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Abstract

Background—Substance use disorder (SUD) remains a significant public health issue. A greater 

understanding of how genes and environment interact to regulate phenotypes comprising SUD will 

facilitate directed treatments and prevention.

Methods—The literature studying the neurobiological correlates of SUD with a focus on the 

genetic and environmental influences underlying these mechanisms was reviewed. Results from 

twin/family, human genetic association, gene-environment interaction, epigenetic literature, 

phenome-wide association studies are summarized for alcohol, nicotine, cannabinoids, cocaine, 

and opioids.

Results—There are substantial genetic influences on SUD that are expected to influence multiple 

neurotransmission pathways, and these influences are particularly important within the 

dopaminergic system. Genetic influences involved in other aspects of SUD etiology including drug 

processing and metabolism are also identified. Studies of gene-environment interaction emphasize 

the importance of environmental context in SUD. Epigenetic studies indicate drug-specific 

changes in gene expression as well as differences in gene expression related to the use of multiple 

substances. Further, gene expression is expected to differ by stage of SUD such as substance 

initiation versus chronic substance use. While a substantial literature has developed for alcohol 

and nicotine use disorders, there is comparatively less information for other commonly abused 

substances.

Conclusions—A better understanding of genetically-mediated mechanisms involved in the 

neurobiology of SUD provides increased opportunity to develop behavioral and biologically based 

treatment and prevention of SUD.
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1. Introduction

The Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5) defines substance use 
disorder (SUD) as a constellation of behaviors involved in compulsive drug seeking 
including impaired control of substance use, impaired social interactions with others because 
of substance use, risky drug use (e.g., substance use in hazardous settings), and 
pharmacological changes (e.g., experiencing withdrawal symptoms). Further, the DSM-5 

defines addiction as the most severe, chronic stage of the SUD diagnosis, which is 

characterized by subsantial loss of self-control, manifesting in compulsive drug-seeking 

behavior despite the desire to discontinue use (American Psychiatric Association, 2013; 

Volkow, Koob, & McLellan, 2016). SUD and addiction remain a significant global public 

health concern, resulting in substantial socioeconomic burden (Collins et al., 2006; Heslin, 

Elixhauser, & Steiner, 2015; Whiteford, Ferrari, Degenhardt, Feigin, & Vos, 2015). Globally, 

52.3 million cases of alcohol and drug dependence/problem use were reported in 2004 

(World Health Organization, 2008). In 2010, this number increased to 147.5 million cases 

(Whiteford, et al., 2015), and SUD is expected to become more prevelant over time.

Genetic factors within multiple overlapping neurobiological systems has been consistently 

implicated in SUD etiology (Nestler, 2001). Here, we summarize the genetic epidemiology 

of SUD and focus on commonly abused substances including alcohol, nicotine, marijuana, 

cocaine, and opioids. Although results will be summarized across all substances, genetic 

epidemiological studies of alcohol and nicotine use currently out number cannabis, cocaine, 

and opoids. Further, we connect this knowledge with the neurobiology of SUD and provide 

suggestions for future research in this area

2. Major SUD Neural Substrates

Although different drug classes act on distinct cellular substrates, initial drug reward/

saliency appears to be primarily encoded by midbrain dopamine neurons projecting into the 

prefrontal cortex as well as the dorsal and ventral striatum (Volkow, Fowler, Wang, Baler, & 

Telang, 2009). Human imaging studies indicate the extent to which a drug increases striatal 

dopamine is proportional to self-reported euphoria (Drevets et al., 2001; Sharma & Brody, 

2009; Volkow, et al., 2009). Nonetheless, it is important to note that responding for 

rewarding stimuli is also encoded by other ascending monoamine fibers such as 

norepinephrine (Stein & Himwich, 1962) and other non-dopaminergic systems within the 

medial forebrain bundle (Crow, 1973).

2.1 Commonly abused substance usurp learning mechanismns

Dopamine also encodes salience or a teaching signal, which may contribute to the learned 

component of substance abuse. For example, dopamine neurons initially fire with reinforcer 

delivery, but with time dopamine neuron firing becomes time-locked with predictive 
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conditioned stimuli that precede an expected reinforcer (the unconditioned stimulus) rather 

than the reinforcer, itself (Schultz, 1997). Similar findings have also been observed in 

detoxified cocaine abusers. Specifically, presentation of drug-associated cues increase 

dopamine levels in brain regions that participate in habit circuitry (Belin, Jonkman, 

Dickinson, Robbins, & Everitt, 2009; Volkow, Wang, Fowler, Tomasi, & Telang, 2011; 

Volkow et al., 2006) to a level greater than the drug itself (Volkow, et al., 2011; Volkow, et 

al., 2006). This dopamine signal is correlated with self-reported craving (Drevets, et al., 

2001; Heinz et al., 2014). After repeated or habitual use, previously neutral stimuli become 

imbued with the drug experience and eventually acquire the ability to increase dopamine in 

anticipation of reward. This dopamine signal can elicit strong motivation to pursue a drug of 

abuse (Owesson‚ White et al., 2009; Salamone, Correa, Farrar, & Mingote, 2007). Thus, 

dopamine signaling in several brain regions including the nucleus accumbens, dorsal 

striatum, ventral pallidum, dorsolateral prefrontal cortex, anterior cingulate, and 

orbitofrontal cortex modulate the motivation to pursue abused substances (Salamone, et al., 

2007).

2.2 Compulsive drug-seeking behavior

Once addiction has developed, decreased ability to avoid drug craving and/or inhibit drug-

seeking behavior commonly manifests despite decreased hedonic effects of the drug. These 

inhibitory ‘top-down’ deficits may emerge from a lack of executive control over circuits that 

parse reward/saliency, aversion avoidance/stress reactivity, interoception, and motivation 

(Koob & Le Moal, 2001; Volkow, Fowler, & Wang, 2003; Volkow, et al., 2011). Decreased 

hedonic drug effects may stem from a shift away from phasic and tonic midbrain dopamine 

firing patterns toward more tonic firing, which results in lower levels of dopamine release 

(Grace, 2000). Blunted dopamine release and decreased hedonic effects have been observed 

in cocaine-addicted individuals challenged with either methylphenidate (a cocaine-like 

compound) or amphetamine (Martinez et al., 2007; Volkow et al., 1997; Volkow, et al., 

2011). These and other neural adaptations induced by the drug are thought to usurp normal 

learning and habit circuitry and increasingly recruit cortical glutamatergic signalling 

(Bowers, Chen, & Bonci, 2010; Kalivas, 2009; Kalivas & O’Brien, 2008b; Koob & Volkow, 

2010; Luscher & Malenka, 2011), which can manifest as compulsive drug-seeking behavior 

and relapse (Everitt & Wolf, 2002; Hyman, Malenka, & Nestler, 2006).

3. Twin and Family Studies of Substance Use Disorder

3.1 Genetic and Environmental Effects

Family studies report that children of parents with high-risk alcohol dependence, or that are 

from families where one member is diagnosed with an SUD, are at much greater risk for 

developing alcohol problems (Chassin, Rogosch, & Barrera, 1991). Consequently, family 

studies have demonstrated that SUD clusters within families, implicating a role for both 

genetic and environmental influences. In comparsion to family studies providing estimates 

of familial clustering, twin studies have estimated specific sources of variance in the etiology 

of SUD. Twin studies use monozygotic and dizygotic twin pair variances and covariances to 

estimate the proportion of total phenotypic variance of a trait due to additive genetic 

(additive genetic effects of alleles at every locus), shared environmental (environmental 

Prom-Wormley et al. Page 3

Drug Alcohol Depend. Author manuscript; available in PMC 2018 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



influences common to both twins), and unique environmental influences (environmental 

influences not shared by members of the twin pair; (Cherny, 2009). Twin studies of SUD 

consistently report that substance initiation is significantly influenced by genetic as well as 

shared and unique environmental factors. This is consistent across populations that initiate 

tobacco, alcohol, or cannabis use (Agrawal et al., 2010; Huizink et al., 2010). In contrast, 

additive genetic influences are greater for substance progression; often defined as regular use 

as well as dependence. There is no longer a significant influence of shared environmental 

factors for either regular use or dependence in adulthood, although shared environmental 

influences remain significant during adolescence (Maes et al., 2017;; Rose et al., 2009; 

Bergen et al., 2007; Hopfer et al., 2003;). Additive genetic influences remain significant for 

regular use and dependence even when adjusting for genetic influences specific to substance 

initiation (Maes et al., 2004; Sullivan et al., 2001). Measurement of progression and 

dependence varies and can reflect the amount of substance used within a specific time frame 

or symptoms related to SUD diagnosis.

3.2 Genetic and Environmental Influences on SUD Across Multiple Substances

As a whole, SUD twin studies suggest a common set of genetic and environmental factors 

that are shared across drugs as well as genetic and environmental influences that are specific 

to a given substance. Studies of initiation report substantial shared environmental influences 

common to multiple substances (Fowler et al., 2007; Han, McGue, & Iacono, 1999; 

Koopmans, Slutske, Heath, Neale, & Boomsma, 1999). In contrast, studies of use and 

dependence reported significant additive genetic and unique environmental influences shared 

across SUD as well as genetic and environmental influences specific to a given drug 

(Agrawal & Lynskey, 2006; Baker, Maes, Larsson, Lichtenstein, & Kendler, 2011; Palmer et 

al., 2012; Palmer et al., 2009; Xian et al., 2008; Young, Rhee, Stallings, Corley, & Hewitt, 

2006). Further, the influence of genetic and environmental factors shared between different 

forms of substance abuse are likely to remain significant across time (Palmer, et al., 2009).

3.3 Neuroimaging in Twins

Neuroimaging twin studies of SUD have begun to connect knowledge regarding the role of 

neural networks invovled in SUD with genetic and environmental influences on the disorder. 

For example, small, widespread negative associations were recently reported between 

cigarette pack-years and the volume and/or surface area of several cortical as well as 

subcortical brain structures (Prom-Wormley et al., 2015). Importantly, correlations were the 

result of shared genetic and unique environmental factors in brain structures involved in the 

processing of environmental influences related to smoking.

4. Genetic Association Studies

The goal of genetic association studies of SUD is to identify genetic markers that may have 

a role in the development or progression of addiction. Identifying these markers may aid in 

the treatment or prevention of SUD. There are two main catagories of genetic association 

studies. Candidate gene association studies (CGAS) test the association of previously 

identified markers with SUD phenotypes. Markers are selected for CGAS analysis due to 

demonstrated functional significance in prior animal, molecular genetic, and/or human SUD 
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studies (Kwon & Goate, 2000; Rebbeck, Spitz, & Wu, 2004). Together, these studies can 

develop a strong case for the importance of a genetic variant or biological pathway in SUD 

etiology. In contrast, genome-wide association studies (GWAS) test for significant 

associations between a SUD phenotype and hundreds of thousands single nucleotide 

polymorphisms (SNP) throughout the entire genome without prior knowledge about gene 

function. Thus, GWAS can identify novel candidate genes contributing to SUD. In addition, 

the aggregate effect of all SNPs associated with an outcome, whether or not they reach 

genome-wide significance, can be modeled via a polygenetic risk score (PRS) (Dudbridge, 

2013; Ferreira et al., 2009; Purcell et al., 2009).

Multi-investigator research consortia have also been used to study the genetic architechture 

of SUD. These consortia-based genetic association studies aggregate GWAS data from 

individual studies in order to address the need to increase sample size and improve power to 

detect significant associations. Consortia-based genetic association studies often use meta-

analyses and report summary data submitted across studies or analyze raw data from 

multiple GWASs (Panagiotou et al., 2013).

4.1 Alcohol and Nicotine

Significant genetic associations of hundreds of markers with alcohol use disorder have been 

reported (Li et al., 2011; Manzardo, McGuire, & Butler, 2015) although it has been difficult 

to consistently replicate these associations across studies (Forero, Lopez-Leon, Shin, Park, 

& Kim, 2015). In general, genetic association studies of alcohol highlight the importance of 

genes related to (1) alcohol metabolism (ADH); (2) processing of alcohol intermediates 

(e.g., ADH1B, ADH1C, and ALDH2) (Cui et al., 2009; Macgregor et al., 2009) and (3) 

neurotransmission pathways thought to be involved with stimulus-reward processing in the 

brain including dopaminergic (e.g., DRD2, MAOA, COMT), serotonergic (HTR3A, 

HTR1B, HTR3B), GABAergic (GABRA1, GABRA2, GAD1, KCNJ9/GIRK3), and 

glutamtergic (GRIN2C) pathways. Some of these genes have demonstrated functional 

significance either in animal, human, or molecular genetic studies of SUD (Addolorato et 

al., 2006; Lobo & Nestler, 2011; Melroy-Greif et al., 2017; Thanos et al., 2001; Vanyukov et 

al., 2007). SUD is generally characterized as a signalling imbalance through striatal 

inhibitory D2-like dopamine receptors (DRD2) although this is not necessarily consistent 

across all drugs. With the execption of cannabinoids, human imaging studies consistently 

report that affected individuals have lower D2-like dopamine receptor occupancy by a PET 

imaging ligand compared to controls (Volkow, Fowler, & Wang, 2002). Receptor occupancy 

is a proxy for the capacity of a receptor to transduce signal that can be influenced by 

receptor levels as well as intracellular and extracellular factors. Individuals with low D2-like 

dopamine receptor occupancy are also more likely to describe psychostimulant drugs as 

pleasurable compared to those with high D2-like receptor occupancy (Volkow et al., 1999; 

Volkow et al., 2002). Moreover, decreased D2-like dopamine receptor expression is 

associated with increased disposition to develop alcohol use disorder (Samochowiec et al., 

2000). Further, rat alcohol self-administration was decreased by overexpressing D2 

dopamine receptors in the nucleus accumbens (Thanos, et al., 2001), rats that are more prone 

to resume heroin-seeking behavior in response to stress express less striatal D2 dopamine 
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receptors (Zhou, Leri, Cummins, & Kreek, 2015), and D3 dopamine receptor knockout mice 

exhibit increased cocaine self-administration (Song et al., 2012).

Recent pathway- and network-based analyses of available candidate gene- and genome-

wide- genetic association results of smoking and nicotine dependence indicated the 

importance of genes related to (1) drug metabolism (e.g., ADH1B, SULT1A1, ALDH2, 

CYP17A1, and CYP1A1); (2) synaptic transmission of cholinergic (e.g. CHRNB4, 

CHRNA1, CHRNA3, CHRNA5, and CHRNA7), glutaminergic (e.g., GRM7 and GRM8) 

and dopaminergic (e.g., DRD1, DRD2, DRD3, DRD4, and DRD5) systems, and (3) 

reuptake and vesicular packaging of neurotransmitters (e.g., SLC6A4, SLC18A2, and 

SLC9A9) related to learning and memory (Harari et al., 2012; Liu, Fan, Liu, Cheng, & 

Wang, 2015; Minica et al., 2017; Yang and Li, 2016; Begum et al., 2016). Consequently, 

genetic association studies of alcohol as well as nicotine dependence highlight the complex 

nature of addiction as an outcome with physiological aspects including drug metabolism and 

availability within the body and brain, as well as neurobiological mechanisms related to the 

development of addiction.

To date, GWAS of alcohol (Table 2) as well as tobacco use (Table 3) using individual SNPs 

as well as PRS have reported modest evidence for the role of genetic influences on 

dependence-related measures. Two recent studies detected significant associations of small 

effect size (i.e., PRS accounting for less than 1% of the total variance) between polygenic 

risk scores and alcohol dependence (Kapoor et al., 2016; Salvatore et al., 2014). Further, an 

association was reported for age of onset for regular drinking that also accounted for less 

than 1% of the total variance (Vink et al., 2014). GWAS studies using PRS also emphasize 

the importance of the role of genetic influences in stage of SUD progression. However, 

results differ across different measures of SUD stages. Two recent studies noted significant 

associations with measures of dependence rather than initiation in both alcohol as well as 

tobacco use (Belsky et al., 2013; Kapoor, et al., 2016). Therefore, as identified in twin 

studies, genetic influences may be more important for maintaining dependence and its 

related neurobiology rather than early use

4.2 Cannabinoids

Results are inconsistent for CNR1, GABRA2, FAAH, and ABCB1 (Benyamina et al., 2009; 

Haughey, Marshall, Schacht, Louis, & Hutchison, 2008a; Lind et al., 2008b; Verweij et al., 

2012) and as such require additional investigation. Both CNR1 and FAAH have been 

associated with phenotypes related to reward sensitivity, impulsivity, and negative affect. 

Further, additive gene-gene interactions between FAAH (C385A; rs324420) and CNR1 
(rs2023239) have been associated with cue reactivity as defined by negative affect during 

cannabis abstinence (Filbey, Schacht, Myers, Chavez, & Hutchison, 2010; H. M. Haughey, 

et al., 2008a). CNR1 encodes a presynaptic cannabinoid 1 receptor with dense expression in 

regions related to reward, addiction, and cognitive function; i.e., amygdala, cingulate cortex, 

prefrontal cortex, ventral pallidum, caudate putamen, nucleus accumbens, ventral tegmental 

area, and lateral hypothalamus, (Glass, Faull, & Dragunow, 1997; Wang, Dow-Edwards, 

Keller, & Hurd, 2003). ABCB1 (adenosine triphosphate-binding cassette subfamily B 

member 1) is responsible for P-glycoprotein production. P-glycoprotein has been studied for 
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its role in drug pharmacokintetics because it is present in endothelial cells of the blood-brain 

barrier which limits accumulation of its substates in the central nervous system. For 

example, P-glycoprotein deficient mice were reported to have significantly higher levels of 

the psychoactive component of marijuana, delta-9-tetrahydrocannabinol compared to wild-

type mice (Bonhomme-Faivre, Benyamina, Reynaud, Farinotti, & Abbara, 2008).

Two single-site GWAS and two multi-site (consortia-based) meta-analysis GWAS studies 

have been unable to detect genome-wide significant associations with cannabinoid use 

disorder (Haughey, Marshall, Schacht, Louis, & Hutchison, 2008b; Lind et al., 2008a; 

Stringer et al., 2016; Verweij, et al., 2012). A recent GWAS meta-analysis using 13 study 

sites and a sample size of over 32,000 participants identified no significant SNP-level 

associations, but significant gene-based associations between lifetime cannabis use and 

NCAM1, CADM2, SCOC, and KCNT2 were detected. Of these, NCAM1 has been best 

characterized and is part of the NCAM1-TTC12-ANKK1-DRD2 gene cluster, which is 

related to neurogenesis and dopaminergic neurotransmission (Stringer, et al., 2016). The 

functional significance of the products of the remaining genes are largely unclear and 

encourage further investigation (Table 4).

4.3 Cocaine

The primary mechanism of cocaine is blockade of monoamine transporters, and the 

rewarding properities of cocaine are predomeintly associated with blockade of cell surface 

dopamine transporters. Thus, cocaine increases dopamine levels in the synaptic cleft by 

decreasing reuptake (Kiyatkin, 1994; Wise, 1984). Consequently, many genetic association 

studies of cocaine use disorder focus on genes whose products function in the dopaminergic 

pathway including genes whose products are responsible for D2 dopamine receptor (DRD2) 

expression, dopamine signalling regulation (ankyrin repeat and kinase domain containing 1, 

ANKK1 and tetratricopeptide repeat domain 12, TTC12), dopamine metabolism (dopamine 

beta-hydroxylase, DBH; (Kaufman & Friedman, 1965; Weinshilboum, 1978) and 

degradation (catechol-O-methyltransferase, COMT), termination of dopamine transmission 

across the synapse (solute carrier family 6 member 3, SLC6A3 and NCAM1), and dopamine 

synthesis (tyrosine hydroxlylase, TH; (Bi, Gelernter, Sun, & Kranzler, 2014; Dahl et al., 

2006; Farrer et al., 2009; Gelernter et al., 2006; Grucza et al., 2008; Ittiwut et al., 2011; 

Kalayasiri et al., 2007; Levran et al., 2015; Luo et al., 2004; Malison et al., 2006; Sherva et 

al., 2010; Zhang et al., 2009; Zuo et al., 2009). Genes whose products function in the 

monoamine serotonergic signalling pathway have also been implicated; i.e. the gene 

encoding the 5-HT2C receptor (5-HT2C) was associated with two subtypes of cocaine use 

(Bi, et al., 2014). However, a GWAS of cocaine dependence reported no genome-wide 

significant associations for dopamine pathway genes, and as such additional replication 

studies are necessary (Gelernter et al., 2014) (Table 5). Study of additional pathways may 

also be beneficial since associations have been detected for genes (CLOCK, PER1 and 

PER2) (Malison, et al., 2006; McClung, 2007) whose products function in regulating 

circadian rhythm which may also regulate dompaminergic activity.
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4.4 Opioids

There is moderate evidence for the role of genes related to the dopamine and GABA 

systems. The primary mechanism of opioid action is direct activation of μ-opioid receptors 

located on GABAergic interneurons, which inhibits GABA release resulting in disinhibition 

of mesolimbic dopamine neurons. Thus, opioids increase nucleus accumbens dopamine 

levels (Johnson & North, 1992). In addition to genes centrally related to dopaminergic 

signaling that have been previously identified (e.g., ANKK1/DDRD2, DRD1, and DBH) 

(Clarke et al., 2014; de los Cobos et al., 2007; Garrido et al., 2011; Hoenicka et al., 2010), 

the specific variant encoding the μ-opioid receptor (OPRM1, rs1799971, A118G) has 

frequently been associated with opioid dependence. However, a meta-analysis failed to 

detect a significant association between this OPRM1 marker and opioid dependence 

(Agrawal et al., 2012). Further, these genes have not been significantly represented in 

GWAS studies.

Genetic association studies of opioid use disorder have also implicated neurotransmission 

mechanisms in the glutamatergic pathway in addition to the classically identified dopamine 

and GABA pathways (Table 5). A recent GWAS reported a significant association with 

CNIH3, a gene whose product functions in the glutamtergic pathway and encodes for the 

production of cornichon family AMPA receptor auxiliary protein 3 (Nelson et al., 2016). 

This protein increases surface expression of AMPA ionotropic glutamate receptors and 

mediates channel conductance by slow deactivation and desensitation kinetics (Schwenk et 

al., 2009). Additionally, a recent study reported significant associations between SNPs in the 

genes KCNC1 and KCNG2 and a symptom count for opiate dependence (N =12,309). The 

product of these genes produce membrane proteins that mediate voltage-dependent 

potassium permeability and thus cellular excitability. Variants in the PITPNM3 locus were 

also reported to be significantly associated with opiate dependence. The product of this gene 

is a protein that is involved in phosphatidylinositol transport and is likely to be involved in 

calcium signalling and long-term potentiation, which is important for metaplasticity and 

learning (Sanna et al., 2002).

5. Non-Additive Genetic Mechanisms involved in SUD

Although additive genetic influences are important in the etiology of SUD, to date, they have 

not accounted for a substantial proportion of the total variance in SUD. Further, addiction is 

thought to result from changes in brain structure and function (Zhou, Enoch, & Goldman, 

2014). As summarized in twin/family study results, additive genetic influences, alone, are 

not expected to contribute to SUD. Therefore, other genetically-mediated mechanisms may 

influence the regulation of gene expression in the etiology of SUD (Hyman, 2005; Impey, 

2007; Jones & Bonci, 2005; Kalivas, 2005; Kalivas & O’Brien, 2008a; Kauer & Malenka, 

2007; Koob & Le Moal, 2005; Lu, Koya, Zhai, Hope, & Shaham, 2006; McClung et al., 

2004; Moghaddam & Homayoun, 2008; Mulholland & Chandler, 2007).

5.1 Gene-Environment Interplay

Genetic influences may rely on environmental context, and as such gene-environment 

interplay, including gene-environment interaction (GxE) and gene-environment correlation, 
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is likely to influence SUD. Gene-environment interaction refers to differences in genetic 

effects across levels of environmental exposure. A statistical GxE will be detected when 

there are functional genetic differences in sensitivity to an environment (Mather & Jinks, 

1971). Gene-environment correlation occurs because parents and their children share genes 

and home environments and as such, parental genetic risk may also contribute to 

environmental risk in their children.

Several twin studies examining the role of GxE in alcohol use suggest that genetic 

influences on alcohol-related behaviors vary under different circumstances (Young-Wolff, 

Enoch, & Prescott, 2011). Further, these studies emphasize the importance of many different 

types of environmental risk factors for drug use in general. Twin and family studies testing 

the role of GxE in alcohol use have focused on the role of distal and proximal environmental 

exposures. Distal environmental exposures refer to those for which the individual does not 

directly engage or influence such as neighborhood-level influences and availability of of 

alcohol. Proximal environmental influences refers to those where the individual has direct 

engagement and may possibly influence such as peer use and parental monitoring (Dick & 

Kendler, 2012a). In general, these studies indicate that genetic influences from late 

adolescent alcohol use are higher in urban environments, communities with greater 

migration, and communities with higher proportions of older adolescents and young adults.

GxE studies of specific environments and genetic markers focus on exposure to stress, either 

as stressful life events or traumatic stress exposure (Dick & Kendler, 2012b). Stressful 

environmental exposures during childhood increase risk for alcohol dependence. The 

hypothalamic-pituitary-adrenal (HPA) axis increases glucocorticoid and cortisol production 

in order to maintain biological homeostasis during exposure to stress, and it is thought that 

exposure to early stressors has a long-lasting impact on development via the mesolimbic 

dopamine pathway (Enoch, 2012). Consequently, GxE studies testing the role of specific 

genetic influences have focused on the evaluation of genes whose products modulate HPA 

function in response to stressful environments; e.g., CRHR1 (Blomeyer et al., 2008; Ducci et 

al., 2008b; Nelson et al., 2010; Ray et al., 2013) or with genes possessing a glucocorticoid 

response element in their promoter regions, (i.e., MAOA, COMT, and SLC6A4; Ducci et al., 

2008a; Enoch, 2013). For example, the short allele of the polymorphic promoter region of 

the serotonin transporter gene (5-HTTLPR) was associated with more frequent drinking as 

well as heavy drinking and drug use in college students if they had also experienced multiple 

negative life events in the past year (Covault et al., 2007). The serotonin transporter 

(SLC6A4, also known as 5-HTT or SERT) is responsible for serotonin reuptake from the 

synaptic cleft (Heils et al., 1996). Alleles in 5-HTTLPR alter SLC6A4 production, which 

may influence function of the glucocorticoid receptor as well as HPA axis activity.

In comparison to GxE studies of alcohol use disorder, there are far fewer studies of GxE for 

nicotine dependence, cannabis use disorder or opioid addiction. Twin smoking studies 

(Kaprio, 2009) report increased genetic influence on adolescent smoking in the presence of 

low parental monitoring. Further, a study of nicotine dependence in adults ages 25–44 

reported a significant interaction between adolescent parental monitoring and a variant of the 

alpha 5 neuronal nicotinic acetylcholine receptor subunit (CHRNA5, rs16969968); genetic 

risk was reduced in participants with high levels of parental monitoring (Chen et al., 2009). 
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This variant was also identified as having a significant interaction with increasing exposure 

to peer smoking (Johnson et al., 2010). Additionally, the influence of genetic risk variants as 

measured by a PRS for smoking was increased in individuals who experienced more 

traumatic events in their lifetime. Further, genetic risk for smoking was reduced in 

individuals who lived in neighborhoods with high social cohesion (Meyers et al., 2013). 

Therefore, the magnitude of genetic variance on smoking may increase as the environment is 

less enriched, either through reduced parental monitoring or through low social cohesion.

5.2 Epigenetic Influences

The study of epigenetic mechanisms refers to investigating how non-genetic influences 

effect DNA transcription or subsequent gene expression. These influences include: (1) 

methylation of specific genes, which generally reduce gene expression; (2) changes in 

microRNA production (miRNA), which are a class of small, noncoding regulatory RNAs 

that are central to regulating protein translation; and (3) histone modification via acetylation, 

which changes DNA conformation, altering accessibility for translation (Kenny, 2014; Zhou, 

et al., 2014).

Human studies of gene expression suggest the importance and diversity of epigenetic 

influences on SUD. In general, these studies indicate drug-specific changes in gene 

expression as well as differences in gene expression related to the use of multiple substances 

(Lehrmann & Freed, 2008; Marie-Claire et al., 2007; Zhou, Yuan, Mash, & Goldman, 2011). 

For example, cocaine users exhibit significant differences in expression of genes involved in 

neurotransmitter levels in the nucleus accumbens although these results are not consistent 

across studies (Bannon, Kapatos, & Albertson, 2005). Additionally, these studies suggest 

that acute early-stage drug use is associated with expression changes in acute early response 

genes (Vaccarino, Hayward, Nestler, Duman, & Tallman, 1992). In comparison, chronic 

substance exposure has been associated with widespread changes in expression of genes 

related to several diverse and fundamental cellular functions, including ion transport, 

chromosome remodelling, stress and immune response, cell adhesion, cell cycle, apoptosis, 

protein and lipid metabolism, and mitochondrial functions (Liu, Chen, Lerner, Brackett, & 

Matsumoto, 2005; Schroeder et al., 2008; Vilar et al., 2006; J. Wang, Kim, Donovan, 

Becker, & Li, 2009; Zhao et al., 2006).

Human candidate gene methylation studies have provided some preliminary evidence for the 

role of epigenetic influences in people affected with SUD. Candidate gene methylation 

studies of alcohol use have focused on genes whose products function in 5 major systems: 

(1) well-characterized neurotransmission systems (e.g., monoamine oxidase A- MAOA, 
serotonin transporter- SERT, dopamine transporter- DAT1, μ opioid receptor- OPRM1); (2) 

additional neurotransmitter systems (e.g., vasopressin and alpha natriuretic peptide- ANP); 

(3) one-carbon metabolism; (4) craving and symptoms of dependence (e.g., 

proopiomelanocortin- POMC and alpha-synuclein- SNCA); and (5) neuronal growth and 

homeostasis (e.g., nerve growth factor- NGF)(Andersen, Dogan, Beach, & Philibert, 2015). 

Generally, these studies reported weak, but significant differential methylation between 

affected and non-affected groups. Significant results from candidate gene association studies 

of smoking have reported significant results in genes whose products function in 

Prom-Wormley et al. Page 10

Drug Alcohol Depend. Author manuscript; available in PMC 2018 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurotransmitter metabolism, specifically MAOA and MAOB as well as catechol-O-

methyltransferase – COMT). A candidate gene methylation study of the cannabinoid 

receptor 1 (CNR1) promoter region reported significant differences in CB1 expression when 

comparing cannabis dependent smokers against non-smokers as well as cigarette smokers 

(Rotter et al., 2012). Candidate gene studies of opioid use report significant differences in 

methylation of the promoter region of the gene encoding the μ opioid receptor (OPRM1). 

However, the direction of results is not consistent across studies (Nielsen et al., 2010; 

Nielsen et al., 2009).

Results from genome-wide methylation studies of SUD generally do not replicate results 

from candidate gene methylation studies (Andersen, et al., 2015). Studies of chronic 

smoking using DNA methylation microarrays consistently report decreased DNA 

methylation in three locations that are involved in mechanisms outside of the CNS including 

cell signalling and platelet activation (cg05575921 in the the second exon of coagulation 

factor II receptor-like 3 gene, F2RL3), chronic inflammation (cg19859270 in the first exon 

of the G-protein-coupled receptor 15 gene, GPR15), and tumor suppression and cigarette 

toxin metabolism (cg05575921 in the third intron of the aryl hydrocarbon receptor repressor 

gene, AHRR). Results across genome-wide methylation studies of alcohol have not 

replicated. One study reported differential methylation at some sites that are involved in 

pathways related to alcohol metabolism (i.e., alcohol dehydrogenase and aldehyde 

dehydrogenase) as well as synaptic transmission (gamma-aminobutyric acid type A receptor 

pi subunit, GABRP). To date, there are no genome-wide methylation studies for 

cannabinoids or opioids (Andersen, et al., 2015).

SUD is considered to be a drug-induced disorder of neuroplasticity (Hyman, 2005; Impey, 

2007; Jones & Bonci, 2005; Kalivas, 2005; Kalivas & O’Brien, 2008a; Kauer & Malenka, 

2007; Koob & Le Moal, 2005; Lu, et al., 2006; McClung, et al., 2004; Moghaddam & 

Homayoun, 2008; Mulholland & Chandler, 2007; Volman, 2007). There is increasing 

evidence from the animal and molecular literature suggesting drug use modifies protein 

translation influencing neurons and neuroplasticity in circuits that parse reinforcement. 

Hundreds of miRNAs are expressed in the mature mammalian brain, and amongst many 

other functions, miRNAs are involved in the control of synapse development and neuronal 

plasticity (Banerjee, Neveu, & Kosik, 2009; Schratt et al., 2006; Siegel, Saba, & Schratt, 

2011). Most human studies of the involvement of miRNAs in SUD have focused on cocaine 

use. These studies indicate widespread changes in dopaminergic, glutamatergic, and 

peptidergic neurotransmitter systems as well as proteins involved in the control of 

cytoskeletal organization and transcriptional regulation (Bali & Kenny, 2013; Lehrmann et 

al., 2003; Mains, Kiraly, Eipper-Mains, Ma, & Eipper, 2011).

Studies of the effects of alcohol on miRNA expression suggest that miRNAs work in 

coordinated fashion to promote drug adaptation and neuronal plasticity and that this may 

occur in a relatively rapid fashion. For example, miR-9 is expected to mediate alcohol-

related post-transcriptional regulation of neuronal BK mRNA and can do so rapidly upon 

exposure (Pietrzykowski et al., 2008; Treistman & Martin, 2009). More specifically, mRNA 

encoding the voltage-gated potassium channel (BK) is decreased within 15 minutes of 

exposing rat striatal cultures to alcohol. BK influences the the control of alcohol intake and 
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tolerance in an individual. This decrease in BK mRNA resulted from increased miR-9 
expression and downstream degredation of BK splice variants containing a miR-9 binding 

site in their 3′UTR. The remaining BK variants were those least affected by the presence of 

alcohol. In addition to changes in BK expression, miR-9 targets several other genes that 

influence alcohol use (e.g., neuronal exitability- GABRB2 and DRD2, function of 

presynaptic terminals- GABRB2, and gene expression and lipid metabolism- PPARA, 

peroxisome proliferator-activated receptor alpha). Rat studies suggest that other families of 

miRNAs may influence additional phenomnea such as the rewarding properties of alcohol 

via dopamine D1 receptor expression (i.e., miR-382) or the motivational effects of alcohol 

and drugs via regulation of brain-derived neurotrophic factor (BDNF) expression (i.e., 

miR-206). Additional research using population-based samples may expand our 

understanding of the role of miRNAs in development of SUD as well as the possibility of the 

use of miRNA expression as a biomarker for SUD diagnosis or treatment.

Histone modifications including acetylation and deacetylation play a role in long-lasting 

changes in brain function associated with SUD. For example, brain region- and cell type-

specific histone acteylation modification for gobal/genome-wide and promoter-specific 

changes have been reported for alcohol use. In particular, dysregulation of gene expression 

profiles across several brain regions are associated with exposure to alcohol, which is 

expected to contribute to the development of withdrawal symptoms (Mons & Beracochea, 

2016). Similarly, cocaine administration was associated with elevated global histone 

acetylation levels in reward-related regions (i.e., nucleus accumbens) (Renthal et al., 2009). 

Consequently, histone modifications are likely to coordinate networks of brain structures to 

regulate symptoms of drug dependence and withdrawal.

6. Limitations of SUD Genetic Epidemiology Studies

Several significant genetic associations have been detected in candidate gene and genome-

wide association studies across several substances. In general, results confirm twin studies 

and indicate that SUD is polygenic; multiple genes of small effect contribute to SUD risk. 

Further, many of these genetic variants identified function within neurotransmitter pathways 

involved in the neurobiology of addicition (Drgon et al., 2010; Hardy & Singleton, 2009; 

Hirschhorn, 2009; Kraft & Hunter, 2009). Therefore, several genetic variants are expected to 

influence the neural substrates of addiction. However, genetic epidemiology studies of SUD 

must be evaluated in light of their limitations. Importantly, there remains an inconsistency in 

the replication of genetic association results. For example, although several significant 

genetic associations have been reported, few associations for nicotine dependence have 

replicated (Lerman & Berrettini, 2003; Quaak, van Schayck, Knaapen, & van Schooten, 

2009). This may be due to a variety of reasons including: (1) low effect sizes of variants 

where each significant variant detected by a genetic association study will have a small 

influence on an SUD (Marjoram, Zubair, & Nuzhdin, 2014); (2) insufficient power to detect 

significant associations resulting from low sample sizes particularly in single-site studies 

(Visscher, Brown, McCarthy, & Yang, 2012); (3) phenotypic heterogeneity due to variance 

in the measurement of SUDs across samples that may reflect different stages of SUD; (4) 

genetic heterogeneity characterized by an outcome arising from multiple sets of genes or 

genetic mechanisms that likely decrease the power to detect a significant genetic association 
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specific to a substance; (5) racial/ethnic inconsistency between discovery and replication 

samples (i.e., participants of European ancestry in the discovery sample and African 

ancestry in the replication sample) that result in a failure to reproduce significant genetic 

association across samples as a result of differences in ancestry-related local haplotype 

structures at loci associated with SUD (Enoch, 2013; Melroy-Greif, et al., 2017; Polimanti, 

Yang, Zhao, & Gelernter, 2015; Verweij, et al., 2012) and (6) phenotypic comorbidity where 

the SUD diagnosis, itself, may have multiple subtypes (i.e., single-drug versus poly-drug 

dependence, rate of time from initiation to the development of dependence, or comorbidity 

between substance dependence and psychiatric conditions) with shared genetic and 

environmental architecture (Bi, et al., 2014; Palmer et al., 2014). Consequently, there 

remains discrepancies in the convergence of results from different genetic epidemiology 

study designs (Vrieze, McGue, Miller, Hicks, & Iacono, 2013).

Studies are beginning to address the aforementioned concerns by: (1) increasing sample 

sizes; (2) improving the measurement of SUD, particularly; (3) accounting for the genetic 

and environmental covariances across substances as well as between other comorbid 

outcomes; (4) increasing data collection of racially/ethnically diverse populations; and (4) 

accounting for ancestral diversity. The push to increase sample size in order to have 

appropriate power to detect significant associations for SUD is actively being addressed 

using consortia-based GWAS (e.g., Psychiatric Genetics Consortium- SUD working group 

(Agrawal, Edenberg, & Gelernter, 2016) as well as the study of GWAS data from large, 

nationally representative samples across several outcomes including SUD (e.g., UK Biobank

—Littlejohns et al., 2017) and biological markers associated with SUD including 

neuroimaging (Mackey et al., 2016) may overcome current challenges.

An extension of samples collected for SUD studies is illustrated by a recent GWAS of BMI 

in alcohol dependent participants that identified a significant variant in ALDH1A1, which is 

responsible for alcohol metabolism and adipocyte plasticity (Polimanti, et al., 2015). Thus, 

studies of this sort have the capacity to identify genetic and environmental influences that 

are shared or distinct for SUD and non-SUD outcomes.

An open area of development in the genetic epidemiology of SUD research involves the use 

of multiple measures. Prior twin studies introduced the idea that multiple measures could be 

used to understand the characterize SUD. For example, a highly heritable nicotine 

dependence phenotype was estimated through the use of phenotypic and genetic factor 

analyses of DSM-IV ND criteria as well as the Heaviness of Smoking Index (Lessov et al., 

2004). As GWAS data as well as multiple SUD measures become available, this approach 

can be adapted for genetic association studies. A recent genetic association study used factor 

analysis to determine the factor stucture across 42 tobacco use variables (e.g., cigarettes per 

day, nicotine dependence symptoms). Factor scores reflecting tobacco use were then derived 

to test for gene-based associations focusing on 231 single nucleotide variants within the 

CHRN and CYP genes. Suggestive associations were identified for variants in CYP2B6 near 

CYP2A6 (rs45482602) and CYP4Z2P (rs10749865; Richmond-Rakerd et al., 2017).

Phenome-wide association studies (PheWAS) are also characterizing SUD by studying 

genetic variants that influence use of multiple substances as well as those shared between 
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SUD and non-SUD outcomes. PheWAS refers to a post-GWAS genotype-phenotype 

association study using datasets which have collected a substantial amount of phenotypic 

data (phenome; Roden and Denney 2016). PheWAS use a small number of previously 

identified variants and check their association across the full phenome or with a full 

completment of traits or measures that are related to the outcome (Bush, Oetjens, & 

Crawford, 2016). Therefore, PheWAS have the potential to deepen genomic knowledge 

regarding the range of phenotypic effects associated with GWAS-identified risk alleles. For 

example, a PheWAS of smoking and alcohol use in 26,394 women replicated prior 

asosciations between variants in ADH1B and alcohol use (e.g., alcohol servings per week, 

number of medium servings of wine per day, number of drinks of alcohol) as well as 

between variants in CHRNA3-CHRNA5 and smoking behaviors (e.g., cigarettes per day, age 

starte smoking cigarettes regularly; Polimanti, Kranzler & Gelernter, 2016). Further, the 

combination of PheWAS among affected individuals may also lead to an impoved 

understanding of SUD as well as other conditions. Recently, a PheWAS of older adult 

smokers reported a significant associaton between a variant in CYP2A6 and hearing loss; 

thus the smoking metabolism pathway may mediate age-related hearing loss (Polimanti, 

Jensen, & Gelernter, 2017).

7. Conclusions and Future Directions

Advances in neurobiology and genetic epidemiology highlight the role of genetic regulation 

of addiction etiology and provide an opportunity to develop directed behavioral and 

biologically based treatments. Overall, genes involved in the regulation of the dopaminergic 

system have been found to be important for SUD. It is known that SUD exerts broad effects 

that extend to several neurobiological systems including glutamate. Additionally, unique 

genetic influences involved in the maintenance of addiction for specific substances also 

appear to be important in addition to those involved in SUD overall. Moreover, examining 

the role of peripherial systems in SUD; e.g., brain-gut interactions (Kiraly et al., 2016), is an 

exciting area requiring additional study. For example, the ghrelin signaling system is 

expected to play a role in SUD because ghrelin activates the cholinergic-dopaminergic 

reward syste in rodents (Jerlhag et al., 2007). Ghrelin is a circulating orexigenic stomach-

derived hormone that regulates energy homeostatsis mainly via hypothalamic growth 

hormone secretagogue receptor (Cheung & Mao, 2012; Horvath, Diano, Sotonyi, Heiman, & 

Tschöp, 2001; Kojima et al., 1999; Kojima & Kangawa, 2005; Tschöp, Smiley, & Heiman, 

2000). There is some preliminary evidence that single nucleotide polymorphisms located in 

the pre-proghrelin gene (GHRL) and the gene responsible for the production of the ghrelin 

receptor (GHSR-1a) are associated with increased alcohol use and smoking in candidate 

gene association studies (Landgren et al., 2010; Suchankova et al., 2015). In prior rodent 

models, ghrelin increases alcohol consumption (Gregory et al., 2012; Jerlhag et al., 2009; 

Kaur & Ryabinin, 2010), enhances cocaine-induced locomotor stimulation and conditions 

place preference for cocaine (Davis, Wellman, & Clifford, 2007; Tessari et al., 2007; 

Wellman, Davis, & Nation, 2005).

The environmental context of SUD also has moderate-to-strong involvement in substance 

use outcomes. Consequently, genetic regulation of biological changes preceding and as a 

consequence of SUD require additional clarification as substance use can be a means by 
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which the individual copes with environmental risk factors. SUD can also be considered to 

be an environmental exposure when the brain is exposed to commonly abused substances. 

Future studies of epigenetic mechanisms, such as methylation and the role of miRNAs, 

could determine the exact role of the environment on patterns of differential gene expression 

in neurobiological systems of interest that can precipitate a SUD.

While a better understanding of the genetic epidemiology of SUD is expected to reduce its 

burden on society, prevention has been very successful particularly for reducing rates of 

population-level drug use. For example, changes in policy and expectations in the social 

norms related to substance use have reduced the prevalence of smoking initiation in the 

United States (Do & Maes, 2016). To date, it is unclear how genetic variants influence these 

outcomes and subsequently translate into successful treatment and prevention of relapse 

among those with nicotine dependence (Hutchison, 2010). Nonetheless, there are several 

exciting possibilities for further exploration, as twin studies have reported that additive 

genetic influences account for 11%–74% of the variance of smoking abstinence (Broms, 

Silventoinen, Madden, Heath, & Kaprio, 2006; Heath, Madden, & Martin, 1998; Heath & 

Martin, 1993; Heath, Martin, Lynskey, Todorov, & Madden, 2002; J. Kaprio, Koskenvuo, & 

Sarna, 1981; Madden et al., 1999; Medlund, Cederlof, Floderus-Myrhed, Friberg, & 

Sorensen, 1976; True et al., 1997). Moreover, several genetic polymorphisms have also been 

found to impact therapeutic effectiveness for nicotine use disorders (Colilla et al., 2005; 

Johnstone et al., 2007; Uhl et al., 2008). Genetic screening may identify individuals who 

will best respond to naltrexone for the reduction of problem drinking (Anton et al., 2008; 

Oslin et al., 2003). Therefore, a major challenge for the future rests in translating knowledge 

regarding the genet ic epidemiology of SUD into effective treatment stratagies for 

individuals attempting to successfully maintain abstinence. As this challenge is addressed, 

assisting those affected with SUD to achieve a sustanined abstinence remains an achievable 

goal.
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