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Abstract

Multiple studies have shown that data quality is a critical confound in the construction of brain 

networks derived from functional MRI. This problem is particularly relevant for studies of human 

brain development where important variables (such as participant age) are correlated with data 

quality. Nevertheless, the impact of head motion on estimates of structural connectivity derived 

from diffusion tractography methods remains poorly characterized. Here, we evaluated the impact 

of in-scanner head motion on structural connectivity using a sample of 949 participants (ages 8-23 

years old) who passed a rigorous quality assessment protocol for diffusion magnetic resonance 

imaging (dMRI) acquired as part of the Philadelphia Neurodevelopmental Cohort. Structural brain 

networks were constructed for each participant using both deterministic and probabilistic 

tractography. We hypothesized that subtle variation in head motion would systematically bias 

estimates of structural connectivity and confound developmental inference, as observed in 

previous studies of functional connectivity. Even following quality assurance and retrospective 

correction for head motion, eddy currents, and field distortions, in-scanner head motion 

significantly impacted the strength of structural connectivity in a consistency- and length-

dependent manner. Specifically, increased head motion was associated with reduced estimates of 

structural connectivity for network edges with high inter-subject consistency, which included both 

short- and long-range connections. In contrast, motion inflated estimates of structural connectivity 

for low-consistency network edges that were primarily shorter-range. Finally, we demonstrate that 

age-related differences in head motion can both inflate and obscure developmental inferences on 

structural connectivity. Taken together, these data delineate the systematic impact of head motion 
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on structural connectivity, and provide a critical context for identifying motion-related confounds 

in studies of structural brain network development.
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INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) remains the most commonly-used technique 

for characterizing human white matter (WM) microstructure in vivo (Alexander et al., 2017; 

Assaf and Pasternak, 2008; Basser et al., 1994; Basser and Pierpaoli, 1996). Graph 

theoretical analysis of diffusion tractography data has provided a fruitful quantitative 

framework for delineating how structural brain architecture shapes intrinsic functional 

activity and cognition (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010), particularly 

in the context of human brain development (Baum et al., 2017; Grayson et al., 2014; 

Hagmann et al., 2010) and neuropsychiatric disorders (Bassett et al., 2008; Bohlken et al., 

2016; Collin et al., 2017; Di Martino et al., 2014; Kessler et al., 2016; Satterthwaite et al., 

2015; Sun et al., 2017). Nonetheless, prior work has shown that artifacts caused by eddy 

currents, head motion, and magnetic susceptibility can negatively impact diffusion model 

fitting and subsequent microstructural measures (Jones and Basser, 2004; Le Bihan et al., 

2006). Despite recent focus on the influence of head motion on data quality in other imaging 

modalities including resting state functional connectivity (Fair et al., 2012; Power et al., 

2012; Satterthwaite et al., 2012; Van Dijk et al., 2012; C.-G. Yan et al., 2013) and structural 

imaging (Alexander-Bloch et al., 2016; Pardoe et al., 2016; Reuter et al., 2015; Savalia et al., 

2017; Tisdall et al., 2012, 2016), the impact of motion on structural connectivity derived 

from diffusion tractography remains sparsely investigated. Prior work using diffusion tensor 

imaging (DTI) has demonstrated that head motion increases the uncertainty of diffusion 

model fitting (Bastin et al., 1998; Landman et al., 2007; Ling et al., 2012; Tijssen et al., 

2009), impacting the estimation of diffusion scalar measures such as fractional anisotropy 

(FA) and mean diffusivity (MD). These measures are highly sensitive (but not specific) to 

underlying WM microstructural properties such as axonal packing density and myelination 

(Chang et al., 2017; Gulani et al., 2001; Takahashi et al., 2002). Notably, motion artifact can 

produce artificially higher FA in low anisotropy gray matter regions (Bastin et al., 1998; 

Farrell et al., 2007; Landman et al., 2008), while simultaneously leading to diminished FA in 

high anisotropy WM regions (Aksoy et al., 2008; Jones and Basser, 2004; Le Bihan et al., 

2006). While the impact of head motion on diffusion scalar metrics derived from global 

tractography has been reported previously (Yendiki et al., 2014), these spurious effects might 

also bias local streamline tractography algorithms during the step-wise reconstruction of 

WM pathways, when streamline termination criteria are defined by local FA and angular 

thresholds (Girard et al., 2014).

Although image processing tools have been developed to retrospectively estimate and 

mitigate the influence of motion artifact on diffusion-weighted images (Andersson et al., 

2016; Andersson and Sotiropoulos, 2016; Rohde et al., 2004), important work by Yendiki et 
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al. (2014) and others (Liu et al., 2015; Oguz et al., 2014) demonstrated that residual motion 

effects can lead to systematic errors in estimation of WM FA. Furthermore, age-related 

differences in participant motion have been shown to obscure observed developmental 

changes in WM microstructure (Roalf et al., 2016). Participants from clinical populations 

may also be more likely than healthy controls to exhibit head motion during DWI 

acquisition, resulting in spurious group differences in diffusion scalar measures that can be 

attenuated by including head motion as a nuisance regressor (Yendiki et al., 2014). Although 

the impact of head motion on diffusion scalar metrics has been well-characterized in 

previous work, the downstream effects of motion on network-based measures of structural 

connectivity have not been systematically examined.

Here, we leveraged dMRI data collected as part of the Philadelphia Neurodevelopmental 

Cohort (PNC), a large population-based study of human brain development (Satterthwaite et 

al., 2014, 2016), to evaluate the impact of participant motion on structural connectivity. We 

hypothesized that subtle variation in head motion would systematically bias estimates of 

structural connectivity and confound inferences regarding brain development. Since head 

motion can result in both the overestimation and underestimation of diffusion anisotropy 

depending on regional FA and SNR (Farrell et al., 2007; Jones and Basser, 2004; Landman 

et al., 2008; Tijssen et al., 2009), participant motion could promote spurious streamline 

propagation in low-FA regions and premature streamline termination in high-FA regions. 

Moreover, we expected that motion would have a differential impact on structural 

connectivity depending on specific attributes of each network edge. Specifically, we 

predicted that motion would inflate estimates of structural connectivity for potentially 

spurious, low-FA connections that were primarily short-range, while simultaneously 

diminishing estimates of structural connectivity for long-range, high-FA connections that 

were consistently reconstructed across participants. To test these hypotheses, structural 

connectivity was measured in 949 youth (ages 8-23 years old) after constructing brain 

networks using both deterministic and probabilistic tractography.

MATERIALS AND METHODS

Participants and data acquisition

The dMRI datasets used in this study (N=949) were collected as part of the Philadelphia 

Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014, 2016) and selected on the 

basis of health and data quality criteria. All participants included in this study were ages 

8-23 years old at the time of scan (mean age=15.3 years, SD=3.4 years; 529 females), lacked 

gross structural brain abnormalities (Gur et al., 2013), were free from medical conditions 

that could impact brain function (Merikangas et al., 2010), were not taking psychotropic 

medication at the time of the scan, and passed a rigorous manual quality insurance protocol 

involving visual inspection of all 71 volumes (Roalf et al., 2016). The exclusion of 

participants with gross artifact due to head motion, eddy currents, susceptibility artifacts, 

and/or other scanner artifacts allowed us to more rigorously evaluate the impact of subtle in-

scanner motion on estimates of structural connectivity (for further details regarding manual 

quality assurance, see below).
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Image acquisition

Structural and diffusion MRI scans were acquired using the same 3T Siemens Tim Trio 

whole-body scanner and 32-channel head coil at the Hospital of the University of 

Pennsylvania. dMRI scans were acquired using a twice-refocused spin-echo (TRSE) single-

shot echo-planar imaging (EPI) sequence (TR = 8100ms, TE = 82ms, FOV = 240mm / 

240mm; Matrix = RL: 128, AP:128, Slices:70, in-plane resolution (x and y) 1.875 mm; slice 

thickness = 2mm, gap = 0; flip angle = 90°/18 0°/180°, volumes = 71, GRAPPA factor = 3, 

bandwidth = 2170 Hz/pixel, PE direction = AP). This sequence used a four-lobed diffusion 

encoding gradient scheme combined with a 90-180-180 spin-echo sequence designed to 

minimize eddy-current artifacts. For dMRI acquisition, a 64-direction set was divided into 

two independent 32-direction imaging runs in order to increase the likelihood of scan 

completion for young subjects. Each 32-direction sub-set was chosen to be maximally 

independent such that they separately sampled the surface of a sphere (Jones et al., 2002). 

The complete sequence was approximately 11 minutes long, and consisted of 64 diffusion-

weighted directions with b=1000s/mm2 and 7 interspersed scans where b=0 s/mm2. The 

imaging volume was prescribed in axial orientation covering the entire cerebrum with the 

topmost slice just superior to the apex of the brain (Satterthwaite et al., 2014). In addition to 

the dMRI scan, a map of the main magnetic field (i.e., B0) was derived from a double-echo, 

gradient-recalled echo (GRE) sequence, allowing us to estimate field distortions in each 

dataset.

Structural image processing and quality assurance

High-resolution structural images were processed using FreeSurfer (version 5.3) (Fischl, 

2012), and cortical and subcortical gray matter was parcellated according to the Lausanne 

atlas (Cammoun et al., 2012), which includes a 233-region subdivision of the Desikan-

Killany anatomical atlas (Desikan et al., 2006). Parcellations were defined in native 

structural space and co-registered to the first b=0 volume of each participant’s diffusion 

image using boundary-based registration (Greve and Fischl, 2009). All participants included 

in this study passed quality assurance procedures for the raw T1 input image and following 

FreeSurfer reconstruction (Rosen et al., 2017).

dMRI preprocessing

The two consecutive 32-direction acquisitions were merged into a single 64-direction time-

series. A mask in subject diffusion space was defined by registering a binary mask of a 

standard fractional anisotropy (FA) map (FMRIB58 FA) to each subject’s dMRI reference 

image (mean b=0) using FLIRT (Jenkinson et al., 2002). This mask was provided as input to 

FSL eddy in addition to the non-brain extracted dMRI image. Eddy currents and subject 

motion were estimated and corrected using the FSL eddy tool (version 5.0.5; Andersson and 

Sotiropoulos, 2016). This procedure uses a Gaussian Process to simultaneously model the 

effects of eddy currents and head motion on diffusion-weighted volumes, resampling the 

data only once. Diffusion gradient vectors were also rotated to adjust for subject motion 

estimated by eddy (Leemans and Jones, 2009). After the field map was estimated, distortion 

correction then was applied to dMRI images using FSL’s FUGUE (Jenkinson et al., 2012).
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To evaluate whether a novel method for correcting motion-related signal outliers attenuated 

the observed relationship between in-scanner head motion and structural connectivity, we 

also processed all 949 dMRI datasets using a newer version of eddy (5.0.9 eddy patch). This 

method builds a generative model to make non-parametric predictions about the expected 

signal in each slice of diffusion encoded volumes, and replaces signal outliers attributed to 

head motion using this prediction (Andersson et al., 2016).

Manual dMRI quality assurance

Manual quality assurance for the dMRI images was performed prior to diffusion model 

fitting, tractography, and structural brain network construction. Specifically, each volume of 

the acquisition (n=71) was evaluated for the presence of artifact, and the total number of 

impacted volumes over the whole series was recorded, but no volumes were removed (Roalf 

et al., 2016). This approach was based on previous work characterizing the detrimental 

impact of removing diffusion-weighted volumes when estimating the diffusion tensor (Chen 

et al., 2015; Jones and Basser, 2004). Data was defined as “Poor” if more than 14 (20%) 

volumes contained artifact, “Good” if it contained 1-14 volumes with artifact, and 

“Excellent” if no visible artifacts were detected in any volumes. All 949 participants 

included in the present study had dMRI datasets identified as “Good” or “Excellent”. While 

including participants with poor data quality would undoubtedly lead to larger observed 

motion effects, in this study we sought to characterize the impact of subtle in-scanner 

motion in a sample that would typically be included in studies of brain development.

Diffusion model fitting, tractography, and brain network construction

Probabilistic Pipeline—A ball-and-sticks diffusion model was fitted to each subject’s 

dMRI data using FSL bedpostx, which uses Markov chain Monte Carlo sampling to build 

distributions on principal fiber orientation and diffusion parameters at each voxel (Behrens 

et al., 2007). In contrast to tensor-based approaches, this allowed us to model up to two 

crossing fibers per voxel, enhancing sensitivity to more complex white matter architecture. 

Probabilistic tractography was run using FSL probtrackx, which repetitively samples voxel-

wise fiber orientation distributions to model the spatial trajectory and strength of anatomical 

connectivity between specified seed and target regions (Behrens et al., 2007). Here, we 

defined seeds in native T1 space by dilating the original 233-region gray matter parcellation 

by 2mm and then masking dilated regions by the boundary of each subject’s white matter 

(WM) segmentation. Once defined for each subject, the seed mask was co-registered to the 

first b = 0 volume of each subject’s diffusion image using boundary-based registration 

(Greve and Fischl, 2009).

Each cortical and subcortical region defined along the gray-white boundary was selected as a 

seed region, and its connectivity strength to each of the other 232 regions was calculated 

using probabilistic tractography. At each seed voxel, 1000 samples were initiated (Baum et 

al., 2017; Li et al., 2012). We used default tracking parameters (a step-length of 0.5mm, 

2000 steps maximum, curvature threshold of 0.02). To increase the biological plausibility of 

white matter pathways reconstructed with probabilistic tractography, streamlines were 

terminated if they traveled through the pial surface, and discarded if they traversed cerebro-

spinal fluid (CSF) in ventricles or re-entered the seed region (Donahue et al., 2016). This 
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fiber tracking procedure allowed us to construct an undirectional connectivity matrix for 

each participant, where connection weights were defined as the number of probabilistic 

streamlines connecting two regions (Donahue et al., 2016; Duarte-Carvajalino et al., 2012; 

Li et al., 2012). We also calculated alternate connection weights including the mean length 

of probabilistic streamlines connecting a pair of regions (Donahue et al., 2016), and the 

connectivity probability – the proportion of streamlines initiated from the seed region that 

successfully reached the target region (Cao et al., 2013; Johansen-Berg et al., 2005). The 

procedure for constructing participant connectomes is illustrated in Figure 1.

Deterministic Pipeline—dMRI data was imported into DSI Studio software and the 

diffusion tensor was estimated at each voxel (Yeh et al., 2013). Whole-brain fiber tracking 

was run for each subject in DSI Studio using a modified fiber assessment by continuous 

tracking (FACT) algorithm with Euler interpolation. Network nodes were defined by dilating 

the 233-region gray matter parcellation by 4mm to extend labels beyond the gray-white 

boundary to include deep white matter (Baum et al., 2017; Gu et al., 2015). Following 

standard procedures, we used whole-brain tractography to initiate 1,000,000 streamlines 

while removing all streamlines with length less than 10mm or greater than 400mm. Fiber 

tracking was performed with an angular threshold of 45°, a step size of 0.9375mm, and a 

fractional anis otropy (FA) threshold determined empirically by Otzu's method, which 

optimizes the contrast between foreground and background (Yeh et al., 2013). As in previous 

studies of human structural brain networks, connection weights were defined by calculating 

the average FA along each streamline connecting a node pair (Baum et al., 2017; Bohlken et 

al., 2016; Mišić et al., 2016; van den Heuvel and Sporns, 2011). This measure of connection 

strength is thought to reflect underlying microstructural properties of WM such as 

myelination or axonal density (Chang et al., 2017; Gulani et al., 2001; Paus, 2010; 

Takahashi et al., 2002). To evaluate motion effects on the distance of reconstructed fiber 

pathways, we also defined connection weights as the mean length of streamlines connecting 

a node pair. Supplementary analyses evaluated motion effects on structural connectivity 

when edge weights were defined by the average inverse MD along streamlines connecting a 

node pair (Friedrichs-Maeder et al., 2017; Hagmann et al., 2010; Wierenga et al., 2016), and 

by the deterministic streamline count (Bassett et al., 2011; van den Heuvel et al., 2015).

Quantifying in-scanner head motion during dMRI acquisition

In-scanner head motion was primarily measured by the mean relative volume-to-volume 

displacement between the higher SNR b=0 images (n=7), which summarizes the total 

translation and rotation in 3-dimensional Euclidean space (Roalf et al., 2016; Satterthwaite 

et al., 2012; Van Dijk et al., 2012). To determine the specificity of our results, we also 

conducted supplementary analyses to evaluate whether alternative measures of head motion 

and data quality impacted structural connectivity. These measures included the following: 

(1) average volume-to-volume translation, (2) average volume-to-volume rotation calculated 

across all 71 volumes (Yendiki et al., 2014), (3) mean voxel outlier count, and (4) average 

temporal signal-to-noise ratio (TSNR) defined using the 64 diffusion-weighted volumes, as 

described in detail in Roalf et al. (2016).

Baum et al. Page 6

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inter-subject edge consistency

Deterministic and probabilistic tractography algorithms for reconstructing WM connectivity 

face a well-characterized tradeoff between connectome specificity and sensitivity (Knösche 

et al., 2015; Thomas et al., 2014; Zalesky et al., 2016). Thus, identifying and controlling for 

the influence of false positives and false negatives remains a critical issue in connectome 

construction, as both the failure to reconstruct “real” connections and the inclusion of 

spurious connections can substantially bias group-level inferences on network organization 

(Drakesmith et al., 2015; Zalesky et al., 2016). Prior work has demonstrated how partial 

volume effects and complex WM geometry can result in premature streamline termination 

during tractography when termination criteria are based on WM curvature and anisotropy 

thresholds (Smith 2012, 2013; Girard 2014; Vos 2011). Notably, head motion can artificially 

inflate FA estimates in low anisotropy regions and reduce FA in highly coherent WM 

regions (Farrell et al., 2007; Jones and Basser, 2004; Landman et al., 2008; Ling et al., 2012; 

Tijssen et al., 2009), potentially compounding these tractography biases by promoting 

spurious streamline propagation in low-FA regions and premature streamline termination in 

high-FA regions. Moreover, we sought to delineate whether head motion differentially 

impacted structural connectivity depending on the inter-subject consistency of edge 

reconstruction.

For dense brain networks derived from probabilistic tractography (mean density=71%, 

SD=7%), inter-subject edge consistency was defined by the coefficient of variation for each 

edge weight across subjects (Roberts et al., 2017). As in prior work, for relatively sparse 

brain networks derived from deterministic tractography (mean density=14%, SD=1%), inter-

subject edge consistency was defined by the percentage of subjects with a non-zero weight 

for a given edge (de Reus and van den Heuvel, 2013).

Statistical analysis: group-level motion effects

The effect of in-scanner head motion on structural connectivity was estimated using a partial 

correlation for each network edge while controlling for potentially confounding 

demographic variables (age, age2, and sex). To assess whether the correlation between head 

motion and edge strength was modulated by inter-subject edge consistency, we calculated a 

third-level correlation between edge-level motion effects and edge consistency, and 

performed an edge-based permutation test to assess the significance of this third-level 

correlation. Specifically, we re-calculated the correlation between edge-level motion effects 

and edge consistency after permuting edge consistency 10,000 times. Then, we determined 

where the observed correlation between motion effects and edge consistency fell relative to 

this null distribution. In light of prior work characterizing distance-dependent motion effects 

on functional connectivity (Ciric et al., 2017; Power et al., 2012; Satterthwaite et al., 2012), 

this permutation procedure was repeated to assess the significance of the third-level 

correlation between motion effects on edge strength and connection distance (mean 

streamline length).

Consistency-based thresholding

After evaluation of the relationship between in-scanner motion and structural connectivity, 

we next evaluated the impact of thresholding procedures on such effects. Thresholding 
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approaches are commonly applied to human brain networks in order to reduce the 

prevalence of spurious false positive connections that may bias group-level inferences on 

brain network topology (Drakesmith et al., 2015; Roberts et al., 2017; Rubinov and Sporns, 

2010; Zalesky et al., 2016). While one common thresholding approach involves removing a 

subset of the weakest edges in a group-average connection matrix (Rubinov and Sporns, 

2010), this approach often results in the elimination of relatively weak, long-range 

connections that may be particularly important for global network topology (Roberts et al., 

2017; van den Heuvel et al., 2012). In contrast, consistency-based thresholds retain both 

short- and long-range connections that are consistently reconstructed across subjects 

(Roberts et al., 2017). In the present study, we sought to delineate motion effects on 

structural connectivity after eliminating potentially spurious network edges. To this end, we 

applied consistency-based thresholds to brain networks derived from both probabilistic 

(Roberts et al., 2017) and deterministic tractography (de Reus and van den Heuvel, 2013).

For networks derived from probabilistic tractography, we evaluated motion effects on edge 

strength, node strength, and total network strength across ten consistency-based thresholds 

(0-90th percentile probabilistic edge consistency). In agreement with previous studies using 

deterministic tractography, which have applied group-level thresholds based on the 

percentage of subjects with a given edge rather than percentiles of edge consistency (de 

Reus and van den Heuvel, 2013; van den Heuvel and Sporns, 2011; Wierenga et al., 2016), 

we evaluated motion effects on structural connectivity across ten consistency-based 

thresholds (0-90% deterministic edge consistency). To characterize the severity of motion 

effects across consistency-based thresholds, we calculated the percentage of network edges 

and nodes significantly impacted by motion after adjusting for the false discovery rate (FDR; 

Benjamini and Hochberg, 1995). At each threshold, we calculated the percentage of network 

edges impacted by head motion by dividing the total number of network edges with 

significant motion effects (FDR Q < 0.05) by the total number of edges retained after 

thresholding. To assess the stability of motion effects on total network strength across 

consistency-based thresholds, we generated 100 bootstrap samples defined using 80% of the 

dataset (N=760).

Statistical analysis: group-level age effects and mediation analysis

As a final step, we examined whether observed age effects on structural connectivity were 

mediated by age-related differences in head motion. Sobel tests were performed for each 

network edge exhibiting significant age effects following FDR correction (Sobel, 1982). 

Specifically, for the subset of edges where age-related differences in head motion 

significantly mediated observed age effects on structural connectivity, we performed 10,000 

permutations of an edge-level index defining mediation effects as “positive” or “negative” 

depending on the value of the Sobel Z statistic. For each permutation, we calculated the 

difference in mean edge consistency between the randomly labeled “positive” and 

“negative” mediation effects, and ultimately compared the observed difference in mean edge 

consistency to this null distribution.
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RESULTS

Relationship between head motion and participant demographics

As expected based on the rigorous manual QA procedures implemented, in-scanner head 

motion was low in this sample (mean=0.47mm, SD=0.41mm). Motion was negatively 

associated with age, as expected in this developmental sample (r=-0.17, p=3.01 × 10−7), but 

did not differ by sex (r=0.02). Initial analyses examined the relationship between motion and 

structural connectivity (while controlling for participant demographics).

In-scanner head motion systemically impacts estimates of structural connectivity in a 
consistency-dependent manner

When edge weights were defined by the number of probabilistic streamlines connecting a 

node pair, 12% of all network edges were significantly impacted by motion (Figure 2A). We 

found that the direction and strength of motion effects on streamline count were correlated 

with inter-subject edge consistency (r=-0.35, permuted p < 0.0001; Figure 2B) as well as 

with mean streamline length (r=-0.21, permuted p < 0.0001; see also Supplementary Figure 

1). To further disentangle the associations between edge-level motion effects, edge 

consistency, and connection length, we plotted these relationships for the subset of edges 

significantly impacted by motion (FDR Q<0.05). For brain networks derived from 

probabilistic tractography, we observed a quadratic relationship between mean streamline 

length and edge consistency. Head motion significantly enhanced the strength of relatively 

short-range, low-consistency network edges, and diminished the strength of high-

consistency network edges, which included both short- and long-range connections (Figure 

2C).

We also evaluated the impact of head motion on structural connectivity using brain networks 

derived from deterministic tractography. When edge weights were defined by the mean FA 

along deterministic streamlines connecting a node pair, 14% of all network edges were 

significantly impacted by motion (Figure 2D). As for probabilistic tractography, the impact 

of motion was dependent on both consistency and connection length: the direction and 

strength of motion effects were correlated with inter-subject edge consistency (r=-0.50, 

permuted p < 0.0001; Figure 2E) and with mean streamline length (r=-0.48, permuted p < 

0.0001; see also Supplementary Figure 1). Specifically, head motion significantly enhanced 

FA along relatively short-range, low-consistency network edges, and diminished FA along 

relatively long-range, high-consistency network edges (Figure 2F).

We observed convergent results when using a variety of other edge weight definitions for 

networks derived from both deterministic and probabilistic tractography including 

connectivity probability, inverse MD, and deterministic streamline count (Supplementary 

Figure 2). Consistency-driven motion effects on connection length were also observed when 

directly analyzing the impact of head motion on mean streamline length (Supplementary 

Figure 3). We also found that alternative measures of data quality, such as the mean 

framewise translation and rotation, the number of of mean voxel intensity outliers across 

diffusion-weighted volumes, and TSNR, all exhibited similar effects on structural 

connectivity (Supplementary Figure 4).
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Additionally, replacing signal outliers identified during simultaneous correction for eddy 

currents and participant motion resulted in an attenuated relationship between in-scanner 

head motion and structural connectivity (4% of edges versus 14% without outlier 

replacement), although motion effects were still significantly modulated by inter-subject 

edge consistency (r=-0.44, p<0.0001; see Supplementary Figure 5) and connection length 

(r=-0.29, p<0.0001; see Supplementary Figure 5).

Motion effects are exacerbated across consistency-based thresholds

We applied ten consistency-based thresholds to networks derived from both probabilistic and 

deterministic tractography in order to evaluate the impact of head motion on edge strength, 

node strength, and total network strength after eliminating potentially spurious network 

edges. For networks derived from probabilistic tractography, the percentage of edges 

significantly impacted by head motion increased monotonically across consistency-based 

thresholds ranging from (12- 32%; Figure 3A). Motion had a profound impact on network 

properties at the nodal level, significantly diminishing the strength of 82-90% nodes across 

consistency-based thresholds. After retaining only the top 50th percentile of edges based on 

inter-subject consistency, head motion had a significant negative effect on the strength of 

84% nodes, with particularly strong effects observed in middle frontal gyrus, precuneus, and 

cingulate cortex (Figure 3B). Total network strength was also significantly diminished by 

head motion across all consistency-based thresholds (partial r ranged between -0.3 and 

-0.31; Figure 3C).

For networks derived from deterministic tractography, the percentage of network edges 

significantly impacted by head motion also increased monotonically across consistency-

based thresholds (14-62%; Figure 3D). Motion also reduced the strength of a large 

percentage of network nodes (43-99%). After retaining only edges that were reconstructed in 

more than 50% of participant connection matrices, head motion significantly reduced the 

strength of 89% nodes, with particularly strong effects observed in the precuneus and medial 

brain regions including the anterior and posterior cingulate cortex (Figure 3E). Head motion 

significantly reduced total network strength across all consistency-based thresholds, with 

stronger effects observed at more stringent thresholds (partial r varied between -0.20 and 

-0.51; Figure 3F). These results demonstrate the impact of motion artifact on structural 

connectivity across topological scales, thresholding procedures, and network construction 

methods.

Age effects on structural connectivity are inflated and obscured by head motion

As a final step, we evaluated whether motion could systematically bias estimates of 

structural network development during youth. Even in our sample of 949 youths with high-

quality, low-motion dMRI data, head motion was negatively correlated with age such that 

younger participants tended to move significantly more than older participants (r=-0.17, 

p=3.01 × 10−7; Figure 4A). While controlling for participant sex, significant age effects were 

observed in 26% of probabilistic network edges and 7% of deterministic network edges for 

unthresholded networks. We tested whether these significant age effects were mediated by 

participant motion using the Sobel test. Figure 4B illustrates that positive Sobel Z values can 

reflect either inflated positive age effects or obscured negative age effects, where in both 
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cases motion decreases the strength of network edges that undergo significant age-related 

change. Similarly, negative Sobel Z values can reflect either inflated negative age effects or 

obscured positive age effects, where in both cases motion increases the strength of network 

edges that undergo significant age-related change. For brain networks derived from 

probabilistic tractography, 7% of edges with observed age effects were significantly 

mediated by age-related differences in head motion (39% positive mediation, 61% negative 

mediation; Figure 4C). Notably, network edges with significant positive mediation effects 

had higher inter-subject edge consistency compared to connections with significant negative 

mediation effects (permutation-based p < 0.0001; Figure 4D). This result reflects the fact 

that the strength of edges with positive mediation effects are weakened by motion, and 

negative motion effects are most prominent in high-consistency edges.

For brain networks derived from deterministic tractography, 51% of edges with observed age 

effects were significantly mediated by age-related differences in head motion (88% positive 

mediation, 12% negative mediation; Figure 4E). Consistent with results from probabilistic 

tractography, network edges with significant positive mediation effects had higher edge 

consistency compared to connections with significant negative mediation effects 

(permutation-based p < 0.0001; Figure 4F), although this effect was even more pronounced 

for brain networks derived from deterministic tractography.

DISCUSSION

Our results demonstrate that subtle variation in participant motion systematically impacts 

diffusion tractography-derived measures of structural connectivity, even following rigorous 

manual quality assurance. Leveraging diffusion imaging data from 949 youths collected as 

part of the PNC, we found that increased in-scanner head motion was associated with 

inflated connectivity for low-consistency network edges that were primarily short-range and 

diminished connectivity for high-consistency edges, which included both long- and short-

range connections. Applying group-level thresholds to eliminate potentially spurious 

connections actually increased the proportion of motion effects on structural connectivity. 

Furthermore, we demonstrated that age-related differences in head motion could both inflate 

and obscure developmental inferences on structural connectivity. Our results emphasize that 

simply applying retrospective motion correction with FSL eddy and excluding participants 

with gross motion artifact does not sufficiently account for systematic motion effects on 

structural connectivity. Critically, replacing motion-related signal dropout using a non-

parametric prediction attenuated the overall impact of head motion on structural 

connectivity, although residual motion effects were still present and remained dependent on 

edge consistency and connection length. These findings are particularly important for studies 

of brain development and neuropsychiatric disorders, where in-scanner motion may be 

correlated with outcome measures of interest (e.g., participant age, diagnostic group, 

symptom burden). Together, our results demonstrate that in-scanner micro-movements can 

have a marked impact on structural connectivity derived from local streamline tractography, 

and they provide a framework for quantifying and controlling for motion-related confounds 

in studies of structural brain network development.
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Motion effects on structural connectivity are modulated by inter-subject edge consistency 
and streamline length

We found that the strength and direction of motion effects on structural connectivity were 

modulated by inter-subject edge consistency and streamline length. These results are in 

agreement with studies characterizing the confounding effect of head motion on resting-state 

functional connectivity (Ciric et al., 2017; Power et al., 2012; Satterthwaite et al., 2012, 

2013; Van Dijk et al., 2012; Yan et al., 2013). In diffusion imaging, head motion has been 

shown to both increase and decrease FA depending on regional tissue anisotropy and signal-

to-noise ratio (Aksoy et al., 2008; Farrell et al., 2007; Landman et al., 2008; Ling et al., 

2012; Tijssen et al., 2009). Moreover, head motion may bias local streamline tractography 

algorithms that define termination criteria based on voxel-wise FA and step-wise turning 

angles. Specifically, participant motion may potentially induce a positive FA bias in brain 

regions with relatively isotropic diffusion, resulting in the spurious propagation of 

streamlines, while the motion-induced negative FA bias in regions of high anisotropy may 

result in the premature termination of streamlines. Our results further support this premise: 

head motion was associated with increased connection length for low-FA, low-consistency 

connections, and decreased connection length for high-FA, high-consistency connections.

After applying increasingly stringent consistency-based thresholds to eliminate potentially 

spurious network connections (de Reus and van den Heuvel, 2013; Roberts et al., 2017), the 

negative impact of head motion on edge and node strength became more pronounced. These 

results are intuitive given that head motion exhibited a particularly strong impact on high-

consistency network edges, which were retained after thresholding. The substantial negative 

impact of motion on total network strength was stable across all thresholds for networks 

derived from probabilistic tractography (partial r ~ -0.3), and was even more prominent for 

deterministic networks at more stringent thresholds (partial r ~ -0.5). These striking effects 

on total network strength are particularly notable since many studies assessing intrinsic 

network topology apply global normalization procedures where each unique edge weight in 

the individual or group-averaged connectivity matrix is divided by the total network strength 

(Cao et al., 2013; Dennis et al., 2013; Gong et al., 2009; Li et al., 2012; Yan et al., 2013). 

Together, our results highlight the need to quantify and control for motion artifact in studies 

of structural brain connectivity, even after removing potentially spurious network 

connections with thresholding procedures.

Age-related differences in head motion both inflate and obscure observed age effects on 
structural connectivity

The edge consistency- and length-related motion effects on structural connectivity observed 

in this study have important implications for studies of structural brain network 

development. While prior work has suggested that short-range WM connections tend to 

weaken with age while longer-range WM connections become stronger (Collin and van den 

Heuvel, 2013; Hagmann et al., 2010), our findings suggest that age-related differences in 

head motion may inflate these age effects in a manner similar to that seen in 

neurodevelopmental studies of functional connectivity (Fair et al., 2012; Power et al., 2012; 

Satterthwaite et al., 2013, 2012). Critically, we found that head motion significantly 

mediated age effects in a consistency-dependent manner, particularly when brain networks 
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were derived from deterministic tractography, where over half of the observed age effects 

were mediated by motion. Overall, we observed a higher proportion of network edges 

exhibiting significant age effects using probabilistic tractography, and a smaller proportion 

of these effects were mediated by age-related differences in motion. Regardless of specific 

methodological choices during brain network construction, our results demonstrate how 

subtle differences in participant motion may systematically bias inference regarding the 

development of structural connectivity in youth.

Limitations

Several methodological challenges and limitations of the present study should be noted. 

First, while diffusion tractography methods have been validated using post-mortem tract-

tracing procedures (Donahue et al., 2016; Knösche et al., 2015; Miranda-Dominguez et al., 

2014; van den Heuvel et al., 2015), they remain inherently limited in their ability to fully 

resolve complex WM trajectories in the human brain, such as fanning and bending fibers 

(Reveley et al., 2015; Thomas et al., 2014; Zhang et al., 2012). In particular, the relatively 

low spatial and angular resolution of DTI limits the complexity of diffusion models that can 

be fitted to the data. State-of-the-art approaches such as neurite orientation dispersion and 

density imaging (NODDI) leverage multi-shell protocols in combination with high angular 

resolution diffusion-weighted imaging (HARDI) to enable more nuanced tissue 

compartment models for assessing WM microstructure and connectivity across the human 

lifespan (Batalle et al., 2017; Merluzzi et al., 2016; Tuch et al., 2002; Zhang et al., 2012). 

Critically, tensor-based indices of WM integrity are not sensitive to diffusion within specific 

intra-voxel tissue compartments, while NODDI can disentangle specific microstructural 

features such as intra-neurite diffusion (within axons and dendrites), extra-neurite diffusion, 

and isotropic volume fraction (Zhang et al., 2012). Future studies using NODDI data may 

help determine whether head motion differentially impacts the diffusion signal in specific 

tissue compartments.

Second, while a network neuroscience approach provides an attractive way to model 

pairwise interactions among neural units or brain regions (Bassett and Sporns, 2017), the 

most optimal method for defining network nodes and edge weights in a biologically 

meaningful manner remains uncertain (Donahue et al., 2016; Glasser et al., 2016; Gordon et 

al., 2017; Taylor et al., 2017; Zalesky et al., 2010). Here, we sought to overcome these 

limitations in part by defining network nodes based on subject-specific neuroanatomical 

landmarks (Cammoun et al., 2012; Desikan et al., 2006) following rigorous manual and 

data-driven quality assessments of T1-weighted images (Rosen et al., 2017). Further, our 

main results were remarkably consistent across a variety of edge weight definitions for 

networks derived from both deterministic and probabilistic tractography.

Third and finally, we evaluated motion effects on dMRI-derived structural connectivity after 

retrospective correction for field distortions, eddy currents, and participant motion. While 

recent methods have been introduced for correcting motion-related signal dropout in dMRI 

(Andersson et al., 2017, 2016), the benefits of outlier replacement are diminished in cases of 

excessive participant motion (Andersson et al., 2016). It should be noted that each of these 

pre-processing steps may theoretically impact diffusion model fitting and tractography 
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results in a non-trivial manner (Alhamud et al., 2015). Future work may benefit from 

evaluating motion effects on structural connectivity after applying additional procedures for 

reducing tractography-related biases, such as particle filtering (Girard et al., 2014), 

anatomically-constrained tractography (ACT) (Smith et al., 2012), or linear fascicle 

evaluation (LiFE) (Pestilli et al., 2014). The ongoing development of real-time in-scanner 

motion correction procedures for diffusion MRI (Aksoy et al., 2011; Alhamud et al., 2015, 

2016) may also help mitigate the impact of head motion on diffusion model fitting and 

tractography-derived measures of structural connectivity. Advances in these prospective 

motion correction methods show promise for minimizing motion artifact while also reducing 

scan time and cost (Dosenbach et al., 2017).

Conclusions

In agreement with previous work characterizing motion artifact in structural, functional, and 

diffusion imaging, we found that in-scanner head motion systematically biases estimates of 

structural connectivity derived from diffusion tractography and potentially confounds 

inference on the development of structural brain networks. Based on this data, we 

recommend that studies of structural brain network topology should quantify data quality, 

report the relationship between data quality and both subject variables and imaging 

measures, and control for its influence in analyses through group matching or inclusion of 

motion as a model covariate. While observed motion effects on structural connectivity were 

strongest when head motion was measured by the mean relative framewise displacement 

between interspersed b=0 volumes, results suggest that using alternative data quality 

measures such as nuisance covariates (e.g., outlier count, TSNR) might help to reduce 

confounding effects in a similar manner when interspersed b=0 volumes are not acquired. 

Encouragingly, we found that using a recently-introduced method for correcting motion-

related signal dropout (Andersson et al., 2016) attenuated the overall impact of head motion 

on structural connectivity, suggesting that more advanced retrospective motion correction 

tools may also help minimize the confounding effects of head motion on diffusion 

tractography and structural connectivity. Taken together, our results delineate the systematic 

consistency-dependent impact of in-scanner micro-movements on dMRI-derived measures 

of structural connectivity, and emphasize the need for future studies to report and account 

for the effects of motion artifact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Connectome construction
For each subject (n=949, ages 8-23 years), the T1 image was processed using FreeSurfer and 

parcellated into 233 cortical and subcortical network nodes on a subject-specific basis. A 

ball-and-stick diffusion model was fit to each subject’s DTI data and probabilistic 

tractography was run with FSL probtrackx, initiating 1,000 streamlines in each seed voxel 

identified at the gray-white boundary for each node. Edge weights in 233×233 symmetric 

connectivity matrices derived from probabilistic tractography were defined by the number of 

streamlines connecting a node pair. Alternatively, the diffusion tensor was fit to the DTI data 

and deterministic streamline tractography was used to create a symmetric connectivity 
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matrix (233×233), where the primary edge weight was defined by calculating the mean 

fractional anisotropy (FA) along streamlines connecting a node pair. Connection length was 

quantified by the mean length of streamlines connecting a node pair.
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Figure 2. Motion effects on structural connectivity are driven by inter-subject edge consistency 
and streamline length
The effect of in-scanner head motion on structural connectivity was estimated using a partial 

correlation for each network edge while controlling for age, age2, and sex. (A) When edge 

weights were defined by the number of probabilistic streamlines connecting a node pair, 

12% of all network edges were significantly impacted by motion. (B) The direction and 

strength of motion effects were significantly correlated with inter-subject edge consistency 

(r=-0.35) and with mean streamline length (r=-0.21; see Supplementary Figure 1). (C) Inter-

subject edge consistency exhibited a quadratic relationship with mean streamline length. 

Head motion significantly enhanced the strength of relatively short-range, low-consistency 

network edges. Further, head motion diminished the strength of relatively high-consistency 

network edges, which included both short- and long-range connections. (D) When edge 

weights were defined by the average FA along deterministic streamlines connecting a node 

pair, 14% of all network edges were significantly impacted by motion. (E) The direction and 

strength of motion effects were significantly associated with inter-subject edge consistency 

(r=-0.50) and with mean streamline length (r=-0.48; see also Supplementary Figure 1). (F) 

For networks derived from deterministic tractography, inter-subject edge consistency 

exhibited a parabolic relationship with mean streamline length. In agreement with results 

from probabilistic tractography, head motion significantly enhanced the strength of relatively 

short-range, low-consistency network edges, and diminished the strength of relatively long-

range, high-consistency network edges. All statistical inferences were adjusted for multiple 
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comparisons using FDR (Q < 0.05). The significance of all third-level correlations was 

evaluated using 10,000 permutations (permutation-based p < 0.0001). Black line in panels C 

and F represents the best fit from a general additive model with a penalized spline.
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Figure 3. Head motion systematically impacts structural connectivity across consistency-based 
thresholds at the level of network edges, nodes, and total network strength
Motion effects on probabilistic edge strength, node strength, and total network strength were 

assessed across a range of consistency-based thresholds (ten thresholds, 0-90th percentile 

inter-subject edge consistency). (A) The percentage of edges significantly impacted by head 

motion increased monotonically across consistency-based thresholds (12-32%). (B) After 

eliminating all edges with inter-subject consistency below the 50th percentile, head motion 

significantly diminished the strength of 84% nodes, with particularly strong effects observed 

in middle frontal gyrus, precuneus, and cingulate cortex. (C) While the effect was stable 

across consistency-based thresholds, head motion significantly diminished total network 

strength at each threshold. Motion effects on deterministic edge strength, node strength, and 

total network strength were assessed across ten consistency-based thresholds (0-90% 

deterministic inter-subject edge consistency). (D) The percentage of deterministic network 

edges significantly impacted by head motion increased monotonically across consistency-

based thresholds (14-62%). (E) After eliminating edges that existed in less than 50% of 

participant connection matrices, head motion significantly diminished the strength of 89% 

nodes, with particularly strong effects observed in the precuneus and medial brain regions 

including the anterior and posterior cingulate. (F) Head motion also significantly diminished 

total network strength across all consistency-based thresholds, particularly at more stringent 

thresholds. These results suggest that global strength normalization approaches may be 

confounded by individual differences in head motion during acquisition. All statistical 

inferences were adjusted for multiple comparisons using FDR (Q < 0.05). Black bars 

correspond to the standard deviation of 100 bootstrapped samples encompassing 80% of the 

dataset (n=760).
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Figure 4. Observed age effects on structural connectivity are both inflated and obscured when 
age-related differences in head motion are not accounted for
All subjects included in this study passed rigorous manual quality assurance, retaining a 

sample of relatively high-quality, low-motion dMRI datasets. (A) Despite this, age-related 

differences in head motion were still observed: younger participants tended to move 

significantly more than older participants. (B) Mediation analyses across all network edges 

showing significant age effects demonstrated that observed age effects on structural 

connectivity were often inflated or obscured when head motion was not accounted for. This 

schematic illustrates how positive mediation effects can reflect inflated positive age effects 

or obscured negative age effects, where in both cases motion decreases the strength of 

network edges that undergo significant age-related change. Similarly, negative mediation 

effects can reflect inflated negative age effects or obscured positive age effects, where in 

both cases motion increases the strength of network edges that undergo significant age-

related change. (C) For brain networks derived from probabilistic tractography, significant 

age effects were observed in 26% of all network edges. This visualization highlights 7% of 

these edges where developmental effects were significantly mediated by age-related 

differences in head motion. Positive mediation effects were observed for edges where 

motion significantly reduced connectivity, while negative mediation effects were observed 

for edges where motion significantly increased connectivity. (D) Network connections 

exhibiting positive mediation effects had significantly higher inter-subject edge consistency 

compared to connections with significant negative mediation effects (permutation-based p < 
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0.0001). (E) For brain networks derived from deterministic tractography, significant age 

effects were observed in 7% of all network edges. This visualization highlights 51% of these 

edges where developmental effects were significantly mediated by age-related differences in 

head motion. Again, both significant positive and negative mediation effects were observed. 

(F) As seen in the probabilistic data, network connections with significant positive 

mediation effects had significantly higher inter-subject edge consistency compared to 

connections with significant negative mediation effects (permutation-based p < 0.0001). Red 

connections in 4c through 4e represent significant positive mediation results; blue 

connections represent significant negative mediation results.
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