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Abstract

Invasive electrophysiological and neuroanatomical studies in nonhuman mammalian experimental 

preparations have helped elucidate the lamina (layer) dependence of neural computations and 

interregional connections. Noninvasive functional neuroimaging can, in principle, resolve cortical 

laminae (layers), and thus provide insight into human neural computations and interregional 

connections. However human neuroimaging data are noisy and difficult to interpret; biologically 

realistic simulations can aid experimental interpretation by relating the neuroimaging data to 

simulated neural activity. We illustrate the potential of laminar neuroimaging by upgrading an 

existing large-scale, multiregion neural model that simulates a visual delayed match-to-sample 

(DMS) task. The new laminar-based neural unit incorporates spiny stellate, pyramidal, and 

inhibitory neural populations which are divided among supragranular, granular, and infragranular 

laminae (layers). We simulated neural activity which is translated into local field potential-like 

data used to simulate conventional and laminar fMRI activity. We implemented the laminar 

connectivity schemes proposed by Felleman and Van Essen (Cerebral Cortex, 1991) for 

interregional connections. The hemodynamic model that we employ is a modified version of one 

due to Heinzle et al. (Neuroimage, 2016) that incorporates the effects of draining veins. We show 

that the laminar version of the model replicates the findings of the existing model. The laminar 

model shows the finer structure in fMRI activity and functional connectivity. Laminar differences 

in the magnitude of neural activities are a prominent finding; these are also visible in the simulated 

fMRI. We illustrate differences between task and control conditions in the fMRI signal, and 

demonstrate differences in interregional laminar functional connectivity that reflect the underlying 

connectivity scheme. These results indicate that multi-layer computational models can aid in 

interpreting layer-specific fMRI, and suggest that increased use of laminar fMRI could provide 

unique and fundamental insights to human neuroscience.
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Introduction

The layered structure of cortex shapes neural computations, both within and between brain 

regions. Felleman and Van Essen showed in the primate visual system that feedforward and 

feedback connections have different laminar projections (Felleman and Van Essen, 1991). 

Feedforward and feedback suggest directed information flow between regions. Discovery of 

these laminar connections required invasive techniques, but high-field laminar fMRI could 

non-invasively reveal feedforward and feedback connections. High-field fMRI, 7T and 

greater, can achieve submillimeter spatial resolution that can identify different cortical 

laminae. In several human studies, laminar fMRI has been collected in visual (Koopmans et 

al., 2010; Olman et al., 2012; Ress et al., 2007), auditory (De Martino et al., 2015) and 

motor cortex (Guidi et al., 2016; Huber et al., in press). One potential use of laminar fMRI 

will be to discern the laminar connections; using laminar functional connectivity measures in 

conjunction with the stereotyped laminar connections (e.g. (Felleman and Van Essen, 

1991)), it may become possible to infer laminar-specific effective connectivity between 

regions (see (Polimeni et al., 2010) for an example). However, because interpreting 

neuroimaging data is difficult, deriving insight from data can be aided by biologically 

informed neural simulations (Horwitz and Husain, 2007; Horwitz et al., 2005). Specifically, 

because the actual activity and connectivity of every element are known in a model, one can 

evaluate whether inferences based on neuroimaging data accurately reflect the underlying 

neural substrate (e.g., (Lee et al., 2006)).

An example of this kind of simulation is a visual delayed-match-to-sample (DMS) task 

(Tagamets and Horwitz, 1998; Ulloa and Horwitz, 2016; Liu et al., 2017) that used a 

Wilson-Cowan neural mass model (NMM) (Wilson and Cowan, 1972), which can be 

considered as representing the total excitatory and inhibitory activity of a single cortical 

column. The visual DMS task model has multiple nodes that represent different brain 

regions connected in biologically realistic patterns suggested by Felleman and Van Essen 

(Felleman and Van Essen, 1991). In this paper, we extend the original DMS task model by 

replacing the Wilson-Cowan NMM units with a laminar microcircuit proposed by Wang and 

Knosche (2013) to investigate laminar and interregional computations during a visual DMS 

task. We partially validate the extended laminar model by comparing its results to the results 

obtained from the original model. We then show how the simulations provide insight into 

laminar computations and connections. Laminar computations show the combination of 

inputs to a given layer changes the activity relative to other regions. Examining these 

connections allows us to infer feedforward, feedback, and lateral relations between nodes.

Neural mass models such as the Jansen-Rit unit (Jansen and Rit, 1995) are used in popular 

connectivity analysis techniques such as Dynamic Causal Modeling for EEG and MEG 

(David et al., 2004; David and Friston, 2003; Moran et al., 2013). Figure 1 shows a family of 
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neural mass models in terms of increasing complexity. The Jansen-Rit model makes the 

Wilson-Cowan model’s recurrent excitatory connections explicit by dividing the Wilson-

Cowan excitatory neural mass into excitatory stellate and pyramidal populations. We replace 

the Wilson-Cowan units in our large-scale neural model (LSNM) with the neural mass 

model proposed by Wang and Knosche (2013) that represents a 3-layer cortical microcircuit 

comprising a supragranular layer, layer 4, and an infragranular layer. The Wang-Knosche 

model divides the Jansen-Rit pyramidal and inhibitory cells between supragranular and 

infragranular layers. The Wang-Knosche unit reduces to the Wilson-Cowan unit by lumping 

the pyramidal and excitatory stellate cells into a single excitatory unit and likewise with the 

inhibitory neural populations. The laminar nature of the Wang-Knosche model allows 

detailed interregional connectivity schemes.

The DMS task is used to assess working memory. In our LSNM we use simple visual stimuli 

to simulate object processing and working memory. The advantage of modeling a task are 

twofold. First, all aspects of a simulated experiment are controlled. Thus, simulated 

measurements represent ideal data. Second, the simulations can provide data at a number of 

spatial scales, from neural population activity to fMRI voxel level activity. The Wilson-

Cowan based DMS model matched experimental findings in the literature (Horwitz, 2004; 

Horwitz et al., 2005; Tagamets and Horwitz, 1998), thus informing the interpretation of 

electrophysiological (Funahashi et al., 1989), PET (Haxby et al., 1995), and fMRI (Dale and 

Buckner, 1997) studies. The simulated neural network used here that performs the visual 

DMS task is embedded in a whole brain framework called The Virtual Brain (TVB) (Sanz 

Leon et al., 2013), as reported in (Ulloa and Horwitz, 2016), which provides realistic neural 

noise to the DMS network. A simulation produces two distinct measures of neural activity: 

average firing rates representing output activity and integrated synaptic activity, which is 

similar to local field potential (LFP) data, representing input activity. The integrated synaptic 

activity, convolved with a model of the hemodynamic response function is used to model 

fMRI BOLD data. Because our simulations are aimed at high-field, laminar fMRI, the 

hemodynamic model we use is a modified version of the model recently developed by 

Heinzle et al. (2016) that also incorporates the laminar effects of venous blood draining back 

to the cortical surface perpendicular to the laminar cortical structure. Note that there have 

been reports of laminar differences in the hemodynamic response (e.g., Huber et al., 2014). 

Nevertheless, for simplicity, we will assume in this paper that the laminar fMRI data are 

generated with a hemodynamic model using identical parameters for all layers, modified by 

the aforementioned draining vein effect. As is done with empirical data, these simulated 

fMRI time series provide the ability to examine interregional functional connectivity.

The laminar-based extended LSNM generates an integrated picture of a cognitive task and 

informs our understanding of new and existing imaging data. A laminar NMM allows the 

incorporation of a number of features. In particular, we can implement biologically realistic 

connectivity schemes such as those reported by Felleman and Van Essen (1991). Felleman 

and Van Essen designated three general types of interregional connections: feedforward, 

feedback, and lateral connections (Figure 2). Feedforward connections originate in 

supragranular and sometimes infragranular layers and innervate layer 4 excitatory stellate 

cells. Feedback connections project from infragranular and sometimes supragranular to cells 

in the infragranular and supragranular layers. Lateral connections starting in infragranular 
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and supragranular can project to all cortical laminae. We use these connection patterns in 

building our laminar LSNM. One can differentiate feedforward and feedback connections by 

comparing the functional connectivity of two ‘regions’, A and B. For example, if layer 4 of 

B has larger functional connectivity with region A than the supragranular and infragranular 

layers of B with region A, this suggests a feedforward connection from A to B. Likewise, if 

the supragranular and infragranular layers of B have larger functional connectivity with 

region A than layer 4 of B with region A, this suggests feedback or lateral connection from 

A to B. This type of analysis can be used to infer the nature of the connection between 

‘regions’. In the model we, of course, know the “answer” so we can discover if these 

hypothesized inferences are valid for a particular experimental design. This is our focus in 

this paper on the laminar LSNM.

Methods

1. Overview of model construction

The large-scale neural model (LSNM) we construct is composed of three sub-models: (1) a 

structural network model comprising the nodes of the network and the connections between 

the nodes; this represents the anatomical network; (2) a neural model corresponding to each 

node; this represents the units that generate the electrophysiological activity of each node. 

(3) a hemodynamic forward model that converts the electrophysiological activity of each 

node into a simulated fMRI time series. We thus combine three submodels, each of which 

has been shown to be consistent with experimental data, to produce the LSNM we present in 

this paper. Note that each of the submodels can be upgraded or extended as new empirical 

data are obtained.

2. Naming conventions

We begin by specifying the parts of our large-scale neural model (LSNM) and their 

correspondence with cortical structures. When discussing the model, we use a precise set of 

terms. The smallest element of the LSNM is the neural mass, the mathematical 

representation for a population of neurons. Neural masses do not represent single neurons, 

but a collection of similar neurons. The neural masses in these simulations represent 

excitatory stellate, excitatory pyramidal, and inhibitory neurons. Combining neural masses 

creates a NMM that is a mathematical realization of a cortical microcircuit. Each 

microcircuit, represents a cortical column. The next level of organization is the module 

which represents a neural population. In our LSNM, modules are represented by nine-by-

nine arrays of microcircuits that have a similar function. For example, in the V1 node there 

are two modules V1h and V1v; h and v denote selectivity for horizontal and vertical lines, 

respectively. The LSNM’s modules are V1h, V1v, V4c, V4h, V4v, IT, FS, D1, D2, and FR. 

The nine-by-nine array is a computational tool, not a spatial distribution of cortical columns. 

The term node designates collections of modules that correspond to a brain region. The 

nodes in the model are V1, V4, IT, FS, D1, D2, and FR. Note some modules are nodes; the 

full list of the names of the modules and their respective functions are listed in Table 1. Note 

that FS, D1, D2 and FR may occupy the same macroscopic part of prefrontal cortex (PFC); 

for illustrative purposes, we treat these nodes as representing spatially distinct brain regions.

Corbitt et al. Page 4

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Overview of the visual DMS network model

We begin by reviewing the earlier version of the LSNM whose microcircuit is upgraded in 

this paper.

The visual object processing model (see Figure 3) developed by Tagamets and Horwitz 

(1998) consists of interconnected neuronal populations representing the cortical ventral 

pathway that processes visual object features (Haxby et al., 1991; Ungerleider and Mishkin, 

1982). The model uses shape features to characterize visual objects. Beginning in striate 

visual cortex, the ventral processing pathway extends into the inferior temporal cortex and 

projects into ventrolateral prefrontal cortex. The nodes that comprise the visual model 

include ones representing primary and secondary visual cortex (V1/V2), area V4, inferior 

temporal cortex (IT), and prefrontal cortex (PFC). Stimuli are initially activated in the lateral 

geniculate nucleus (LGN), which is not realistically modelled. The connection of model 

nodes is shown in Figure 3, while Figure 4 shows details of the early visual modules. 

Regions V1/V2 and V4 contain two and three modules, respectively, with different 

functional attributes discussed below. Model neurons in V1/V2 and V4 were assumed to be 

orientation selective (for simplicity, horizontal and vertical orientations were used). In the 

visual model, the spatial receptive fields of simulated neurons increase along the ventral 

processing pathway, as reported in experimental findings (Desimone and Ungerleider, 1989). 

The response properties of the simulated prefrontal neural elements (FS, D1, D2 and FR) are 

based on primate electrophysiological data (Funahashi et al., 1990). The original model 

employs modified Wilson-Cowan (W-C) units as the microcircuit (Tagamets and Horwitz, 

1998; Wilson and Cowan, 1972). The synaptic inputs to neuronal masses can be combined 

and related to the fMRI or MEG/EEG signals via forward models (Banerjee et al., 2012; 

Horwitz and Tagamets, 1999). In this paper, we will focus on simulated fMRI. A full 

discussion of parameter selection for the original model can be found in Tagamets and 

Horwitz (1998).

4. Visual DMS task

This visual LSNM was designed to perform a recognition memory visual DMS task. During 

each trial of the task a stimulus, S1, is presented, followed by a delay period in which a 

representation of S1 is kept in short-term memory. When S1 appears, the memory circuits 

are modulated by applying an external top-down signal (ATTS). This top-down signal, 

called attention (or task signal), ensures that stimulus S1 is retained in the memory circuit 

during the delay interval. After the delay period, a second stimulus (S2) is presented, and the 

model responds as to whether the S1 and S2 representations match. High levels of neural 

activity in the PFC response module, FR, indicate S2 is a match. The model also performs a 

control task: passive perception of the stimuli. Passive perception is the viewing of stimuli, 

but the top-down attention signal has a low value. Multiple trials of the active and passive 

tasks constitute a simulated functional neuroimaging study. The modulation of the task 

parameters is discussed in detail below.

5. The Virtual Brain

Ulloa and Horwitz (Ulloa and Horwitz, 2016) embedded the visual LSNM into a whole 

brain framework using The Virtual Brain (TVB) software package (Sanz Leon et al., 2013). 
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The TVB simulator combines: (i) white matter structural connections among brain regions 

to simulate long-range connections, and (ii) a neuronal population model to simulate local 

brain activity at each network node. The TVB simulation environment provides non-specific 

input to the task regions (i.e., neural noise) in the embedded LSNM, which, in turn, provides 

feedback back to the non-specific neurons. The TVB structural connectome that we employ 

is based on the work of Hagmann et al. (2008). The simulated neuronal microcircuits at each 

TVB node are W-C units.

Overall, the LSNM embedded in TVB is able to perform the DMS task, generates simulated 

neural activities in the various brain regions that match empirical data from nonhuman 

preparations, and produces simulated functional neuroimaging data that generally agree with 

human experimental findings (see (Ulloa and Horwitz, 2016) for details). Model output 

signals come in the form of neural and integrated synaptic activity. These outputs can be 

analyzed alone or can be transformed into simulated fMRI data. The focus of this paper is on 

upgrading the network model by replacing the W-C microcircuit with a laminar microcircuit 

(i.e., the Wang-Knosche (W-K) NMM).

6. Details of the visual LSNM structural model

As mentioned above, the visual DMS model is composed of a detailed ventral visual stream 

model connected to four prefrontal processing nodes. The ventral visual stream is composed 

of modules representing the following neural populations: lateral geniculate nucleus (LGN), 

V1, V4, and IT. The prefrontal regions: FS, D1, D2, and FR have response properties based 

on monkey electrophysiology data collected by Funahashi et al. (1990). V1 has two modules 

that simulate neurons with vertical and horizontal receptive fields, respectively (see Fig. 3). 

V4 has three modules that receive input from V1. The V4 modules have neural elements 

with larger receptive fields that are sensitive to horizontal lines, vertical lines, and corners 

(i.e., combinations of the two basic features). From the V4 modules the entire visual field is 

projected to the IT node as well as feedback to V1. The IT node combines the three V4 

representations into the representation used by the prefrontal nodes. IT has forward 

projections to prefrontal module FS and sends feedback to V4 modules (see Figure 3). The 

prefrontal module FS is the ‘cue’ node that responds when a visual stimulus is present. FS 

has forward projections to both D2 and FR and inhibits module D1. D1 is a frontal module 

that forms part of the memory circuit. This node becomes active after the initial stimulus is 

no longer present and remains active during the delay portion of a DMS trial. D1 has 

forward connections to D2 and FR, lateral inhibitory connections to FS, and feedback to 

inhibitory units in IT. D2, the other half of the prefrontal memory circuit, is modulated by 

the external task/attention signal that controls whether a stimulus is held in memory, and 

provides feedback to D1 as well as IT and V4 in the ventral visual system. The final 

prefrontal node is FR, which responds when the first and second stimuli match; this occurs 

when the activity patterns in FS and D1 match during the presentation of the second 

stimulus (S2) of a DMS trial. FR provides inhibitory feedback to modules D1 and D2.

7. Incorporating a laminar-based microcircuit as the fundamental neural unit

We replaced the extended Wilson-Cowan (W-C) microcircuit, the top microcircuit in Figure 

1, in the LSNM with a three-layer Wang-Knosche (W-K) microcircuit (Wang and Knosche, 
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2013); the three layers represent the supragranular layers of cortex, the granular (layer 4) 

layer, and the infragranular layers. Here, we present the details of this substitution.

a. Voltage versus activity based models and local W-K connections—The W-K 

NMM is illustrated at the bottom of Figure 1. Originally, the W-K model was written as a 

voltage-based model (Wang and Knosche, 2013); we converted it into an activity-based 

model (see the Appendix for details). Activity represents the average firing rate. Neural mass 

models (NMM i.e., microcircuits) can have various mathematical representations. One 

version uses differential equations that approximate the average membrane voltage for a 

population of neurons. Population voltage based equations are a popular method for 

modeling empirical techniques that employ high temporal resolution such as EEG (Da Silva 

et al., 2012; Jansen and Rit, 1995) and MEG (David and Friston, 2003; Kiebel et al., 2009). 

The original W-K microcircuit used a differential equation that describes a driven critically 

damped oscillator model of average membrane voltage, V(t), of five neural masses. The 

general form of the voltage equation for a neural mass is:

d2V
dt2

+ 2
τ

dV
dt + 1

τ2V(t) = F(t, V(t)) . (1)

In this equation τ, a time constant, reflects the speed at which the membrane potential 

changes. F is function, often a sigmoid, that drives the oscillator. This function can include 

terms representing connections of the microcircuit with other microcircuits in the network. 

Voltage models are useful when modeling oscillating signals with high temporal resolution.

An alternative to the voltage based model is a model that represents the average firing rate 

during a particular time interval; we call this an activity based model. Activity based models, 

such as the modified W-C model used in our previous model of the DMS task (Tagamets and 

Horwitz, 1998), represent the average firing rate of a neural population that is active with a 

driven exponential decay. The prototypical equation for the activity model is:

dA(t)
dt + 1

τ A(t) = F(t, A(t)) . (2)

Here, A(t) is the activity while τ and F have similar interpretations as in the voltage model.

b. Modified W-K connections—The connections within the W-K microcircuit are 

supported by experimental findings and other neocortical models (see their paper for 

details). Forward connections project to layer 4 according to Felleman and Van Essen 

(1991). Evidence for local interlaminar connections are discussed in Thomson and Bannister 

(2003). Experimental findings note the paucity of connections between supragranular and 

layer 4 neurons (Shipp, 2007). Accumulated experimental evidence has been synthesized to 

develop a canonical microcircuit of cortex (Douglas and Martin, 2007; Douglas et al., 1989; 

Binzegger et al., 2004; Douglas and Martin, 2010), a simplification for modeling. A number 

of other theoretical microcircuits, similar to the Wang-Knosche one, simulate the spiking 

Corbitt et al. Page 7

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity of the neurons in a small region of neocortex (George and Hawkins, 2009; Haeusler 

and Maass, 2007; Izhikevich and Edelman, 2008; Potjans and Diesmann, 2014). These 

models have similar types of connections and location of cells compared to the W-K 

microcircuit. We chose the W-K microcircuit because it is the simplest laminar model.

In the current paper, the structure of the W-K model is retained, i.e. the connections shown 

in the bottom model in Figure 1, but the connection weights were changed to fit the activity 

based representation. We used the W-C weights, reported in Table 2a, to guide the model 

development. The connection weights within the W-K unit are specified in Table 2b. In the 

W-C model the strength of the excitatory to excitatory connections is 0.6. In the modified W-

K model the sum of excitatory to excitatory connections is 1.8, which is spread over the 

three excitatory neural masses. Averaging these connections when lumping over the three 

neural masses (1.8 divided by 3) yields the original value of 0.6. Similar calculations retain 

the same connection weights for the pyramidal (excitatory) to inhibitory elements of 0.15 in 

the modified W-K model (equal to the 0.15 connection weight from excitatory to inhibitory 

units in the W-C model). The same applies for the inhibitory to excitatory connection.

The final piece of the connectivity scheme is The Virtual Brain, which provides a whole 

brain simulation of non-specific neural activity. Our task-based LSNM is embedded within 

this larger model and interacts with The Virtual Brain nodes. Details of this implementation 

can be found in Ulloa and Horwitz (2016). For simplicity, we chose to have the Virtual Brain 

nodes provide non-specific input to all neural masses in the W-K model. The microcircuit 

used in The Virtual Brain is the W-C unit; a laminar unit is not used because at present a 

laminar connectome does not exist.

c. W-K equations—Each neural mass is governed by an activity based neural equation. 

The neural activity is driven by a sigmoidal activation function (the form of the function F in 

equation 2):

S(θ; K, ϕ) = 1
1 + e−K(θ − ϕ) . (3)

The variable θ represents the inputs to the neural mass and ϕ is the activation threshold and 

inflection point of the sigmoid function. The parameter K defines the steepness of the 

sigmoid. Large changes occur near the inflection point, ϕ; i.e., small changes near threshold 

can move a neural mass from a low activity state to a high activity state. The sigmoidal 

function is commonly used in neural mass models (Marreiros et al., 2008). The generic 

equation for an activity based NMM is given by:

dX
dt + δX = ΔS(θX; KX, ϕX) . (4)

Equation 4 is a driven exponential decay equation. The parameters of equation 4 include Δ, 

which represents refractory period, and δ, which represents decay rate. The parameters for 

neural masses of the W-C and W-K models are listed in Table 3. The argument of the 
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sigmoidal function, θX, contains inputs from local connections in the microcircuit, long 

range connections from other nodes in the model, input from TVB non-task nodes, and 

noise. The activity of the W-K model is described by a set of five differential equations, each 

governing the activity of a neural mass that are detailed in the supplemental materials. The 

five neural masses in the W-K model simulate layer 4 excitatory stellate (E), supragranular 

(layer 2/3) pyramidal (SP) and inhibitory (SI), and infragranular (deep, layer 5/6) pyramidal 

(DP) and inhibitory (DI) neural masses. Long range connections are characterized by the 

modified Felleman and Van Essen scheme in Figure 2. Specific connection weights of the 

long-range connections are detailed in Table 4. Note that The Virtual Brain W-C units 

connect to all layers of the W-K units.

8. Details of the simulated tasks

Simulations are controlled by external inputs to the LSNM neural network. We use two 

tasks: i) delayed match to sample (DMS), and ii) passive viewing (PV). A single DMS or PV 

trial can be divided up into four epochs: intertrial interval, S1, delay, S2 and response. These 

epochs are illustrated in Figure 5 and described below. Concatenated trials simulate an 

experimental run. The first epoch, intertrial interval, is a period when no stimulus or task 

parameter are applied to the model. In a series of trials this is the time between the trials. 

The second epoch is when the initial stimulus, S1, is present. The third epoch is the delay 

period between the stimulus presentations. The fourth epoch, S2 plus response, is when the 

second stimulus is presented and the model makes a decision if S2 is the same as S1 (for the 

DMS task; for PV, no decision is required or made). The response period is defined as the 

time between the end of S2 and when the D1 and D2 units are reset and the next intertrial 

interval begins. Note that S1 and S2 are the temporal epochs during which a stimulus is 

present in the LGN; there will be a latency between the stimulus being presented in the LGN 

and the beginning onset of neural activity in other nodes.

The stimulation of the early visual regions is the same in both the DMS and PV tasks. In our 

model, the lateral geniculate nucleus module (LGN) projects visual stimuli to the V1 

modules. The visual stimuli used in this paper are the “T” and “+” shapes shown in Figure 5. 

A simulated run consists of 4 trials: match, non-match, match, and non-match (i.e., TT, T+, 

++, and +T). This includes all possible stimulus pairings. Stimuli are present in the LGN 

during the S1 and S2 epochs when elements related to the stimuli are set to a high value. The 

time course of LGN element activity are represented in the top panel of Figure 5. Within the 

simulation each time step represents 5 milliseconds and we record the value for neural 

activity and synaptic activity every 50 milliseconds. The timing of the trials determines how 

the data can be analyzed. When investigating neural activity, we used shorter delays and 

intertrial intervals compared to simulations focused on BOLD fMRI measures. These 

simulated data showcase the finer details of the neural activity that are not accessible to 

fMRI. For trials in which we were looking at neural activity, stimuli were displayed for one 

second (200 timesteps) with a two second delay between stimuli and two second intertrial 

interval. The fMRI trials had longer delays and intertrial intervals so the hemodynamic 

responses to events in the model can be resolved. When simulated fMRI was the primary 

interest, we adjusted the parameters such that the simulation corresponded to an event-
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related experimental design in which the stimuli were displayed for two seconds, a 15 

second delay occurred between stimuli, and a 25 second intertrial interval was employed.

The top-down task parameter that influences node D2 determines which task is simulated: 

DMS or PV. The DMS task occurs when the task signal is set to a high value (0.7), as shown 

in the middle panel of Figure 5. The task parameter assumes a high value during the S1, 

delay, and S2 epochs. The task parameter permits a representation of the first stimulus to be 

held in the memory circuit. The PV task parameter time course is shown in the bottom panel 

of Figure 5; the task parameter value always has a low value (0.05). In PV, the stimuli are 

processed by the ventral visual stream but are not retained in the prefrontal memory circuit. 

After the S2 plus response epoch in DMS trials, the excitatory (stellate and pyramidal) 

neural masses in D1 and D2 are reset, clearing the memory for the next trial.

9. Output of simulations

The output and input to each neural mass is recorded. The output is the firing rate of model 

units in the specified population that are firing (above threshold); we refer to this as the 

neural activity. The neural activity is computed by the differential equations, e.g. X(t) from 

equation 4. The input to a neural population is called the integrated synaptic activity (ISA). 

For simulating fMRI BOLD data, the magnitude of the ISA is the sum of the absolute value 

of each term in the θ expressions from equations 3 and 4. The ISA is simulated for neural 

masses and is summed up for a node or layer. The ISA approximates local field potentials 

(LFP), which has been experimentally related to the BOLD signal (Goense and Logothetis, 

2008). Node or layer integrated synaptic activity is then convolved with a modified version 

of the hemodynamic model of Heinzle et al. (2016) to generate a simulated fMRI BOLD 

time series.

10. Computing simulated BOLD fMRI

The fMRI BOLD signal is simulated from the integrated synaptic activity (ISA) using a 

modification of the hemodynamic model described in Heinzle et al. (2016) that explicitly 

incorporates the effects of draining veins. The BOLD signal is reported as the fractional 

signal change for a regional time series compared to its baseline.

Simulating the fMRI BOLD signal requires two forwards models. The first uses the neural 

activity to compute three hemodynamic time series: blood flow, blood volume, and 

deoxyhemoglobin concentration. The second model transforms the hemodynamic time 

series into an fMRI BOLD time series. We refer to these as the hemodynamic and BOLD 

models, respectively. For the hemodynamic model, we modified the model proposed by 

Heinzle et al. that also incorporates the effects of draining deoxygenated blood between 

cortical layers (Heinzle et al., 2016). Our modification divides cortex into three layers, rather 

than the two layers used by Heinzle et al. The BOLD model parameters specify the scanner 

and sequence characteristics. Our BOLD model uses parameters for a 7T scanner using a 

gradient echo EPI sequence. The physiological and scanner parameter values are listed in 

Table 5 and the equations used are detailed in the Appendix. For laminar results, we report 

the activity in each layer. The layer 4 excitatory neurons are the only contribution in the 
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model for layer 4, while supragranular and infragranular layers combine the activities of 

pyramidal and inhibitory neural masses.

There are reports of differences in the neurovascular coupling for different cortical lamina in 

humans (e.g., (Huber et al., 2014)), but for simplicity, in this paper we apply the same 

hemodynamic model in all nodes and layers of the W-K model.

11. Interpretation of results

We address two issues in this paper: i) comparison of the W-C and W-K models and ii) the 

advantage of using the lamina W-K microcircuit-based model. Because the W-C version of 

our LSNM agreed with empirical findings (Tagamets and Horwitz, 1998; Ulloa and Horwitz, 

2016), we want to demonstrate that the W-K version of the model generates essentially the 

same simulated results as the W-C version. Thus, we qualitatively compare the W-C and W-

K LSNM simulated neural activity, fMRI BOLD activity, and fMRI functional connectivity. 

These comparisons are accomplished by reducing the laminar data of the W-K microcircuits 

into an effective W-C microcircuit by collapsing the excitatory (stellate and pyramidal) and 

inhibitory neural masses in the W-K microcircuit. The calculation of the lumped excitatory 

and inhibitory neural activity is in the Appendix. The lumped neural activity can be used to 

compute average neural activity within a given module; this is detailed in the Appendix. We 

hypothesize that the visual regions of the W-C and W-K models will have similar neural 

activity when shown the same stimuli. In prefrontal regions, we expect there may be 

differences related to the richer connectivity patterns of the W-K model. We quantitatively 

compare modules of the W-C and W-K models by computing the Pearson correlation of time 

series (average neural activity and BOLD activity). Showing that the two LSNM models 

employing different microcircuits match means that the W-K LSNM will yield the 

previously obtained relationships between experimental data and the W-C LSNM, as 

detailed in the original papers of Horwitz and colleagues (Horwitz, 2004; Horwitz and 

Tagamets, 1999; Tagamets and Horwitz, 1998; Ulloa and Horwitz, 2016).

Our second goal is to demonstrate that the W-K model provides information not included in 

the W-C model, particularly insight into possible mechanisms of laminar activity and 

interactions between regions. For treatment of the laminar data, the layers are kept separate; 

each lamina is treated as its own voxel/node. We show selected laminar results, namely those 

that show differences in activity and/or functional connectivity that are obscured or lost in 

the lumped data; results for areas that do not appear in the text are provided in the 

Supplementary Figures. We compare the W-K model for the DMS and PV tasks looking for 

differences in laminar processing and laminar functional connectivity. We hypothesize two 

rules based on Felleman-Van Essen connectivity:

1. For two regions A and B, if layer 4 of B shows greater functional connectivity to 

A than the supragranular and infragranular layers to A, this suggests a 

feedforward connection from A to B.

2. For two regions A and B, if the supragranular and/or infragranular layers of B 

show greater connectivity than layer 4 of B, this suggests a feedback or lateral 

connection from A to B.

Corbitt et al. Page 11

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We will see if our simulations provide confirming evidence for these rules.

All the computer code for the laminar-based LSNM can be found at https://github.com/

NIDCD/lsnm-laminar. Note that the Wilson-Cowan version of the model presented in Ulloa 

and Horwitz (2016) can be found at https://github.com/NIDCD.

Results

Comparing W-C and lumped W-K neural activity measures for the DMS and PV Tasks

As explained in the methods, the individual elements of a W-K unit can be combined (i.e. 

“lumped” together) to approximate a W-C unit, thus allowing direct comparisons of neural 

activity, BOLD fMRI, and functional connectivity between the original and current (laminar-

based) models. In this section, we show similarity between the models on the DMS and PV 

tasks. We provide qualitative explanations detailing the correspondence between the models, 

supported with quantitative measures of the correlation between the time series for the two 

models. In these time series, we refer to baseline as the intertrial interval after nodes D1 and 

D2 have been reset.

Comparing Neural Activity for DMS and PV Tasks—In Figure 6A we display the 

simulated DMS task neural activity for the visual areas V1 and V4 for the W-C and lumped 

W-K models. When the stimuli, during S1 and S2, are present, there are similar excitatory 

and inhibitory responses in both models; this is the expected behavior for V1 and V4. When 

no stimulus is present, the neural activity returns to near baseline. Figure 6A also show that 

both models have similar neural activity patterns in the PFC, though fewer neural units 

respond than in V1 and V4. The IT neural activity for both models resembles the activity 

patterns seen in the visual modules but shows a latency. The cue node, FS, excitatory 

neurons exhibit neural activity that is similar to the IT neurons as expected. During the delay 

period in FS there is inhibitory neural activity arising from the connection from D1 to the FS 

inhibitory neurons. The D1 node shows the expected neural activity during the delay, and S2 

periods. During S1 there is inhibitory activity in the D1 module as predicted from the FS to 

D1 inhibitory connections in the network model (Figure 3). The D2 nodes in both models 

have the expected behavior with increased excitatory neural activity during S1, the delay, 

and the S2-response periods. One difference with respect to the D2 nodes is that in the 

lumped W-K model some excitatory units return to baseline after the first stimulus. In the 

FR response units both the W-C and lumped W-K models have elevated neural activity on 

match trials. These findings qualitatively demonstrate for the DMS task that the W-C and the 

lumped W-K models are similar.

Table 6 details the correlation between the average neural activity in the different 

populations in the W-C and lumped W-K models for the DMS and PV tasks. For the DMS 

condition, the correlations are highest in the areas that directly receive visual inputs. 

Correlations between W-C and W-K in D1 and D2 are lower, perhaps reflecting differences 

in the memory circuit connections. An alternative explanation is that resetting the D1 and D2 

nodes, clearing the memory circuit after each trial, alters the time series thus lowering the 

correlation. The response node, FR, excitatory neurons have lower correlations because it 

has few inputs making it more susceptible to noise. Average inhibitory neural activity has 
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lower correlations between the model neural populations; the inhibitory units primarily 

receive local excitation and do not directly receive feedforward signals. The FR inhibitory 

neuronal masses are extreme cases, they only receive input from FR excitatory neurons, 

meaning they are largely noise driven. Inhibitory neural masses receive weak inputs that are 

lost in noisy time series of neural activity explaining the low correlation.

During the passive viewing condition, stimuli are presented but the top-down task signal is 

set to a low value, and thus stimuli are not retained in memory and there should be no 

increase in FR neural activity. Figure 6B, for the W-C and W-K models, illustrates the PV 

neural activity for the visual modules. The neural activity for the modules in V1 and V4 are 

similar in form to those from the DMS task, as expected. The IT and prefrontal neural 

activity are also shown in Figure 6B. In the W-C and W-K IT and PFC nodes there are only 

transient signals in these neural masses. The W-C and W-K models have similar prefrontal 

neural activity and produce the expected behavioral response: the working memory circuit 

did not engage and there were no high levels of neural activity in FR, unlike during the DMS 

task. For the PV task, we do not have electrophysiological data that inform us as to what the 

PFC neurons would do during a comparable task. Table 6 reports that average excitatory 

neural activity between the two models for V1, V4, IT, and FS have correlations above 0.8 

while the inhibitory average neural activity correlations are decreased. This is especially true 

in IT and FS because the inhibitory populations of these nodes receive connections from D1. 

D1, D2, and FR average excitatory and inhibitory average neural activity have lower 

correlations between the W-C and W-K models. These three units are influenced by the top 

down task parameter, and as well, should be noise dominated and thus have small 

correlations.

Next, we compare the simulated fMRI BOLD time series which is reported as fractional 

signal change as defined in equation 35 of the Appendix for the DMS task. (Note that 

because the W-C units have no cortical layers, the hemodynamic model used for both the W-

C and W-K models is the Heinzle et al. model (Heinzle et al., 2016) for a single layer). 

Visual inspection of Figure 7A shows similar time series for the two models as expected 

based on the neural activity. The correlations between homologous W-C and W-K DMS 

BOLD time series are listed in Table 7. The lowest correlation is 0.79, suggesting agreement 

between models. The highest correlation, in V1, is rounded up to 1.0; this is unsurprising as 

input to V1 in both models feature the same stimuli. Likewise, the passive viewing fMRI 

time series are similar as shown in Figure 7B. The correlations between the W-C and W-K 

units have a lowest correlation of 0.905, suggesting good agreement. The correlations reflect 

the fact that the hemodynamics smooths out fluctuations which produces the high 

correlations. The fMRI has the same general pattern as the neural activity correlations, 

although we can see that the effects of the hemodynamic model remove the small 

differences, particularly those in D1, D2, and FR.

Next consider the W-C and W-K models’ DMS task functional connectivity matrices. The 

measure of functional connectivity is the Pearson correlation between the BOLD time series 

for a pair of nodes, a common connectivity measure (Bokde et al., 2001; Chang and Glover, 

2010; Honey et al., 2009). The correlation matrices displayed in Figure 8 show the W-C and 

W-K models’ connectivity matrices for the delayed match to sample task and passive 
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viewing. For the DMS task the nodes in the correlation matrices divide into two groups. The 

first group of nodes is composed of V1, V4, IT, and FS. This group responds to stimulus 

driven feedforward signals and have lower activity in the absence of feedforward activity. 

There is a gradient of decreasing connectivity from V1 to V4, V4 to IT, and IT to FS. We 

designate this group as the stimulus response group. The second group, all of which are in 

the PFC, is composed of D1, D2 and FR, form a memory group. For the PV task, essentially 

all nodes are highly correlated with one another. This is due to the fact that in basically all 

the nodes during PV, the activity level is high when a stimulus is present and low when it is 

not, which leads to a large correlation coefficient between each pair of time series. Figure 8 

thus demonstrates that the patterns of functional connectivity between the different nodes are 

similar for the W-C and W-K models. Note that real fMRI experiments include contributions 

to the BOLD signal from nonspecific neurons, whereas we only considered the nodes in our 

model. If we expand the region of interest to include some non-specific nodes from TVB, 

then the magnitude of the correlations decreases, although the pattern of connectivity 

remains the same. We include an example of this in the DMS W-C and W-K correlation 

matrices in the Supplementary Figures (Fig. S1).

In summary, we showed that the W-C and the lumped W-K models exhibit the expected 

behavior, have comparable activity patterns, and similar functional connectivity measures. 

We quantified the similarity using correlation between homologous time series for both 

average neural activity and fMRI BOLD signal. These results provide partial validation for 

the way we have incorporated the W-K microcircuit into our LSNM. The original W-C 

model was consistent with a number of empirical findings (see Discussion); thus, the W-K 

model, inheriting many of the features of the W-C model, is supported by the same empirical 

findings. Next, we show the advantages of using a laminar model.

Laminar-Based LSNM

We study laminar activity in the W-K model by examining the differences between the DMS 

and PV conditions. We focus on laminar neural activity and laminar fMRI. Laminar neural 

activity indicates which neural masses are active and can be linked to the fMRI signal. 

Laminar fMRI could noninvasively probe the nature of interregional function connectivity. 

We present examples of a laminar connectivity analysis.

We begin by showing the laminar neural activity for the DMS task in Figure 9. We display 

the activity in 6 of the 10 modules (the other 4 modules are illustrated in the Supplementary 

Figures). To start with, the V1h and V4c modules show relatively similar patterns of neural 

activities with respect to timing following stimulus presentation. The simulated neural 

activity in IT is interesting because we observe increased inhibitory neural activity in the 

infragranular layers relative to the supragranular layers. From the timing and knowledge of 

the model we know that this should be related to activity in D1 which inhibits IT. During the 

S1 temporal epoch there is high inhibitory activity in D1 due to lateral connections from FS. 

The D1 excitatory neural activity shows increases during the delay period that mirrors the 

inhibitory activity observed in IT. During non-match trials, we observe an increase in newly 

activated inhibitory units, however these units do not cause sustained neural activity in D1 

and D2. During S2 on match trials there are activity increases in the inhibitory units that are 
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active during the delay. The excitatory activity in D1 follows the expected behavior for D1 

units: activity during the delay, S2, and the response epochs. The neural activity in D2 is 

quite simple with an increase during S1 and continuous activity until the units are reset at the 

end of the response epoch. The FR neural masses have the behavior of giving the correct 

responses with a number of units showing enhanced levels of activity. One interesting aspect 

of the FR pattern is that there is sustained low level neural activity that begins during S1, 

then dips before being sustained over the delay until the reset at the end of the response 

epoch. Based on the knowledge of model we would predict that the early low-level activity 

is related to feedforward inputs from FS which explains the dip between the time when FS 

excitatory activity returns to baseline and then D1 begins to show sustained excitatory 

activity which is fed to FR. On matching trials, the neural activity is raised above the delay 

period activity.

Now we consider the neural activity during the passive viewing condition which also is 

illustrated in Figure 9. The V1 and V4 prototypical regions look largely the same as in the 

DMS task. For PV, the IT neural activity does not show the delay period activity. This is 

bolstered by the observation that there is only transient neural activity in all layers of D1. 

Furthermore, both D2 and FR show the same type of transient neural activity. Seeing that all 

these areas have very similar patterns of neural activity indicates that we have a transient 

propagation of the visual inputs without sustained activity.

We next examine the laminar fMRI results in each region. Simulated data comparing the 

delayed match to sample and passive viewing tasks are shown in Figure 10A. The first thing 

we notice is that in every module, and for both conditions, the order of the simulated BOLD 

effect in the lamina is the same: largest for the supragranular layer, followed by layer 4 and 

smallest for the infragranular layer. This is consistent with the presence of a draining vein 

component in the Heinzle et al. (2016) hemodynamic model we are using, and is supported 

by the empirical data of Siero et al. (2011). However, we can eliminate the draining vein 

component from the hemodynamic model and see the uncontaminated neural effects on the 

laminar BOLD. This is displayed in Figure 10B. The second thing that can easily be seen is 

that the overall pattern of activity in each region is the same for the models with and without 

the presence of draining veins. However, it is also seen that in some regions there are 

differences in the relative strength of the neural laminar activities that cannot be observed 

due to the contamination generated by the draining veins. For example, the IT module shows 

a greater amount of activity during the delay period of the DMS task in the infragranular 

layer than in the other two laminae (Fig. 10B, left), but this increase is not observed when 

draining veins are present (Fig. 10A, left). As a result, we propose that the way to use our 

modeling framework is to compare the simulated BOLD activity obtained from the draining-

vein model with empirical data but interpret the neural basis of the neuroimaging data using 

the non-draining-vein model. In this way, the artifacts produced by the contaminating effects 

of the draining veins are eliminated, which means that the interpretation of the results is 

more reflective of the activity of the underlying neural substrate.

Thus, we turn to Fig. 10B to compare the simulated laminar fMRI data for the DMS task to 

the PV condition. The V1 laminar BOLD signal is quite similar for both DMS and PV. 

There is a minuscule change in supragranular and infragranular layers between tasks during 
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the delay period. This difference reflects the feedback from higher areas that are engaged in 

the DMS task. In the V4 delay period the task differences are easier to see; in the DMS task 

there is increased delay period activity. Note that the changes in neural activity between the 

DMS and PV tasks are small for any given module; however, because the BOLD signal is a 

proxy for input into a region, input differences may not be reflected in the output neural 

activity. The IT node shows a difference similar to what is observed in V4; during the DMS 

task delay period, there is increased activity relative to passive viewing. The changes in the 

BOLD signal differ most notably for the supragranular and infragranular layers.

The analysis for the prefrontal FS population is similar to IT. During the DMS task delay 

period, the supragranular and infragranular BOLD signal is increased relative to the PV task. 

We can attribute the FS delay period increases to elevated inhibitory neural activity in those 

layers. In region D1, the DMS and PV assume quite different shapes, though the order of 

signal change, supragranular, layer 4, and infragranular, are the same for both DMS and PV 

tasks. The DMS task BOLD signal is increased across the delay period while the PV task 

BOLD signal is stimulus driven. The DMS neural activity shows a very brief fall in 

inhibitory neural activity during and after the first stimulus, but we do not see this feature in 

the BOLD signal. The BOLD signal in D2 look similar to D1 though with some important 

differences. First, in D1 and D2 there is delay period activity. Second, in D2 during the PV 

task we note an alteration in laminae order of signal change; in D1 the supragranular and 

infragranular layers show the greatest signal change when stimuli are present whereas the 

layer 4 signal is larger during the delay and intertrial intervals suggesting this is feedback 

driven activity. During PV in region D2, the signal change is similar for most layers when 

stimuli are present. When stimuli are absent, the layer 4 signal is slightly lower suggesting 

the absence of feedforward input (note: these changes are quite subtle; see Fig. S3 in the 

Supplementary Figures). D1 shows the opposite pattern - layer 4 is lower than supragranular 

and infragranular when stimuli are present and higher otherwise - because region D1 

receives only feedback and lateral connections. During the DMS task, activity in the 

response region, FR, is similar to D1 and D2; however, when a second stimulus arrives there 

is an increase in the signal change. In the DMS task the signal change increases in layer 4, 

supragranular, and infragranular layers, but the increases seem to reflect the temporal order 

of processing in the microcircuit (layer 4 changes first, followed by the supragranular layer, 

then the infragranular layer).

Laminar connectivity may be one of the great promises of laminar high-resolution fMRI. 

Here we present the connectivity results when we have simulated all regions at laminar 

resolution. The connectivity matrices for the DMS and PV task are shown in Figure 11. As 

with the signal change graphs displayed in Figure 10, Figure 11A shows the case in which 

the hemodynamic model includes a draining vein component; Figure 11B corresponds to the 

case where the draining veins are not included; the difference between the two is shown in 

Fig. 11C. Unlike the situation for the amplitude of signal changes, the functional 

connectivity matrices are not very different. The largest difference is between IT, layer 4, 

and layers in D1 and D2 where the draining vein model does lead to slightly higher 

functional connectivity between all regions than does the non-draining vein model. This is 

because IT is the node which has both strong feedforward and feedback connections with 
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other nodes, and the draining-vein component of the hemodynamic model acts to smear out 

the BOLD signal across the layers. This makes the layers in IT less distinct.

The PV functional connectivity matrix (Figure 11B, right) which shows, like the low-

resolution version in Figure 8D, that all regional pairs have a high correlation, although there 

are small gradients of decreasing correlation between regions as they become farther apart in 

the model. From the neural activity and fMRI signal change, the presence of large 

interregional correlations is not surprising, representing as it does the relative high level of 

activity when a stimulus is present and the low level of activity when it is not present.

The DMS task functional connectivity matrix (Figure 11B, left) splits into a stimulus driven 

block and a memory block. The stimulus driven block, composed of regions V1, V4, IT and 

FS, shows large increases when stimuli are present and lower levels of activity during the 

delay periods. These interregional connections are primarily feedforward, though there is 

feedback as also seen in the analysis of the BOLD time series. The memory driven block 

comprising D1, D2, and FR is characterized by time series having increased delay period 

activity. In Figure 12A we examine the connectivity for the laminae of V4, IT and D2 with 

the layers in all other nodes for the DMS task for both the draining (top panels) and non-

draining vein BOLD models (bottom panels). Detailed results for the other nodes for the 

non-draining vein model are in the Supplementary Figures. Figure 12B presents the same 

thing for the PV condition.

In the bottom panels of Figure 12A (non-draining vein model), we see that V4 has a 

feedforward connectivity pattern with from V1: V4 layer 4 has the highest correlation with 

V1 laminae. The correlations between V4 and IT and FS do not show a clear pattern, most 

likely reflecting the presence of strong feedforward and feedback connections. The memory 

block nodes display feedback relations with V4, i.e., greater correlation with V4’s 

supragranular and infragranular layers. Figure 12A shows that IT connectivity is similar to 

V4; feedforward functional connections from V1 and V4, the connection with FS is 

ambiguous, and feedback connections from the memory block. D2 shows feedforward 

connectivity patterns with V1, V4, IT and FS, and feedback or lateral connections with D1 

(bottom panel). However, D2 has feedforward connectivity relation with FR; this is because 

both D2 and FR receive feedforward input from FS and D1 (see Figure 3 and Table 4). The 

top panels of Figure 12A (draining vein model) show similar results, but the differences 

between lamina are attenuated compared to the non-draining vein model. Figure 12B 

displays the corresponding results for the passive viewing (PV) condition. The small 

differences between lamina seen for the draining vein model reflect the contaminating effect 

of the draining veins. On the basis of these simulated results, we suggest two heuristic rules 

that may be useful for interpreting experimental laminar fMRI connectivity data. First, if 

layer 4 in region B has its greatest correlation with region A, that is evidence of a 

feedforward functional connection from region A to region B. Second, if the supragranular 

and infragranular layers of region B show the highest correlations with region A, this 

suggests that the functional connections from region A to region B are either feedback or 

lateral connections.
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Discussion

In the last few years increasing attention has been paid to examining the functional activity 

of neurons in the different neocortical lamina. Importantly, recent human fMRI studies have 

begun to provide layer-specific signals, thus generating the type of neuroimaging data that 

will permit one to investigate human interlaminar functional connectivity between different 

cortical brain regions. In this paper, we upgraded a large-scale multiregion neural model of 

the ventral visual pathway that now allows us to simulate layer-specific neural and fMRI 

data during the performance of visual object processing tasks (a delayed match-to-sample 

task and passive viewing). The original model (Horwitz and Tagamets, 1999; Tagamets and 

Horwitz, 1998; Ulloa and Horwitz, 2016) employed Wilson-Cowan units (Wilson and 

Cowan, 1972) as the microcircuit representing a cortical column. Here, the replaced the W-C 

units with a microcircuit developed by Wang and Knosche (2013) that enables us to simulate 

infragranular, layer 4 and supragranular neural activity. To simulate laminar fMRI, we 

replaced the hemodynamic response function in our LSNM (Stephan et al., 2007) with a 

modified version of a hemodynamic model by Heinzle et al. (2016) that incorporates the 

laminar effects of venous blood draining back to the cortical surface perpendicular to the 

laminar cortical structure.

We partially validated the upgraded LSNM by showing that the more complex model can be 

reduced to the simpler model. The importance of this is that findings related to the previous 

version of the model, specifically its agreement with empirical data (e.g., monkey 

electrophysiological data (Funahashi et al., 1990); human PET cerebral blood flow data 

(Haxby et al., 1995), are inherited by the upgraded model. The simulated data generated by 

the “lumped” W-K LSNM model by-and-large were comparable to simulated data generated 

by the original W-C LSNM model. Note that the W-C version of our LSNM has itself been 

updated to enable it to perform multiple short-term memory tasks (Liu et al., 2017), 

including DMS with distractor stimuli, and a task where multiple items are retained in short-

term memory during a delay period [Sternberg task (Sternberg, 1966)]. Simulated neural 

activities in IT and PFC matched experimental findings from primate electrophysiological 

data (e.g., Miller et al., 1996) and simulated BOLD activity in modules representing medial 

temporal cortex and PFC was consistent with empirical findings in humans (e.g., Schon et 

al., 2009; Druzgal and D’Esposito, 2003).

We also demonstrated that laminar fMRI has advantages over traditional fMRI in terms of 

analysis of activity and functional connectivity. The laminar model provides a means of 

exploring functional and effective connectivity in terms of cortical layers of origin and 

destination, providing face validity for determining how well the interpretation of fMRI data 

reflects the underlying neural substrate. That is, in the model we know every structural 

connection and we know what each neural element is doing at each time point in a task. 

Thus, we can determine if a conclusion based on an fMRI evaluation of connectivity is 

supported by the underlying neural connectivity (e.g., see Kim and Horwitz (2009)). We 

used a variant of the Felleman and Van Essen laminar connectivity scheme (Felleman and 

Van Essen, 1991) as a first approximation. This approach is fine for the sensory pathways, 

but the prefrontal areas are less clear as to what human interregional connectivity should 

look like. Knowing this laminar structure can provide insight into the nature (feedforward, 
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feedback, lateral, etc.) of these connections, but simulated data need to be cautiously 

interpreted until there is experimental validation. In essence, such simulated data can be 

thought of as predictions that test the hypotheses used to construct the LSNM.

Extensive research, both experimental (Binzegger et al., 2004; Douglas and Martin, 2010) 

and computational (Heinzle et al., 2007, 2010; Bastos et al., 2012, 2015), has resulted in the 

formulation of several microcircuits that can summarize the complex neural interactions 

taking place in a cortical column. Anatomically, Binzegger et al. (2004) produced a 

quantitative microcircuit corresponding to cat primary visual cortex. Computationally, 

several microcircuit models have been generated, including one by Heinzle and colleagues 

(2007, 2010) that represents the frontal eye fields. Haeusler and Maass (2007) constructed a 

laminar microcircuit consisting of spiking neurons that they used to investigate how well the 

accumulation and fusion of information contained in generic spike inputs into layer 4 and 

layers 2/3 is accomplished and how well this information can be accessed by projection 

neurons in layers 2/3 and layer 5. In terms of interregional connectivity, Bastos et al. (2012) 

employed a multilayer microcircuit that could be related to the connectivity implied by the 

notion of predictive coding (i.e., the hypothesis that the brain uses generative models to 

make inferences about its sensory inputs). This microcircuit was then used as a neural mass 

model for a dynamic causal modeling (Friston et al., 2012) analysis of electrocorticographic 

data that examines functional spectral asymmetries between forward and backward 

connections between V1 and V4 in monkey visual cortex.

The Wang-Knosche (2013) computational microcircuit that we utilized was designed to 

permit activity dependent plasticity of the excitatory synaptic couplings, and to generate 

realistic interlaminar dynamics. They demonstrated its effectiveness by simulating 

EEG/MEG data (i.e., the N100m auditory evoked response) corresponding to auditory 

habituation.

Others have used the Jansen-Rit model (Jansen and Rit, 1995) as a laminar microcircuit 

(David et al., 2006), employing the connectivity patterns of Felleman and Van Essen (1991). 

However, the Jansen-Rit model is not equivalent to the W-K model, and those researchers 

using the former generally do not evaluate laminar-based activities (e.g., (David et al., 

2006)). Moreover, due to model differences, inferences made about feedforward and 

feedback connectivity may not be the same for the two models.

The W-K microcircuit uses the location of the neural masses to make specific connections 

explicit. Assigning synaptic activities to particular layers provides the ability to simulate 

laminar fMRI. For example, our simulation of an event-related fMRI DMS task enabled us 

to predict that in a laminar analysis of the inferior temporal lobe during the task, a larger 

BOLD signal would originate from the supragranular and infragranular layers, relative to 

layer 4, during the delay period, but IT layer 4 will show a larger fractional signal change 

relative to other two layers during the presentation of stimuli.

At present, experimental acquisition of laminar fMRI activity can be performed over a 

limited region of interest, although full brain coverage may become available in the future 

(Ugurbil, 2012) as the ability to acquire multi-slice fMRI data quickly improves (Huber et 
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al., in press). Moreover, it has been demonstrated that it is also possible to improve 

specificity of signal to gray matter without contamination from large draining veins (Huber 

et al., 2016). Thus, it is likely that high resolution fMRI will soon allow for laminar-based 

functional connectivity analyses of the type we have simulated.

Likewise, recording laminar electrophysiological data from multiple regions has rarely been 

performed, and certainly, as far as we know, none has been reported using the specific DMS 

paradigm we employed. There is one study by Opris et al. (2015) that did utilize a complex 

DMS task and recorded laminar data with biomorphic multielectrode arrays from prefrontal 

cortex of nonhuman primates. Although primarily a methodological study, these authors did 

find evidence for interactions between simultaneously recorded lamina and between 

simultaneously recorded columns.

Although laminar-based fMRI has primarily been applied to sensory and motor tasks, it has 

the potential for better understanding the neural basis of high-level cognitive functions. A 

recent article by Lawrence and colleagues (2017) reviews a number of important cognitive 

questions that are addressed by employing laminar fMRI. Many of these studies will depend 

on using signals in different lamina to differentiate bottom-up from top-down processing. 

For example, the role of attention in sensory processing was investigated by De Martino et 

al. (2015) who showed that the effect of attention resulted in sharpened tuning curves in 

superficial layers of primary auditory cortex; for the visual system, see Muckli et al. (2015) 

and Kok et al. (2016). Also discussed were future studies that could examine multisensory 

processing and even the neural basis of consciousness. Versions of our LSNM could be used 

to generate simulated data that could address some of these topics (except for 

consciousness). Indeed, we currently have a W-C model of the auditory object processing 

pathway (Husain et al., 2004), and work in our laboratory is underway to combine the visual 

and auditory models into TVB framework so that multisensory processing can be 

investigated. Replacing the W-C microcircuits with W-K laminar microcircuits in these 

models is also underway.

Even though they attempt to incorporate laminar interactions, both the W-K neural model 

and the Heinzle et a. hemodynamic model obviously are quite simplified models that 

exclude many aspects of both the neural and vascular architectures. One important use for 

our LSNM framework will be to test other neural microcircuits and hemodynamic models, 

since we have shown in this paper how to incorporate an alternative neural microcircuit and 

an alternative hemodynamic model and generate simulated data that can be compared to 

empirical data. Indeed, our framework can be utilized to systematically compare several 

neural and hemodynamic models against one another and determine which ones best 

correspond to experimental data.

There are several caveats that should be noted. First, as with any modeling effort, a number 

of simplifications were made for computational reasons. One important simplification was 

that we assumed the hemodynamic model was the same for all layers and all brain regions. 

However, by using a modification of the Heinzle et al. (2016) hemodynamic model that 

incorporates a draining vein component, we were able to deal with the fact that venous blood 

draining back to the cortical surface could lead to modifications of the observed fMRI 
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responses from the different layers. Nonetheless, the complex vascular network in the human 

brain adds a set of difficulties that future research will need to address, and this is 

particularly true for both experimental and computational modeling efforts related to ultra-

high field fMRI (Gagnon et al., 2015; Goense et al., 2016; Markuerkiaga et al., 2016; see 

Uludag and Blinder (in press) for a recent review). One key area under current investigation 

focuses on how well models of BOLD activity can represent the effects of response 

transients. Havlicek and colleagues (2015, 2017) showed that neuronal activity (via cerebral 

blood flow) and dynamic uncoupling between cerebral blood flow and cerebral blood 

volume are the sources of BOLD response transients such as initial overshoot and post-

stimulus undershoot. Another target of current research examines the role that arterioles may 

play in the hemodynamic model that converts neural ativity into an fMRI signal (e.g., Tian et 

al., 2010; Gao et al., 2015). This effort has led to the development of hemodyanmic models 

that can account for the spatial spread of the hemodynamic response to neural activity 

(Puckett et al., 2016) and to arterial impulse models of the BOLD response (Aquino et al., 

2014; Kim et al., 2016). It also is the case that techniques for laminar fMRI that employ 

non-BOLD contrast are under development [for a review, see Huber et al. (in press)]. 

Although some of these vascular complexities are likely to become important for future 

modeling efforts, entertaining them now is beyond the scope of the current effort.

Note that one advantage of our modeling framework is that our model consists of three 

submodels: a structural model specifying the links between network nodes; a neural model 

for each node; and a forward model specifying how the neural activity is converted into a 

neuroimaging signal. Each of these submodels can be upgraded when new experimental data 

become available, and/or can be replaced if a more inclusive submodel is wanted. In the 

present paper, we upgraded both the neural model and the forward model from that 

employed by Ulloa and Horwitz (2016).

A second caveat concerns how neural noise was treated in the LSNM. Noise from The 

Virtual Brain (TVB) was injected equally into all embedded LSNM neural masses, which 

was a simplification due to the fact that TVB nodes are modeled as Wilson-Cowan units, 

which lack laminar structure. Other simplifying assumptions are possible, such as assuming 

TVB elements connect with only excitatory neural masses of the W-K units (with randomly 

vary strengths). We note that there are three sources of noise that will affect the final fMRI 

signal in an individual subject: (1) neural noise (which is included in our model); non-neural 

biologic noise (e.g., artifacts arising from breathing); machine noise due to the scanner. The 

last of these depends on the sequence used and the specific scanner. Since we are not 

comparing our data to experimental data in this paper (no one has performed laminar fMRI 

for a DMS task), adding these latter two noise sources is beyond the scope of the current 

paper.

Our treatment of the PFC also requires a comment. There are four submodules that comprise 

this region (FS, D1, D2, FR), and for computational convenience we assumed they were in 

separate anatomical areas of PFC. This is unlikely to be the case. However, future 

experiments are needed to clarify the locations of distinct PFC neural populations. One thing 

we did try was to see if we could place some of the four PFC units in different lamina, but 

we were unable with the W-K model to reproduce the appropriate activity patterns.

Corbitt et al. Page 21

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, we have produced a more elaborate large-scale neural model of the ventral 

visual processing pathway that generates neural data that represents supragranular, layer 4 

and infragranular activity during a delayed match-to-sample task and during passive 

viewing. The model shows the expected performance on the DMS task. The model also 

enables one to simulate multi-layer fMRI data. We used the model to determine laminar-

based fMRI patterns of functional connectivity that can be compared to experimental data 

once increased brain coverage of laminar data is available.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Equations of Wang-Knosche Neural Masses

Here we provide the explicit realization of equation 2 in the main body of the text for the 

Wang-Knosche model (Wang and Knosche, 2013). The activity of the Wang-Knosche model 

is described by the following set of five differential equations, each governing the activity of 

a neural mass. The five neural masses in the WK model simulate layer 4 excitatory stellate, 

supragranular (layer 2/3) pyramidal and inhibitory, and infragranular (deep, layer 5/6) 

pyramidal and inhibitory neural populations. We denote these as Ey,i, SPy,i, SIy,i, DPy,i, and 

DIy,i. The subscripts specify the indices of the unit within a given functional population and 

the y defines the specific module: V1h, V1v, V4c, V4h, V4v, IT, FS, D1, D2, and FR. The 

subscript i denotes the specific unit within the functional population, ranging from 1 to 81. E 

is excitatory, I is for inhibitory, and P is for pyramidal activity. Finally, let M and N represent 

the specific neural mass within the population: E, DI, DP, SI, and SP. The S and D prefixes 

before the P and I stand for superficial (supragranular) and deep (infragranular) respectively. 

We use wMN to denote the local connection weights within a W-K microcircuit. Long range 

inter-node connections are included in the term in Ny,i(t). Intrinsic noise and inputs from The 

Virtual Brain are included in the noise term QN(t). The Virtual Brain (TVB) Wilson-Cowan 

units connect to all neural masses. The LSNM model nodes are embedded within The 

Virtual Brain and receive inputs based on the Hagmann et al. (2008) connectome. The 

equation corresponding to the activity of the layer 4 excitatory stellate unit is:

d Ey, i(t)
dt + δEy, i(t) = ΔS(θE, i; KE, ϕE) . (1)

The corresponding input is:
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θE, i = wDP, EDPy, i(t) + inEy, i(t) + QE(t) . (2)

The three components of equation 2 are the local inputs, inter-node connections, and 

combined noise and inputs from TVB. The equation corresponding to the activity of the 

supragranular pyramidal cell is:

d SPy, i(t)
dt + δ sPy, i(t) = ΔS θSP, i; KP, ϕP , (3)

with

θSP, i = wE, SPEy, i(t) + wSI, SPSIy, i(t) + wDP, SPDPy, i(t) + inSPy, i(t) + QSP(t) . (4)

The first three components of equation 4 are local connections, followed by internodal 

connections, and noise and inputs from TVB. The equation for the supragranular inhibitory 

cell’s activity is:

d SIy, i(t)
dt + δ sIx, i(t) = ΔS θSI, i; KI, ϕI . (5)

with

θSI, i = wSP, SISPy, i(t) + inSIy, i(t) + QSI(t) . (6)

This input is similar to equation 2. Likewise, the deep (infragranular) pyramidal cell’s 

activity equation is:

d DPy, i(t)
dt + δ DPx, i(t) = ΔS θDP, i; KP, ϕP , (7)

with

θDP, i = wSP, DPSPy, i(t) + wDI, DPDIy, i(t) + wE, DPEy, i(t) + inDPy, i + QDP(t) . (8)

This term is like equation 4. Finally, the deep (infragranular) inhibitory cell’s activity is 

specified by the following equation:
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d DIy, i(t)
dt + δ DIy, i(t) = ΔS θDI, i; KI, ϕI , (9)

with

θDI, i = wDP, DIDPy, i(t) + inDIy, i(t) + QDI(t) . (10)

The terms in equation 10 are isomorphic to those in equation 6. The solution to the 

homogeneous differential equation is a simple exponential decay; however, the decay is 

driven via the sigmoidal function on the right-hand side of the differential equations.

Lumping Wang-Knosche Neural Masses

Formulae for Computing Neural Activity:

To compute the lumped excitatory activity for the W-K model for the ith unit, i ranges from 1 

to 81, in module y:

Ey, i
WK(t) =

Ey, i(t) + SPy, i(t) + DPy, i(t)
3 . (11)

Formula for computing lumped inhibitory neural activity for the W-K model for the ith unit 

in module y:

Iy, i
WK(t) =

SIy, i(t) + DIy, i(t)
2 . (12)

These were used to generate the lumped neural activity shown in Figure 6.

Formula for computing average excitatory neural activity for W-C module y:

Ey
WC(t) =

∑i Ey, i(t)
81 . (13)

Formula for computing average inhibitory neural activity for W-C module y:

I y
WC(t) =

∑i Iy, i(t)
81 . (14)

Formula for computing average excitatory neural activity for W-K module y:
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Ey
WK(t) =

∑i Ey, i(t) + SPy, i(t) + DPy, i(t)
3 × 81 . (15)

Formula for computing average inhibitory neural activity for W-K module y:

I y
WK =

∑i SIy, i + DIy, i
2 × 81 . (16)

These average neural activities were used to compute the correlations in Table 6.

Let Y be the set of modules within node Y; V1 = {V1h, V1v} and V4 = {V4c, V4h, V4v}. 

We denote values that represent the integrated synaptic activity (ISA) of a neural mass with 

a bold font to distinguish it from neural activity. Formula for ISA of WC model in node y:

ISAY
WC(t) = ∑y ∈ Y ∑i Ey, i(t) + Iy, i(t) . (17)

Formula for lumped ISA of WK model:

ISAY
WK(t) = ∑y ∈ Y ∑i Ey, i(t) + SPy, i(t) + DPy, i(t) + SIy, i(t) + DIy, i(t) . (18)

The integrated synaptic activity is used to simulate the BOLD fMRI signal. Similar 

calculations are used to find the laminar integrated synaptic activity.

Hemodynamic Model Equations

Here, we write out the equations for the hemodynamic model. The hemodynamic model we 

use follows closely the model of Heinzle et al. (2016), except we assume three layers of 

cortex instead of the two layers that they used. Importantly, this model takes into account the 

effect of draining veins on the hemodynamic response in each layer.

In the cerebrovascular system arteries enter the cortical surface and descend through the 

cortical layers. Blood moves out of the arteries into the capillaries supplying neurons with 

oxygen. The deoxygenated blood returns to the surface via ascending venules that feed into 

larger draining veins. Neural activity decreases deoxyhemoglobin concentration due to 

increased blood flow and blood volume. Deoxygenated blood from deeper layers influence 

more superficial layers’ blood volume and deoxyhemoglobin concentration. The draining 

vein model introduces auxiliary terms for delayed blood volume and delayed 

deoxyhemoglobin concentration for both infragranular and layer 4; these couple the lower 

layer to the layer above it.
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The subscripts D (deep/infragranular/layer 5/6), 4 (layer 4), and S (supragranular/layer 2/3) 

denote the three layers. The equations for all layers are listed in the form used to numerically 

integrate them. The neural activity for a layer is denoted by y(t). Each layer has a set of four 

equations for variables denoted s, f, v, and q: the vasodilatory signal, blood flow, blood 

volume, and deoxyhemoglobin concentration, respectively. Infragranular and layer 4 both 

have two additional equations that couple the layers: the delayed blood volume and delayed 

deoxyhemoglobin concentration (v* and q*). We begin with the infragranular layer (5/6). 

The second order equation for blood flow can be written as a system of first order equations:

d f D
dt = sD, (19)

dsD
dt = εyD(t) − 1

τs
sD − 1

τ f
( f D − 1) . (20)

The blood volume equation is:

τ0
dvD
dt = f D − vD

1/α . (21)

The deoxyhemoglobin concentration equation is:

τ0
dqD
dt = f D

1 − (1 − E0)
1/ f D

E0
− vD

1/αqD
vD

. (22)

The infragranular layer’s hemodynamics are unaffected by draining veins, but changes in 

blood volume and deoxyhemoglobin concentration alter the corresponding values in more 

superficial layers requiring two auxiliary equations. First is the delayed blood volume 

component, vD
∗ . This represents the blood volume effects of the infragranular layer on layer 

4:

τd
dvD

∗

dt = − vD
∗ + (vD − 1) . (23)

The second equation, with a similar interpretation to the delayed blood volume, is the 

delayed deoxyhemoglobin concentration, qD
∗ :

Corbitt et al. Page 26

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



τd
dqD

∗

dt = − qD
∗ + (qD − 1) . (24)

The layer 4 flow equations have the same form as the infragranular flow equations shown 

above:

d f 4
dt = s4, (25)

ds4
dt = εy4(t) − 1

τs
s4 − 1

τ f
( f 4 − 1) . (26)

However, the volume equation is modified by adding the delayed blood volume from the 

infragranular layer:

τ0
dv4
dt = f 4 − v4

1/α + λdvD
∗ . (27)

Likewise, the deoxyhemoglobin concentration is modified with the delayed 

deoxyhemoglobin concentration from the infragranular layer:

τ0
dq4
dt = f 4

1 − (1 − E0)
1/ f 4

E0
− v4

1/αq4
v4

+ λdqD
∗ . (28)

Delayed volume and delayed deoxyhemoglobin concentration for layer 4 are:

τd
dv4

∗

dt = − v4
∗ + (v4 − 1), (29)

τd
dq4

∗

dt = − q4
∗ + (q4 − 1) . (30)

Supragranular blood flow equations are:
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d f s
dt = SS, (31)

dSs
dt = εys(t) − 1

τs
Ss − 1

τ f
( f s − 1) . (32)

The blood volume equation for the supragranular layer is:

τ0
dvs
dt = f s − vs

1/α + λdv4
∗ . (33)

The supragranular deoxyhemoglobin concentration is given by:

τ0
dqS
dt = f S

1 − (1 − E0)
1/ f s

E0
− vS

1/α qs
vS

+ λdq4
∗ . (34)

Based on the empirical findings of the Heinzle et al. (2016) model a uniform set of 

hemodynamic parameters are employed, i.e. hemodynamic parameters are the same for all 

layers. We specify the vasodilatory signal decay, τs, is 1.54 seconds (Heinzle et al., 2016). 

The time flow-dependent feedback regulation, τf, is 2.44 seconds (Buxton et al. 1998). 

Grubb’s vessel stiffness exponent, α, is 0.32 (Heinzle et al., 2016). The hemodynamic transit 

time, τ0, is 2.0 seconds; reported as a range of values from 1 to 5 seconds (Havlicek et al., 

2015). The resting blood volume fraction, E0, is 0.34 (Heinzle et al., 2016). The term ε is the 

ability of the integrated synaptic activity to induce a change in blood flow (Friston et al., 

2000). The coupling strength between layers, λd, is 0.5. We reduced the coupling strength 

by a half so that net coupling between layers added up to unity as in Heinzle et al. (2016). 

We set τd, the interlayer transit delay, to 0.5. Since the value used by Heinzle et al. was 1, we 

divided this by half since we have an intermediate layer. Further experimental evidence may 

provide improved estimates for λd and τd. The draining veins can be removed from the 

model by setting λd equal to zero. This allows us to calculate the fMRI signal without 

contamination from draining veins, and thus closer to reflecting the neural activity. The 

lumped BOLD signal uses the Heinzle et al. model reduced to a single layer; this would be 

computed using equation 19 to 22 using the appropriate y(t) values calculated using equation 

18.

The BOLD forward model takes the blood volume and deoxyhemoglobin concentration and 

converts it into the BOLD time series. The fractional change in the BOLD signal for each 

layer was computed with the following equation:
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ΔS
S ≈ V0 k1(1 − q) + k2 1 − q

v + k3(1 − v) . (35)

This equation was originally introduced by Buxton et al. (1998); for a more detailed 

discussion, see Stephan et al. (2007). Here the q’s and v’s are replaced by the appropriate 

layer values to produce the layer specific BOLD signal. We take V0, the resting blood 

volume fraction, to be 0.02 (Obata et al., 2004). The values of k1, k2, and k3, are given by 

the following equations:

k1 = 4 . 3ϑ0E0TE, (36)

k2 = εr0E0TE, (37)

and

k3 = 1 − ε . (38)

We used the following values to compute k1: ϑ0 was set to 188.1 (Havlicek et al., 2015), E0 

was as above 0.34, and we assumed a TE of 25 ms (Heinzle et al., 2016) and a TR of 2 

seconds. To compute k2 we took ε, the ratio of intra- to extravascular BOLD signal, to be 

0.026 and an r0, the slope the intravascular relaxation rate, of 340 as suggested by Heinzle et 

al. (2016). Computation of k3 is straightforward. We computed the fractional change in the 

BOLD signal; no additional transformations were applied.
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Figure 1. Cortical Microcircuit Models
Shown in order of increasing complexity are three neural mass models representing a 

cortical microcircuit. Excitatory stellate neural masses are purple, pyramidal masses green, 

and inhibitory masses are red. The excitatory Wilson-Cowan unit is a brown color to reflect 

that it is a combination of stellate and pyramidal cells. The Wang-Knosche microcircuit can 

be divided into three layers: the supragranular layer composed of the top pyramidal and 

inhibitory neural masses, layer 4 composed of the excitatory stellate neural mass, and the 

infragranular (deep) layer composed of the bottom pyramidal and inhibitory neural masses. 
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The Wang-Knosche model shows the connections used in the LSNM. Connection weights 

for the Wilson-Cowan microcircuit listed in Table 2A and the Wang-Knosche microcircuit 

are detailed in Table 2B. Black arrows indicate excitatory connections, red arrows denote 

inhibitory connections.
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Figure 2. 
This shows the modified version of the Felleman and Van Essen interregional connections 

between cortical layers used in our model. See Table 4 for the specific connections between 

all regions of our model.
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Figure 3. Large-Scale Neural Model
This figure shows the inter-nodal connections for the LSNM. The call out box shows the 

nine-by-nine array of Wang-Knosche microcircuits used to represent each module. 

Inhibitory connections are excitatory connections onto inhibitory interneurons. Connection 

details are reported in Table 4.
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Figure 4. 
This figure displays a more detailed view of the early visual areas. Inside each box is the 

receptive field forward connection, e.g. LGN to V1, V1 to V4. Feedforward connections 

from V1 to V4 have the receptive fields shown in the V4h,v boxes. Weaker off-center bands 

in V1h,v allow a combination of features in V4c to detect corner elements.
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Figure 5. 
This shows the timeline during a single trial. During both Delayed Match to Sample (DMS) 

and Passive Viewing (PV) trials, some units in the LGN module are raised to a high value 

during S1 and S2. The time between the end of S2 and before the reset of the working 

memory circuit is when the model responds as to whether a match has occurred. The middle 

and bottom traces show the time course of the ATTS module that is activated during Delayed 

Match to Sample (DMS) trials but is kept at a low value during Passive Viewing (PV) trials. 

Multiple trials are concatenated to form an experiment run. The stimuli used in our 

simulations are shown in the top panel (a “T” and a “+”).
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Figure 6. 
A. Comparison of DMS neural activity of the W-C (left) to W-K (right) models. Note the 

neural activity is appropriate for the regions FS, D1, D2, and FR as related to the Funahashi 

et al. (1989) findings. B. Comparison of PV neural activity (task parameter set to a low 

value) of the W-C (left) to W-K (right) models. Gray areas represent when the stimulus is 

present (the specific stimulus presented is indicated above the panels). There are four trials: 

match (TT), non-match (T+), match (++), and non-match (+T). Note the difference in 

activity of D1, D2, and FR relative to the neural activity seen in these regions in A. Red 
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denotes the activity of the excitatory neurons, blue corresponds to the inhibitory neurons. 

The x-axis is time in seconds, the y-axis is activity level (arbitrary units).
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Figure 7. 
fMRI fractional signal change comparing W-C (left) to W-K (right) for (A) DMS task and 

(B) passive viewing. Gray areas represent when a stimulus is present. There are four trials: 

match (TT), non-match (T+), match (++), and non-match (+T). Red corresponds to V1, blue 

to V4 and green to IT in the top and third rows; in the second and fourth rows, violet 

corresponds to D1, yellow to D2, cyan to FS and lime to FR. Note that if a color does not 
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appear, it is because it has been overwritten by one of the others. The x-axis is time (in 

seconds), and the y-axis is activity level (fractional signal change relative to baseline).
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Figure 8. 
Comparison of fMRI BOLD functional connectivity for W-C (left) and W-K (right) models; 

DMS task (top) and PV (bottom). These are the correlation matrices for each regional time 

series with the other regional time series. Note how the DMS connectivity matrices can be 

split into two blocks: a stimulus response block (upper left) and a working memory block 

(lower right). The PV matrices show that all regions are responding to the presence or 

absence of a stimulus. The color bar indicates the value of the correlation coefficient.
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Figure 9. 
Simulated laminar neural activity for the V1h, V4c, and IT modules (top), and the D1, D2, 

and FR modules (bottom): DMS task (left) and PV (right). The x-axis is time in seconds, the 

y-axis is activity level (arbitrary units). Red corresponds to inhibitory neurons, blue to 

excitatory stellate neurons, and black to pyramidal neurons. The four trials are the same as in 

Figure 6.
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Figure 10. 
(A) Comparison of laminar fMRI signals for DMS (left) and PV (right) using the Heinzle et 

al. model with draining veins. (B) Comparison of laminar fMRI signals for DMS and PV 

using the Heinzle et al. model with no draining veins (i.e. interlaminar coupling constants 

are set to zero in the hemodynamic model). Blue corresponds to supragranular, red to layer 4 

and green to infragranular layers. Y-axis is activity level (fractional signal change relative to 

baseline). See Figure 7 for other details
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Figure 11. 
Laminar functional connectivity (fMRI timeseries correlations) for the DMS task (left) and 

PV (right). These show similar patterns to the reduced WK connectivity matrices on the 

right-hand side of Figure 8. Here we see the same divisions in the DMS task matrix. (A) 

Hemodynamic model included draining vein component; (B) hemodynamic model excluded 

draining vein component; (C) Non-draining vein minus draining vein models. The color bar 

indicates the value of the correlation coefficient.
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Figure 12. 
(A) These bar graphs display simulated fMRI functional connectivity (i.e., correlation value) 

in specific regions during the DMS task for the draining (top panels) and non-draining vein 

hemodynamic model (bottom panels); this is the full laminar analysis of the connectivity for 

target regions V4, IT, and D2. As seen, the presence of draining veins attenuates the 

strengths of the neural functional connectivities. Feedforward connections from a particular 

region are inferred as showing the largest connectivity with the target region’s layer 4. 

Feedback and lateral connections are inferred when the region shows its greatest 
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connectivity with the target region’s supragranular and infragranular layers. (B) Laminar 

functional connectivity for the PV condition for the draining (top panels) and non-draining 

vein hemodynamic model (bottom panels). White bars correspond to the region’s (denoted 

on the y-axis) supragranular layer, black bars to layer 4, and gray bars to infragranular layer. 

The y-axis goes from 0 to 1.
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Table 1

List of modules and nodes of the LSNM and their function.

Node Module Function

LGN LGN contains the visual stimulus; elements are either in a high or low state

V1 V1h module activated by horizontal lines

V1 V1v module activated by vertical lines

V4 V4h module activated by horizontal lines; larger spatial receptive field than V1v

V4 V4v module activated by vertical lines; larger spatial receptive field than V1h

V4 V4c module activated by combinations of horizontal and vertical lines

IT IT module that builds compact representation with input from V4 modules

FS FS module activated when a stimulus is present

D1 D1 module activated once first stimulus is removed; elements of working memory circuit

D2 D2 module activated when stimuli is present and throughout the trial; element of working memory circuit

FR FR module that shows high activity when stimuli match

ATTS ATTS top - down region that projects the task/attention signal to node D2
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Table 2

A. Wilson-Cowan microcircuit connection weights. B. Wang-Knosche microcircuit connection weights. EE, 

EI, IE are excitatory to excitatory, excitatory to inhibitory, and inhibitory to excitatory connections, 

respectively. DP-deep pyramidal; E – excitatory stellate; SP – superficial pyramidal; D(S)I – deep (superficial) 

inhibitory.

A.

From To Strength

Excitatory Excitatory 0.6

Excitatory Inhibitory 0.15

Inhibitory Excitatory − 0.15

B.

From To Strength Type

DP E 0.5 EE

DP SP 0.1 EE

E DP 0.1 EE

E SP 0.6 EE

SP DP 0.5 EE

DP DI 0.15 EI

SP SI 0.15 EI

DI DP − 0.15 IE

SI SP − 0.15 IE
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Table 5

Hemodynamic and BOLD model parameters used to compute fMRI signal. Equations and definitions are 

detailed in the Appendix.

Hemodynamic Model Parameters

τs 1.54 (seconds) Vasodilatory signal decay constant

τf 2.44 (seconds) Flow-dependent feedback regulation constant

α 0.32 Grubb’s vessel stiffness exponent

E0 0.34 Resting blood volume fraction

ε 0.1 Efficacy of synaptic activity to induce the signal

λd 0.5 Laminar coupling constant

τd 0.5 (seconds) Interlayer transit delay constant

BOLD Model Parameters

V0 0.02 Resting blood volume fraction

ϑ0 188.1 (Hz) Frequency offset at outer surface of magnetized vessels

TE 0.025 (seconds) Echo time

ε 0.026 Ratio of intra - to extravascular BOLD signal

r0 340.0 (s−1) Slope of the intravascular relaxation rate

TR 2 (seconds) Repetition time
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Table 6

Correlation between average neural activities in Wilson-Cowan and Wang-Knosche Models. A large 

correlation indicates that the two models assume close values when the W-K model is reduced to an equivalent 

W-C model.

Task Passive Viewing

Module Excitatory Inhibitory Excitatory Inhibitory

V1h 0.997 0.982 0.997 0.982

V1v 0.997 0.980 0.997 0.980

V4c 0.975 0.947 0.958 0.913

V4h 0.978 0.960 0.979 0.961

V4v 0.976 0.959 0.976 0.959

IT 0.922 0.843 0.922 0.832

FS 0.852 0.811 0.816 0.741

D1 0.849 0.859 0.671 0.520

D2 0.896 0.897 0.453 0.598

FR 0.654 0.457 0.398 −0.326
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Table 7

Correlations between fMRI BOLD activities in Wilson-Cowan and Wang-Knosche Models.

Node DMS Task Passive Viewing

V1 1.000* 1.000*

V4 0.968 0.988

IT 0.929 0.962

FS 0.908 0.934

D1 0.831 0.915

D2 0.912 0.905

FR 0.792 0.920

*
indicates rounded up from 0.999x where x greater than or equal to 5. Like Table 6, this shows the agreement between models.
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