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Abstract

Functional connectivity analysis is an essential tool for understanding brain function. Previous 

studies showed that brain regions are functionally connected through low-frequency signals both 

within the default mode network (DMN) and task networks. However, no studies have directly 

compared the time scale (frequency) properties of network connectivity during task versus rest, or 

examined how they relate to task performance. Here, using fMRI data collected from sixty-eight 

subjects at rest and during a stop signal task, we addressed this issue with a novel functional 

connectivity measure based on detrended partial cross-correlation analysis (DPCCA). DPCCA has 

the advantage of quantifying correlations between two variables in different time scales while 

controlling for the influence of other variables. The results showed that the time scales of within-

network connectivity of the DMN and task networks are modulated in opposite directions across 

rest and task, with the time scale increased during rest vs. task in the DMN and vice versa in task 

networks. In regions of interest analysis, the within-network connectivity time scale of the pre-

supplementary motor area – a medial prefrontal cortical structure of the task network critical to 

proactive inhibitory control – correlated inversely with Barratt impulsivity and stop signal reaction 

time. Together, these findings demonstrate that time scale properties of brain networks may vary 

across mental states and provide evidence in support of a role of low frequency fluctuations of 

BOLD signals in behavioral control.
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1. Introduction

Connectivity analysis is an important tool to understanding brain functions at rest or during 

task challenges. Greicius and colleagues observed that the so-called default mode regions 

(Raichle et al., 2001), which deactivated during task challenges, were functionally connected 

during a resting state, forming the default mode network (DMN) (Greicius et al., 2003). A 

later study showed that task regions responding to external events were also functionally 

connected at rest (Smith et al., 2009), echoing an earlier report of motor cortical blood 

oxygenation level dependent (BOLD) signals connected at low frequency during rest 

(Biswal et al., 1995). These observations raise the question whether low frequency 

fluctuations (more persistent and of longer time scale) of BOLD signals may play a role in 

orchestrating not only the DMN but also task-related networks in response to behavioral 

challenges. That is, a substantial body of work supports that the DMN and task networks are 

connected during rest (Biswal et al., 1995; Smith et al., 2009; Zhang and Raichle, 2010; 

Buckner et al., 2011; Yeo et al., 2011); however, it is unclear whether the temporal scales of 

the functional connectivities of these networks differ between rest and task challenges and 

whether these differences may influence task performance.

Recent studies have focused on the dynamic nature of functional connectivity (Hutchison et 

al., 2013b; Calhoun et al., 2014; Preti et al., 2016; Shine et al., 2016; Bassett and Sporns, 

2017). Dynamic functional connectivity may index changes in macroscopic neural patterns 

underlying aging (Hutchison and Morton, 2015), consciousness (Hutchison et al., 2013a; 

Keilholz et al., 2013), and cognitive task performance (Jia et al., 2014; Madhyastha et al., 

2015; Shine et al., 2016). The sliding window method is widely used to examine dynamic 

connectivity, although it is somewhat arbitrary to determine the window size (Hutchison et 

al., 2013b; Preti et al., 2016) and the choice of a fixed window length limits the analysis to 

the frequency range below the window period. Further, information about connectivity time 

scale proves critical to analyses based on sliding windows (Calhoun et al., 2014; Hindriks et 

al., 2016). For instance, with simulated data Hindriks and colleagues showed that the 

probability of connectivity detection varies as a function of the window length, and its 

maximum is approximately at 1/3 of the characteristic time scale of correlation (Hindriks et 

al., 2016). Alternative to the sliding-windows methods are time-frequency methods, popular 

in EEG and MEG analyses (Le Van Quyen and Bragin, 2007; Roach and Mathalon, 2008). 

Recent work has applied wavelet transform coherence (WTC) approaches to examine the 

temporal variability in connectivity between nodes of the DMN during rest (Chang and 

Glover, 2010; Yaesoubi et al., 2015). WTC methods can be used to analyze the coherence 

and phase lag between two time series as a function of both time and frequency (Torrence 

and Compo, 1998).

Many studies examined functional connectivity in distinct frequency bands (Achard et al., 

2008; You et al., 2012; Kalcher et al., 2014; Thompson and Fransson, 2015), including work 

showing varying topological network properties (Salvador et al., 2005; Qian et al., 2015a). 

These approaches allowed contrasting predominantly low-frequency fluctuations of cortical 

regions with high-frequency fluctuations of subcortical regions (Kalcher et al., 2014), and 

showed that the integration (within nodes) and segregation (between nodes) of large-scale 

networks operate at different time scales (Thompson and Fransson, 2015). On the other 
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hand, the choice of frequency bands is arbitrary, and may impact the results. Regional 

interactions are likely not restricted to a binary range (low versus high) or a particular 

frequency band, and it remains open how to characterize network interactions that operate in 

a continuous range of frequencies. In this context, time-frequency analysis based on 

wavelets methods helps in quantifying dynamic functional connectivity across distinct time 

periods (Chang and Glover, 2010; Yaesoubi et al., 2015). The drawback of wavelet analyses 

involves the complex process of selecting the appropriate wavelet shapes and parameters 

(Zhang et al., 2016). Additionally, it does not provide a way to control for the influence of 

third variables, an issue of central importance to disambiguating network connectivity.

In sum, despite a wealth of connectivity studies, none to our knowledge have directly 

compared the time scale (frequency) properties of network connectivity during rest versus 

task. We sought to address this gap in research by examining the fMRI data of the same 

individuals collected at rest and during a cognitive task, using a novel functional 

connectivity measure based on detrended partial cross correlation analysis (DPCCA) (Ide et 

al., 2017). DPCCA (Qian et al., 2015b; Yuan et al., 2015) is an extended version of 

detrended cross-correlation analysis (Podobnik and Stanley, 2008; Kristoufek, 2014), 

developed initially in physics and econometrics to model correlations among non-stationary 

time series of complex systems. DPCCA quantifies correlations between two variables in 

different time-scales, while controlling for the influence of other variables (i.e., partial 

correlations). The correlation in activity between two brain regions can vary according to 

different time scales, as demonstrated by previous scale-free and wavelet analyses of BOLD 

signals (Park et al., 2010; You et al., 2012; Ciuciu et al., 2014; Zhang et al., 2016). 

Distinguishing connectivity at a short and long-time scale thus helps to elucidate transient 

vs. sustained interaction between brain regions. Although the DPCCA is not a dynamic 

functional connectivity measure, it can inform the size of the sliding windows used to 

compute the dynamic measures. We posited that functional interactions among task 

networks and DMN transpire at different signal frequencies and these neural features are 

related to task performance.

2. Material and Methods

2.1 Subjects and informed consent

Study participants were recruited from the greater New Haven, CT area. All were free of 

major medical illness, past or present neurological and psychiatric illnesses including 

substance use disorders [DSM-IV (First et al., 1995)]. Individuals who were currently using 

any psychotropic medications or tested positive for illicit substances in urine toxicology 

were not invited to participate. All subjects signed a written informed consent, in accordance 

to a protocol approved by the Yale Human Investigation Committee. In total, 71 healthy 

adults participated in four 10-minute sessions of a stop signal task (SST) and a 10-minute 

resting session during fMRI. Three subjects were excluded because of excessive head 

movements (Section 4.2) and data from the remaining 68 individuals (36 women; age 32.7 

± 13.2 years) were included in the analyses. Participants were also assessed with the Barratt 

Impulsivity Scale (BIS-11, (Patton et al., 1995)) for impulsive personality trait, which is 
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known to be associated with deficits in response inhibition (Farr et al., 2012; Weidacker et 

al., 2017).

2.2 Behavioral task and performance measures

In resting state, participants were asked to relax but stay awake with eyes closed. For 

behavioral task we employed a stop-signal paradigm (Logan et al., 1984; Li et al., 2006; 

Hendrick et al., 2010; Li et al., 2010; Ide and Li, 2011b; Farr et al., 2012; Winkler et al., 

2012; Hu et al., 2014). Go and stop trials were randomly intermixed in presentation each 

about 75% and 25% of the time and with an inter-trial interval of 2 s. A small dot appeared 

on the screen to engage attention at the beginning of a trial. After a randomized fore-period 

between 1 and 5 s, drawn from a uniform distribution, the dot turned into a circle (the “go” 

signal), prompting the subjects to quickly press a button. The circle vanished at a button 

press or after 1 s had elapsed, whichever came first, and the trial terminated. A premature 

button press prior to the appearance of the circle also terminated the trial. On a stop trial, an 

additional “X,” the “stop” signal, appeared after and replaced the go signal, and instructed 

participants to withhold their response. Similar to go trials, a stop trial terminated at button 

press or 1 s after the appearance of the stop signal. Failure to withhold the go response for 

the 1-s period constituted a stop error. The stop signal delay (SSD) – the time interval 

between go and stop signals – started at 200 ms and was adjusted according to a staircase 

procedure, increasing and decreasing by 67 ms each for a successful and failed stop (Levitt, 

1971). Subjects were instructed to respond to the go signal quickly while keeping in mind 

that a stop signal could come up occasionally. The staircase procedure ensured that subjects 

would succeed in withholding their response in approximately half of the stop trials.

We computed a critical SSD that represents the time delay between go and stop signals that a 

subject would need to succeed in 50% of the stop trials (Levitt, 1971). Specifically, SSDs 

across trials were grouped into runs, with each run defined as a monotonically increasing or 

decreasing series. We derived a mid-run estimate by taking the middle SSD (or average of 

the two middle SSDs when there was an even number of SSDs) of every second run. The 

critical SSD was computed by taking the mean of all mid-run SSDs. It was reported that, 

except for experiments with a small number of trials (less than 30), the mid-run estimate was 

close to the maximum likelihood estimate of X50 (50% positive response; i.e., 50% SS in the 

SST, (Wetherill et al., 1966)). The stop signal reaction time (SSRT) was computed by 

subtracting the critical SSD from the median go trial RT (Logan, 1994). The SSRT 

represents the time required to successfully withhold a motor response in half of the stop 

trials and reflects the capacity of response inhibition.

2.3 Image acquisition and preprocessing

All imaging data were collected in the same 3T Siemens Trio scanner. Each scan comprised 

four 10-min runs of the SST and one 10-min run of rest. Functional blood oxygen level 

dependent (BOLD) signals were acquired with a single-shot gradient echo echo-planar 

imaging (EPI) sequence, with 32 axial slices parallel to the AC-PC line covering the whole 

brain, using published parameters: TR=2000 ms, TE=25 ms, bandwidth=2004 Hz/pixel, flip 

angle=85°, FOV=220×220 mm2, matrix=64×64, slice thickness=4 mm and no gap. A high-
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resolution 3D structural image (MPRAGE; 1 mm resolution) was also obtained for 

anatomical co-registration.

Functional MRI data was preprocessed with Statistical Parametric Mapping 12 (SPM12) 

(Wellcome Department of Imaging Neuroscience, University College London, U.K.). 

Images from the first five TRs at the beginning of each trial were discarded to enable the 

signal to achieve steady-state equilibrium between RF pulsing and relaxation. Images of 

each individual subject were first corrected for slice timing, realigned (motion-corrected) 

(Andersson et al., 2001; Hutton et al., 2002). A mean functional image volume was 

constructed for each subject for each run from the realigned image volumes. The anatomical 

images (T1-weighted) were co-registered to the mean functional image, and normalized to 

an MNI (Montreal Neurological Institute) template with affine registration followed by 

nonlinear transformation using a unified segmentation and registration framework 

(Ashburner and Friston, 2005). The normalization parameters determined for the anatomical 

volume were then applied to the corresponding functional image volumes for each subject.

2.4 Head motion evaluation

As extensively investigated in (Van Dijk et al., 2012), micro head motion (>0.1mm) is an 

important source of spurious correlations in resting state functional connectivity analysis. 

Therefore, we evaluated head motion using methods proposed by Power and colleagues 

(Power et al., 2012). Unlike previous work (Smyser et al., 2010; Power et al., 2012; Tomasi 

and Volkow, 2012), we did not “scrub” the data because we were interested in the time scale 

properties of connectivity and removing time points jeopardized the computation of 

detrended partial cross-correlation. Therefore, we addressed head motion by excluding 

subjects with movements over a threshold. For every time point t, we computed the 

framewise displacement given by the expression FD (t) = |Δdx (t)| + |Δdy (t) | + |Δdz (t) | + r |
α (t) | + r |β (t) | + r |γ (t) |, where (dx,dy,dz) and (α,β,γ) – the translation and rotation 

realignment parameters from SPM12 – and r = 50mm – a constant that approximates the 

mean distance between center of MNI space and the cortex – were used to transform 

rotations into displacements (Power et al., 2012). The second head movement metric 

computed was the root mean square variance (DVARS) of the differences in % BOLD 

intensity I (t) between consecutive time points across brain voxels: 

DVARS(t) = I(t) − I(t − 1) 2 , where the brackets indicate the mean across brain voxels. As 

with previous work (Power et al., 2012; Tomasi and Volkow, 2012), time points that 

exceeded FD(t)>0.5mm or DVARS(t)>0.5% were considered significant and, as a result, we 

removed 3 (out of 71) individuals who presented severe head movements (time points 

removed >25%). Head movement parameters were used as nuisance variables during time 

series extraction to account for potential spurious connectivities (Van Dijk et al., 2012).

2.5 Functional nodes and time series extraction

Region of interest (ROI) or nodes were defined according to the Yale functional brain atlas 

comprising 268 regions covering the whole brain (Shen et al., 2013). In this atlas constructed 

from fMRI data of 79 healthy subjects, each “node” was optimized to contain voxels with 

similar resting state time series. In additional analysis, we focused on the pre-supplementary 
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motor area (preSMA), which responds to proactive inhibitory control (Hu et al., 2015), as an 

ROI and examined how preSMA connectivity relates to Barratt impulsivity score and SSRT 

across subjects. For each node, time-series were extracted by averaging over voxels and 

preprocessed to reduce spurious BOLD variances that were unlikely to reflect neuronal 

activity (Rombouts et al., 2003; Fox et al., 2005; Fair et al., 2007; Fox and Raichle, 2007). 

The sources of spurious variance were removed through linear regression by including the 

signal from the ventricular system, white matter, and whole brain, in addition to the six 

parameters obtained by rigid body head motion correction. First-order derivatives of the 

whole brain, ventricular and white matter signals were also included in the regression.

2.6 Detrended partial cross-correlation analysis (DPCCA)

DPCCA (Qian et al., 2015b; Yuan et al., 2015) builds on detrended cross-correlation 

analysis (Podobnik and Stanley, 2008; Kristoufek, 2014) and quantifies correlations between 

two variables in different time-scales, while controlling for the influence of other variables 

(i.e., partial correlations). Briefly, given two time series {xa(t)}, {xb(t)} ∈ X (t), where X (t) 
∈ ℝm, m is the total number of time series, t= 1, 2, …, N time points, DPCCA is computed 

by the expression:

DPCCA(a, b; s) =
−Ca, b(s)

Ca, a
(s) × Cb, b(s) , (1)

where s is the time scale and each term Ca,b (s) is estimated by inverting the matrix of 

coefficients ρ (s). This step is analogous to partial correlation computation. Each element 

ρa,b (s) ∈ ρ (s) is the so-called detrended cross-correlation analysis (DCCA) coefficient 

(Kristoufek, 2014). DCCA coefficient combines detrended cross correlation analysis 

(Podobnik and Stanley, 2008) with the detrended fluctuation analysis (DFA) (Kantelhardt et 

al., 2002) first used to study power-law properties of non-stationary time series.

Given two time series {x},{y} ∈ X (t) (indices omitted for simplicity) with N time points 

and time scale s, the DCCA coefficient is given by Equation 2:

ρ(s) =
FDCCA

2 (s)
FDFA, x(s) × FDFA, y(s) , (2)

where the numerator is the average of detrended variance, and the denominators represent 

the covariances of N − s + windows (partial sums), as estimated by Equations 3 and 4:

FDCCA
2 (s) =

∑ j = 1
N − s + 1 f DCCA

2 (s, j)
N − s , (3)
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FDFA, x
2 (s) =

∑ j = 1
N − s + 1 f DFA, x

2 (s, j)
N − s . (4)

Finally, the partial sums are obtained with sliding windows across the integrated time series 

X(t) = ∑i = 1
t xi and Y(t) = ∑i = 1

t yi. For each j-th time window with size s, detrended 

covariance and variance are computed according to Equations 5 and 6:

f DCCA
2 (s, j) =

∑t = j
j + s − 1 (X(t) − XJ(t)^ )(Y(t) − YJ(t)^ )

s − 1 , (5)

f DFA, x
2 (s) =

∑t = j
j + s − 1 (X(t) − XJ(t)^ )

2

s − 1 , (6)

where XJ(t)^  and YJ(t)^  are polynomial fits of time trends. We used a linear fit as originally 

proposed (Kristoufek, 2014). In this way, with DPCCA, we quantified partial correlations 

among time series with varying levels of non-stationarity.

Statistical significance of DPCCA measures were estimated by customized nonparametric 

tests as proposed in (Smith et al., 2011), where empirical null distributions of connectivity 

were constructed with randomly shuffled time series across subjects and regions, for 

multiple time scales. Briefly, Figure 1 shows a sample DPCCA profile for a simulated 

BOLD data set. With the temporal profile of correlation, we were able to identify a peak 

DPCCA value (DPCCAmax) in association with a particular time scale (smax). Thus, 

DPCCAmax quantifies the magnitude of connectivity at the time scale smax. In this work, we 

only considered positive DPCCAmax values, because the functional implications of negative 

correlations (anticorrelated networks) remain actively debated (Fox et al., 2009; Murphy et 

al., 2009; Chai et al., 2012; Liang et al., 2012). Validation of DPCCA as a measure of 

functional connectivity can be found in (Ide et al., 2017). shade represents the standard 

deviation; and dashed lines are 95% confidence intervals (CI) estimated from the empirical 

null dataset. Peak time scale smax=10s. Details are available in (Ide et al., 2017).

In the current analyses, we examined time scales ranging from 6 to 40 s, covering most of 

the frequency spectrum of resting state (Thompson and Fransson, 2015) and partially of fast 

event interactions (average trial duration = 5.7 s in the stop signal task). We chose 6 s as the 

lower time scale limit in order to allow quadratic interpolations in Equations 5 and 6, which 

required 3 time points with the sample period TR=2 s.
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3. Results

3.1 Functional connectivity: Rest versus task

With 268 nodes (Figure 2a), we computed the pairwise DPCCA profiles each for rest and 

task, and extracted the connectivity matrix of peak DPCCA values. Figure 2b shows 

connectivity matrices thresholded at the 90th percentile (i.e. 10% most significant 

connections). The use of percentiles guaranteed the same number of connections in the 

matrices, a common practice for group comparison (Bassett et al., 2008) or characterization 

of individuals’ connectivity fingerprint (Finn et al., 2015) in network analysis. To investigate 

the peak connectivity of all 35,778 possible connections (combination of 268 nodes), we 

computed the average correlation (DPCCAmax) of connections among nodes both within (In) 

and between (Out) networks. We focused on eight networks, each defined by a set of nodes 

that are functionally connected (Finn et al., 2015), and for each network obtained 2 average 

values: DPCCAmax(In) and DPCCAmax(Out). The eight networks are defined using the same 

clustering algorithm used to delineate the 268 nodes (Shen et al., 2013), and are named 

according to their correspondence to existing resting-state networks (Finn et al., 2015), 

including the medial frontal (MF), frontoparietal (FP), default-mode (DMN), subcortical-

cerebellum (SubCB) as well as the motor (Mot) and the visual (Vis 1-3) networks. In order 

to parametrically compare the rest and task networks, we Fisher-z transformed connectivity 

matrix and removed the mean to eliminate baseline differences. Table 1 summarizes the 

results of all peak connectivity strengths and the statistics of paired t tests (rest vs. task). 

Except for DPCCAmax(In) of the Vis1 network, all connectivity strengths increased in task 

vs. rest. DPCCAmax were higher for task as compared to rest for the within-network or “In” 

connectivity of the SubCB network (p=8.5e-08), and for between-network or “Out” 

connectivity of the MF, FP, Vis1 and Vis3 networks (p=7.8e-03, 2.8e-04, 0,01 and 7.7e-0.3, 

respectively), with the results of SubCB and FP networks reaching significance at a 

corrected threshold [p=0.05/(2×8)=0.0031].

3.2 Time scale of peak connectivity: Rest versus task

To investigate the time scale of peak connectivity we computed the average peak time scale 

(smax) of connections among nodes both within (In) and between (Out) the eight networks. 

Thus, for each of the eight networks, we obtained 2 averages: smax(In) and smax(Out). 

Average time scales of peak connectivity for rest and task are shown in Figure 3. The 

smax(In) of the medial frontal (MF) and frontoparietal (FP) networks were greater during 

task versus rest (both p’s<0.05). In contrast, the smax(In) of the DMN were greater during 

rest as compared to task (p<0.05). For “between network” or “Out” connectivity, Vis3 

network showed higher smax(Out) during task as compared to rest (p<0.005).

For within-network (In) connectivity, smax of both MF and FP networks increased and smax 

of DMN decreased during task as compared to test. We computed the smax(In) by combining 

MF and FP and performed an analysis of variance (ANOVA) with two factors: network (MF

+FP) vs. DMN and condition rest vs. task. The results showed that there was a significant 

interaction (p<0.001), with the smax(In) decreased (delta = −0.56) in the MF+FP networks 

and increased (delta = 0.95) in the DMN for rest as compared to task. Table 2 summarizes 
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the results of all smax and the statistics of paired t tests of rest vs. task as well as the ANOVA 

of (MF+FP vs. DMN) × (Task vs. Rest).

3.3 Validation across different connectivity thresholds

In network analysis, patterns of connectivity as well as graph properties are affected by the 

choice of the connection strength threshold (Wang et al., 2011), and there is no trivial 

solution for the selection of a single optimal threshold (Bordier et al., 2017). Therefore, a 

common practice in comparing connectivities between groups or conditions involves the use 

of a range of thresholds (Bassett et al., 2008). Further, the use of percentiles ensured that the 

number of connections is the same across groups or conditions. To evaluate whether the 

results as presented in Table 2 were robust, we computed and compared the smax for 

different connectivity thresholds, ranging from 80% to 99% (i.e., less to more sparse 

networks). Figure 4 shows the smax during rest and task as well as the statistics for different 

thresholds. Average peak time scales smax were consistently higher in the DMN than in the 

MF and FP networks during rest as compared to task, across thresholds. Variability of the 

smax estimates increased significantly at greater than 95%.

3.4 Connectivity and task performance

As shown earlier, within-network (In) connectivity of the SubCB network and between-

network (Out) connectivity of the FP network increased in DPCCAmax during the stop signal 

task as compared to rest (paired t-test, p=8.5e-08 and p=2.8e-04, respectively). Additionally, 

the task networks (FP+MF) increased in smax(In) during the task, as compared to the DMN 

during the rest (ANOVA, interaction effect, p=0.0009). These differences were significant at 

a corrected threshold. On the other hand, none of the DPCCAmax or smax of the MF, FP, 

DMN or SubCB within- or between-network connectivities were correlated with BIS score 

or SSRT at a corrected threshold.

To further investigate whether connectivity strength or time scale may be associated with 

task performance, we focused on the pre-supplementary motor area (preSMA, Figure 5a), a 

MF network structure widely implicated in impulse control (Duann et al., 2009; Hu et al., 

2015). We computed the DPCCAmax and smax averaged across 6 nodes within the preSMA 

and cross-correlated the connectivity measures with impulsivity (total BIS score) and stop 

signal reaction time (SSRT). Neither impulsivity nor response inhibition correlated with 

DPCCAmax(In) (p’s > 0.8) but both correlated negatively with smax(In) (Figure 5b and 5c).

3.5 Head motion and functional connectivity

Consistent with a recent work (Huijbers et al., 2017), we also observed increased head 

motion during resting-state as compared to task performance. Both FD and DVARS were 

increased during rest as compared to task conditions: FD = 0.177±0.091 vs. 0.140±0.061; 

DVARS = 0.221±0.051 vs. 0.210±0.039 (paired t-test: p=2.5e-07 and p=0.018, respectively). 

Therefore, we examined for potential association between these movement metrics and the 

connectivity measures DPCCAmax and smax for each one of the eight networks. None of the 

DPCCAmax(Out) and DPCCAmax(In) were correlated with FD or DVARS for the 8 networks 

(all p’s > 0.08). Importantly, among the three networks (MF, FP and DMN) with significant 

differences in smax(In) (Table 2), there were no correlations between FD/DVARS and 
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smax(In) (all p’s > 0.10), suggesting that it was unlikely that the connectivity differences 

resulted from head motion. Further, we included FD and DVARS as covariates in a 

covariance analysis and confirmed that the interaction effect MF+FP/DMN × Task/Rest of 

smax(In) remained significant (p<0.0048).

4. Discussion

4.1 Connectivity strength and time scale: Rest versus task

The connection strength (DPCCAmax) within the SubCB network and out of the MF, FP and 

Vis3 networks were increased during task as compared to rest (Table 1), broadly consistent 

with our previous reports of co-activation and connectivity of these networks during 

response inhibition (Li et al., 2006; Li et al., 2008a; Duann et al., 2009), error detection (Li 

et al., 2008c; Hendrick et al., 2010), and post-error slowing (Li et al., 2008b; Ide and Li, 

2011a; Ide and Li, 2011b). For instance, the SubCB network comprises the cerebellum and 

caudate, both responding to response inhibition (Li et al., 2008a), as well as the thalamus 

and brain stem, forming a cortical-pontine-cerebellar-thalamic circuit to support post-error 

behavioral adjustment in the SST (Ide and Li, 2011a).

The connectivity time scale smax(In) of the DMN was higher during rest as compared to 

task, whereas the smax(In) of task networks (MF+FP) was higher during task as compared to 

rest (Table 2). This interaction was strong (ANOVA, p=0.0009), indicating longer-range 

(increased time scale or more sustained) functional connections within the DMN regions 

during rest and within the MF+FP regions during task. Higher connectivity time scale within 

the DMN during rest as compared to task supports the observation that the DMN manifests 

predominantly for low-frequency BOLD fluctuations (Greicius et al., 2009). Higher 

connectivity time scale within the MF and FP networks during task as compared to rest 

highlights low-frequency task network connections (“spontaneous” activity) that may 

conduce to task performance. These results are consistent with previous report of increased 

within-network connectivity of the DMN and FP network each for lower and higher 

frequencies during rest (Thompson and Fransson, 2015). In an earlier fMRI study with 

participants performing a button-press paradigm intermixed with resting periods, left and 

right motor cortices synchronized activities both during rest and task, in association with 

inter-trial variability in button press strength (Fox et al., 2007). Authors suggested that 

spontaneous low-frequency fluctuations during rest reflect synchronized neuronal activity 

that persists during task performance. In a more recent study, using held-out regions and 

individuals, activity or information flow (spread of activation amplitudes between brain 

locations) (Laughlin and Sejnowski, 2003) of functional connectivity maps during rest 

successfully predicted average activations during seven different cognitive tasks (Cole et al., 

2016). The current findings add to this literature by associating task exposure with longer 

connectivity time scale within task networks.

Notably, the MF and FP increased in strength for between-network or Out connectivity, but 

increased in time scales for within-network or In connectivity, during task as compared to 

rest. In contrast, for the DMN, increased strength of Out connectivity was accompanied by 

decreased time scale of In connectivity, during task as compared to rest. Thus, the DMN 

showed longer-lasting within-network connectivity during rest, but stronger between-
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network connectivity during task performance, in support of engagement of the DMN in task 

execution via connection with task networks. For instance, the connectivity of the posterior 

cingulate cortex (PCC) with the left superior frontal gyrus increased, in link with faster 

reaction times, during finger movement, as compared to rest (Vatansever et al., 2015). The 

concurrent changes of task networks and DMN perhaps reflect more efficient global 

information transmission and systems integration to support task performance (Di et al., 

2013). The current finding thus add to this literature by elucidating the connectivity time 

scales of the DMN and task networks under task challenges. More studies are needed to 

examine whether the opposing patterns in connectivity time scales of the DMN and task 

networks applies to other behavioral conditions and reflects a general organizing principle of 

functional connectivity. Likewise, whether persistent (lower frequency) within-network 

connectivity is related to increased brain activity as measured by BOLD signals remains to 

be confirmed in future work.

4.2 Connectivity time scale: association with behavior

By examining the smax specifically of the presupplementary motor area (preSMA), we 

showed that longer connectivity time scale within this medial prefrontal cortical structure is 

associated with better impulse control, as reflected in lower BIS score and shorter SSRT. 

That is, the low-frequency connections within the preSMA support proactive inhibitory 

control and related behavioral trait of the individuals (Krieghoff et al., 2009; Criaud and 

Boulinguez, 2013; Rae et al., 2014; Ritterband-Rosenbaum et al., 2014). As the preSMA 

increases in BOLD signals in response to proactive control (Hu et al., 2015), this finding 

suggested a relationship between within-network connectivity time scale and BOLD signal 

strength in regional responses. Many clinical conditions implicate dysfunctional impulse 

control and impulsivity represents a target for behavioral and pharmacological therapy 

(Friederich et al., 2013; Jahanshahi et al., 2015). Thus, the current findings may shed new 

light on a neural process of impulse control disorder (Yu et al., 2015).

4.3 Methodological considerations and limitations

One needs to consider whether the current findings simply reflect the temporal profiles of 

the task events in the SST. Frequency characteristics of the task data are unlikely to be 

influenced or biased by the frequency characteristics of the task paradigm because of two 

reasons. First, the average connectivity peak time scale is higher for task than resting 

conditions in the task-related networks (MF: 19.49/FP: 19.96 vs. MF: 18.96/FP: 19.37, 

respectively, Table 2), whereas the trial duration averaged at 5.7 s in the SST, suggesting that 

it is highly unlikely that the temporal profiles of task events biased the peak time scale 

toward the upper frequency range. Second, stimuli are randomly generated in the SST, ruling 

out the possibility of a systematic influence on a particular frequency. An additional issue 

concerns whether the co-activation patterns in the task data can really be considered 

connectivity as opposed to co-activation. Although one cannot completely exclude the 

possibility of interaction between co-activation patterns and functional connectivity, the 

following consideration suggests that these are distinct neural processes. In the SST, on 

average 75% of the trials were go success (GS) trials and thus the co-activation of the “GS 

regions” occurred with an average period of 7.6 s, which would drive the peak time scale to 

the lower frequency end. On the other hand, we did not observe any differences in peak time 
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for the motor network between task and rest conditions (Table 2). Thus, co-activation is 

likely not systematically driving the peak time scale of functional connectivity.

Unlike coherence connectivity methods (Sun et al., 2004; Yaesoubi et al., 2015), DPCCA 

quantifies the frequency characteristics at a discrete resolution of 2 s, whereas with 

coherence methods, one would be able to precisely define the characteristic frequency within 

a continuous range. Additionally, coherence methods provide phase information of 

functional connectivity, thus quantifying the time delay of interaction among brain regions. 

The impact of these analytical features on functional connectivity metrics remain to be 

clarified.

Brain network analysis suggested that topological graph properties are dependent on the 

threshold used to generate the connectivity matrix, presenting a critical issue in comparison 

between groups or conditions (van Wijk et al., 2010; van den Heuvel et al., 2017). On the 

other hand, studies have documented the reproducibility of graph properties across different 

thresholds (Telesford et al., 2010; Telesford et al., 2013). Here, we showed that the 

differences in time scale smax between rest and task were significant across a large range of 

connectivity thresholds (Figure 4).

Further, recent work highlighted the dynamic nature of functional connectivity (Hutchison et 

al., 2013b; Calhoun et al., 2014; Preti et al., 2016; Shine et al., 2016; Bassett and Sporns, 

2017). Although we did not consider the dynamics of connectivity, this could be addressed 

by examining the temporal evolution of DPCCA (TDCCA), where the evolution of partial 

correlations is estimated on multiple time scales (Yuan et al., 2016).

4.4 Conclusions

In summary, using DPCCA, we characterize the time scale of brain network interactions 

during rest and the stop signal task. We showed that the connectivities were of longer time 

scale within the task networks during task performance as compared to rest. In contrast, 

connectivity occurred at longer time scale within the default mode network during rest as 

compared to task. Longer time scales of within-network connectivity of a task region were 

associated with better inhibition performance and decreased impulsivity, in support of a role 

of low frequency fluctuations of BOLD signals in behavioral control. These findings suggest 

the importance of examining transient versus sustained interaction between network regions 

in unraveling brain function.
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Figure 1. 
Illustration of a sample DPCCA profile. Given simulated BOLD time series, DPCCA 

coefficients were computed for different time scales ranging from 6 to 40 s (18 time points 

spaced by 2 s). Solid line represents the average across 100 simulated data sets; blue shade 

represents the standard deviation; and dashed lines are 95% confidence intervals (CI) 

estimated from the empirical null dataset. Peak time scale smax=10s. Details are available in 

(Ide et al., 2017).
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Figure 2. 
(a) Yale functional brain atlas of 268 nodes covering the whole-brain (Shen et al., 2013). (b) 
Connectivity matrix of the 268 nodes, given by the DPCCAmax values thresholded at 90% 

percentile for rest and task. (c) Ventral precuneus connections as an example to illustrate 

network connectivity. In the circle plot, lines indicate the ‘networks’ to which precuneus 

nodes are connected.
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Figure 3. 
Average time scales of the peak connectivity within each one of the eight functional 

networks (“In” network connectivity). (a) Map of smax(In) during rest. (b) Map of smax(In) 

during the stop signal task. vmPFC: ventromedial prefrontal cortex (DMN); PCC: posterior 

cingulate cortex (DMN); mSFG: medial superior frontal gyrus (MF network, including the 

presupplementary motor area), DLPFC: dorsolateral prefrontal cortex (FP network); and 

IPL: inferior parietal lobule (FP network).
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Figure 4. 
Comparison of peak time scales of within network connectivity or smax(In). (a) Average smax 

for resting and task conditions within MF, FP and DMN. Blue and red shades represent the 

standard error of the mean for resting and task conditions, respectively. (b) Paired t-test (task 

vs. rest) results for each network, and the interaction effects (two-way ANOVA: task vs. rest 

× MF+FP vs. DMN).
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Figure 5. 
Association between task performance and the connectivity of the pre-supplementary motor 

area (preSMA). (a) Cluster of the preSMA as identified from a recent work on proactive 

control and response inhibition (Hu et al., 2015). (b, c) Increased time scale of “within- 

preSMA” connectivity is associated with decreased impulsivity and improved inhibition 

performance (decreased SSRT).
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