chip was sealed with a semi-permeable 

membrane (Sigma Aldrich, Z380059 Breathe-Easy sealing membrane) to prevent 

evaporation, and then loaded in a chip scanner (S+ Scanner, Samsung Electro-Mechanics 

Co.), which is an automated epifluorescence microscope developed for rapid image 

acquisition at 15 frames per second (FPS). Images were obtained at 4X magnification with 

Olympus UPLFLN 4X (Numerical aperture (NA) 0.13, f-number 26.5, and depth of field 
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(DOF) ~ 32.3 μm) (Olympus, Tokyo, Japan) which was illuminated by a mercury lamp. A 

blue filter (Semrock DAPI-506C-000) and a red filter (Semrock TxRed-4040C-000) was 

used to separate the color channels from the Hoechst-stained and the TMRM-stained Hep3B 

cells in the microwell chip at 80 ms and 100 ms exposure time, respectively. Cell images 

were obtained at a fixed focus plane of 300 μm Z-height from the bottom of each well for 

both the Hoechst-stained and the TMRM-stained Hep3B cell layers. As the height of two 

cell layers (i.e., 640 nL) in a microwell with a radius of 600 μm was approximately 560 μm, 

the Z-height of 300 μm was used to acquire cell images from the top layer and to check for 

the interference from the fluorescently labelled cells in the bottom layer. With this Z-height 

setting of the focus planes and the DOF of 32.3 μm, we acquired both in-focus as well as 

out-of-focus cell images from the top layer.

Deconvolution

Blue and red fluorescent images obtained from S+ Scanner were processed with Image 

Restoration software from Advanced Technology Incorporated (ATI, Incheon, Republic of 

Korea) as shown in Fig. 3. Three kernel estimation methods including Richardson-Lucy 

(RL),25 Selective Stable Edge Blind Deconvolution (SSEBD),26 and Normalized Sparsity 

Deconvolution (NMSD)27 as well as three deconvolution methods including Bregman,28 

Residual,29 and Inter-Level Intra-Level Deconvolution (ILILD),30 were used to process the 

images in a total of nine different combinations of deconvolution processes.

The algorithms used are briefly described as follows. RL is a traditional deconvolution 

algorithm developed independently by William Richardson and Leon Lucy in 1972 and 1974 

respectively. The algorithm was derived from Bayes’ theorem, and is an iterative process, the 

blind form of which alternates between estimating the point spread function (kernel) and the 

object (deblurred image), and converges on the maximum likelihood solution for the kernel.
25 SSEBD determines the kernel using the estimated edges, or stable edges, in the image. 

The solution is closed form, which does not necessitate the iterative optimization needed in 

other traditional/common deconvolution algorithms.26 NMSD utilizes a regularization 

method based on a normalized sparsity measure which allows for a simple cost formulation, 

resulting in a fast and robust kernel estimation method.27 Goldstein and Osher repurposed 

Bregman’s algorithm for finding common point of convex sets to form the split-Bregman 

algorithm, which was used to denoise MRI images.31 The split-Bregman algorithm was 

repurposed as part of the Total Variation regularization used to balance between recovering 

high-frequency information and suppressing noise as part of the deconvolution process.28 

Residual deconvolution refers to the use of residual images, which are the lost detail layers 

from traditional Richardson-Lucy deconvolution, to reduce ringing artifacts that are common 

in such traditional deconvolution techniques.29 ILILD is a pyramid structured (multi-

layered) algorithm where inter-level deconvolution is performed at multiple levels of 

resolution, from coarse to fine. In addition, at each level, residual deconvolution (intra-level 

deconvolution) is performed to recover edge features and details.30

Image Processing and Data Analysis

After deconvolution, image processing was performed with ImageJ (an open source image 

processing software) followed by data analysis with R (an open source statistical analysis 
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program). An ImageJ plugin was created to process the deconvoluted images. Background 

noise was subtracted from the images using the ImageJ-native rolling ball background 

subtraction method along with a brightness threshold filter. A circular region of interest was 

selected to measure fluorescence only from the area where the cells were located and 

exclude the extraneous regions. The plugin also statistically evaluated if a spot was detached 

(cell-containing alginate detached from microwells resulting in no fluorescence) or if an 

imaging artifact or dust greatly impacted the fluorescence of a spot, and omitted those 

exceptions from the final dataset. Fluorescence was measured, and the resulting data were 

stored in a tsv format. The data file was then imported into R and plotted via an R script 

written for this experiment. For each deconvolution combination, R and MS-excel were both 

used to gather noteworthy statistical terms such as slope, intercept, R2, normalized Root 

Mean Squared Error (nRMSE), F-statistic, and the standard errors (SEs) of slope, intercept, 

and regression. Slope and the standard error of slope was intended as a measure of 

sensitivity of fluorescence to the number of cells in the microwell chip while R2, nRMSE, F-

statistic, and SEs of intercept and regression were intended as a measure of wellness of fit. 

The intercept was intended to diagnose extraneous problems with the protocol such as 

background noise.

Results

The blue and red fluorescent images were processed in two parts: kernel estimation and 

deconvolution. Kernel estimation determines the blurring factor, also known as the point 

spread function (PSF), and deconvolution uses the estimated PSF to deblur the image.32 A 

total of nine deconvolution paths formed from the combination of three kernel estimation 

methods (NMSD, RL, and SSEBD) and three deconvolution methods (Bregman, Residual, 

and ILILD) were compared.

Blue images from Hoechst-stained Hep3B cells

The original unprocessed blue fluorescent image is displayed at the top, which is compared 

with a grid of processed/deconvoluted images below along with graphs depicting the 

intensity profile on their side (Fig. 4) and the histogram of pixel intensity (Supplementary 

Fig. 1). Horizontal axis represents different kernel estimation methods, and vertical axis 

represents different deconvolution methods. These images represent suspension of the 

Hoechst-stained Hep3B cells in alginate gel in one microwell processed by indicated kernel 

estimation and deconvolution methods. In the unprocessed image, some cells are in clear 

focus, while others appear blurred or smeared, indicating that they are either above or below 

the focal plane. All processed images display significantly lower background fluorescence 

than the original image where a noticeable blue hue can be observed even outside the 

circular microwell region. Moreover, differing deconvolution pathways affected the image in 

visually identifiable ways. RL-Bregman image demonstrates the infamous ringing artifacts 

of Richardson-Lucy algorithm.33 Various combinations of aforementioned deconvolution 

algorithms were tested. Deconvolution combination such as NMSD-Residual strongly 

highlights already in-focus cells, which is not the desired characteristic for deblurring out-

of-focus cells. Fig. 5 shows a region of the fluorescent image from Fig. 4 where three out-of-

focus cells can be observed. As mentioned, RL-Bregman (as well as NMSD-Residual) tends 
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to deblur or highlight cells that were already focused to some degree while having less 

impact on more significantly blurred cells. RL-ILILD and RL-Residual, however, can deblur 

significantly the blurred cells and improve their fluorescence while avoiding over-

amplification of fluorescence of already focused cells. This deblurring effect can also be 

observed in the graph of intensity profiles where smooth peaks appear for the deblurred 

object from RL-ILILD and RL-Residual. The rest of the deconvolution pathways seem to 

have a much more subdued effect.

Fluorescence reading from the images were quantified, aggregated, and plotted against the 

cell seeding density as shown in Fig. 6. The Y-axes in all four plots represent raw integrated 

density (RID), which is the summation of pixel brightness values in an image, measured 

using ImageJ’s Measure function. The error bars represent standard deviation and the top 

left plot demonstrates the effect of brightness filter (BF) on the calibration curve. The 

intercept is notably lower and closer to 0 while the slope remains relatively similar. The 

other plots demonstrate the effect of deconvolution, grouped by deconvolution methods: 

Bregman, ILILD, and Residual. These plots also include a calibration curve for the 

brightness filter but not deconvoluted images for comparison. In all the nine combination of 

deconvolution algorithms, slope of the calibration curve was found to be raised because of 

deconvolution. Kernel estimation method seems to have a consistent effect on the calibration 

curve – RL tends to raise the slope most significantly. NMSD and SSEBD also demonstrated 

an increase of slope, but the increase is not as significant. RL-Bregman resulted in the 

highest slope, but also with the highest deviation and error.

The relevant statistical terms from the analysis, including slope, were tabulated in Table 1. 

The vertical axis indicates various deconvolution combination pathways as well as the non-

deconvoluted but brightness-filtered control. The horizontal axis indicates various statistical 

terms that were compared. The values were color coded by value per statistical term in 

ascending, descending, or some other logic depending on the nature of the statistical term. 

Slope, intercept, R2, nRMSE, F-statistic, as well as the SEs of slope, intercept, and 

regression. As seen in the calibration curve plots, the slope was increased by the application 

of any of the tested combinations of deconvolution pathways. Using RL as the kernel 

estimation method resulted in the highest slopes with RL-Bregman having the highest of 

~74,000 RID per million cells. RL-Residual and RL-ILID increased the slope by a factor of 

~1.19 and ~1.28 respectively. Deconvolution increased the absolute value of intercept. R2 

value was improved most with RL-ILILD and RL-Residual. However, R2 value decreased 

with certain deconvolution pathways such as RL-Bregman and SSEBD-Residual. F-statistic 

is highest with RL-ILILD and RL-Residual while other deconvolution pathways lead to a 

decreased F-statistic. RMSE was normalized by the mean of the measured values to yield 

nRMSE – this was done to account for the significant increase in range of measured values 

because of deconvolution as indicated by the significant increase in slope. Like R2 values, 

RL-ILILD and RL-Residual most improved nRMSE while other deconvolution pathways 

increased the nRMSE. The standard error columns demonstrate the non-normalized error 

values of the slope, intercept, and regression – if normalized, RL-ILILD and RL-Residual 

would again have the lowest standard error terms.
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Red images from TMRM-stained Hep3B cells

Fig. 7 shows the original, non-deconvoluted, non-brightness-filtered images along with the 

graph of intensity profiles on the left column and the corresponding RL-ILILD 

deconvoluted, brightness-filtered images along with the graph of intensity profiles on the 

right column. A variety of cells can be found in the image: some are sharp and focused 

whereas others are large and diffused, indicating that cells are indeed suspended in 3D and 

distributed along the Z-axis. As with Hoechst, the original images display some non-specific 

background fluorescence, which appears as a single block with small peaks emanating from 

it on the adjacent graph of intensity profiles. Visually, the deconvoluted images present with 

significantly less background fluorescence, and the cells’ fluorescence are sharper and more 

like one another, which appears as sharp and separated peaks in the graphs. Since, the 

images are brightness-filtered, the peak intensity was slightly decreased when compared to 

original images. Fig. 8 compares the calibration curve of the original brightness-filtered 

images and the deconvoluted, brightness-filtered images, and the calibration curve derived 

from the deconvoluted, brightness-filtered images has a significantly higher slope, indicating 

a greater sensitivity to change in cell count/concentration. Table 2 contains the relevant 

statistical terms comparing the two TMRM calibration curves, in which the RL-ILILD 

deconvoluted calibration curve has more than double the slope of the non-deconvoluted 

calibration curve. Due to deconvolution, the intercept was brought closer to zero as it should 

be since zero cells should result in zero fluorescence. R2 value, F-statistic, and nRMSE, all 

improved with deconvolution. R2 value increased from ~0.708 to ~0.907, the F-statistic 

increased from ~1220 to ~4940, and nRMSE decreased from ~0.770 to ~0.377. The SEs for 

the slope, intercept, and regression, all increased with deconvolution, however, due to the 

notable change in slope, normalization would bring them below the standard errors of the 

calibration curve of the original non-deconvoluted images.

Discussion

Since its inception in 1983, deconvolution has been widely used to improve or restore 

images of biological specimens in three-dimensions.34 Deconvolution algorithm not only 

improves the resolution of images, but also enhances the contrast and reduces noise, thereby 

overcoming the inherent limitations of the widefield microscopes.21,23,35 Since the 

introduction of traditional deconvolution techniques, i.e. Weiner or Richardson-Lucy 

deconvolution, a wide variety of kernel (PSF) estimation and deconvolution algorithms have 

been developed, focusing on not only efficacy but also optimizing speed and minimizing 

artifacts.21,34 In this paper, a few kernel estimation methods and deconvolution methods, 

ranging from the old to the cutting edge, are tested in a combinatorial fashion using images 

from a modern cell culturing platform, 3D bioprinting in the microwell chip.

The deconvolution pathway, RL-ILILD, was found to most improve the sensitivity and the 

wellness-of-fit of the cell fluorescence calibration curve compared to other pathways for 

Hoechst-stained Hep3B cell images. Qualitatively, the RL-Residual and RL-ILILD 

processed images did not display problematic deconvolution artifacts such as ringing as in 

the case of RL-Bregman. Interestingly, although the slope was significantly improved with 

RL-Bregman, the wellness of fit was found to be significantly decreased, suggesting that the 
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ringing artifacts may have significantly impacted the fit of the curve, and that suppressing 

those artifacts through further modification might make RL-Bregman method the ideal 

deconvolution pathway. As shown in Fig. 4, RL-Residual and RL-ILILD are capable of 

deblurring out-of-focus cells while avoiding amplified fluorescence of already-focused cells 

as in the case of NMSD-Residual. The F-statistic and the related R2 value indicate that RL-

Residual and RL-ILILD marginally improved the wellness of fit. More importantly, those 

two deconvolution methods did not significantly decrease the wellness of fit. The non-

normalized errors were increased with RL-Residual and RL-ILILD, however, normalized 

RMSE in fact decreased with RL-Residual and RL-ILILD, which indicates that the 

significantly increased slope accounts for the slight increase in error. In fact, RL-Residual 

and RL-ILILD reduced nRMSE by 23.1% and 17.3% respectively.

Lastly, RL-Residual has the highest absolute value of the intercept, which indicates 

theoretical fluorescence at zero cells. However, it only contributes ~1.1% of the total 

fluorescence at 8 million cells, which indicates that none of the tested deconvolution 

pathways significantly increased the absolute value of the intercept. Nonetheless, as 

previously mentioned, it would be ideal to have the calibration curve naturally result in an 

intercept of zero. In short, RL-ILILD was found to most improve the calibration curve for 

the purposes of estimating cell count based on fluorescence. To test the impact of 

deconvolution on images of non-Hoechst stained cells, images of TMRM-stained Hep3B 

cells were deconvoluted and compared. The deconvolution pathway RL-ILILD was again 

found to improve the sensitivity (slope) and the wellness-of-fit (R2, F-statistic, and nRMSE). 

This result suggests that this deconvolution process could be generalized to various stains of 

differing spectra.

Conclusion

Deconvolution paths established in this study could be highly useful for improving the 

resolution of 3D cell images obtained from epifluorescent/widefield microscopes, which are 

widely used for cost-effective, versatile, and high-throughput cell imaging. With careful 

evaluation and selection of various kernel estimation methods, deconvolution algorithms, 

and associated parameters, we concluded that deconvolution can improve the sensitivity of 

fluorescence to cell count as well as wellness-of-fit. In the future, spheroid analysis can be 

used in conjunction with deconvolution to better capture not only the number of cells, but 

also other characteristics such as cell size and cell morphology in various 3D culture 

platforms without compromising the throughput of image acquisition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematics of the microarray 3D bioprinting process
Cultured Hep3B cells at varying concentrations were printed in 6 blocks in two layers into a 

microwell chip using a microarray spotter (S+ Microarrayer). The microwell chip was 

scanned with an automated epifluorescent microscope (S+ Scanner), and then the images 

obtained were processed, deconvoluted, and quantified for analysis.
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Figure 2. Experimental procedures for microarray 3D bioprinting
(a) treat a microwell chip with plasma, (b) print 320 nL of 20 mM BaCl2 for the gelation of 

the alginate layers printed, (c) dry the BaCl2 solution for 24 hours, (d) print 320 nL of the 

Hoechst-stained or the TMRM-stained Hep3B cells in alginate, (e) incubate the microwell 

chip in a humid chamber for 15 minutes for complete gelation, (f) print 320 nL of the 

Hoechst-stained or the TMRM-stained Hep3B cells in alginate, and (g) incubate the chip in 

a humid chamber for 15 minutes for gelation.
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Figure 3. Picture of ATI’s Image Restoration software
Kernel estimation and deconvolution methods can be selected from the drop-down lists in 

Kernel estimation and Deconvolution tabs.
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Figure 4. 
Comparison of the original Hoechst-stained Hep3B cell image with nine processed images 

obtained from three kernel estimation methods and three deconvolution methods. Graphs 

depicting the intensity profiles are shown adjacent to the fluorescent images.
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Figure 5. 
Comparison of the original out-of-focus Hep3B cell image with nine processed images 

obtained from three kernel estimation methods and three deconvolution methods. Graphs 

depicting the intensity profiles are shown adjacent to the fluorescent images.
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Figure 6. 
The changes of mean fluorescence as a function of Hoechst-stained Hep3B cell density 

(million/mL): (A) the effect of brightness filter (BF) and the effect of the three 

deconvolution methods including (B) Bregman, (C) ILILD, and (D) Residual.
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Figure 7. 
Comparison of original TMRM-stained Hep3B cell images at three different cell seeding 

density with brightness-filtered and deconvoluted (RL-ILILD) images. Graphs depicting the 

intensity profile are shown adjacent to the fluorescent images.
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Figure 8. 
The changes of mean fluorescence as function of TMRM-stained Hep3B cell density 

(million/mL).
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