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Abstract

The reaction center (RC) from the phototrophic bacterium Blastochloris viridis was the first 

integral membrane protein complex to have its structure determined by X-ray crystallography and 

has been studied extensively since then. It is composed of four protein subunits, H, M, L and C as 

well as co-factors, including bacteriopheophytin (BPh), bacteriochlorophyll (BCh), menaquinone, 

ubiquinone, heme, carotenoid, and Fe. In this study, we utilized mass spectrometry-based 

proteomics to study this protein complex via bottom-up sequencing, intact protein mass analysis, 

and native MS ligand-binding analysis. Its primary structure shows a series of mutations including 

an unusual alteration and extension on the C-terminus of the M-subunit. In terms of quaternary 

structure, proteins such as this containing many cofactors serve to test the ability to introduce 

native-state protein assemblies into the gas phase because the cofactors will not be retained if its 

quaternary structure is seriously perturbed. Furthermore, this specific RC, under native MS, 

exhibits not only a strong ability to bind the special pair but also to preserve the two peripheral 

BCh.
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Introduction

Thirty percent of naturally occurring proteins are predicted to be membrane proteins that 

play essential roles in many cellular processes. Early on, researchers worked on predicting 

the structure of membrane proteins on the basis on their unique sequences1. Although this 

approach is routinely used 2, experimental results are needed to verify the structure and 

predict function. Membrane proteins, however, are difficult to characterize owing to their 

hydrophobicity3–4. The first membrane protein structure determined by X-ray 

crystallography at atomic resolution was the reaction center (RC) from the purple 

phototrophic bacterium Blastochloris viridis (B. viridis)5.

The X-ray structure of the RC from B. viridis5, and nearly thirty subsequent crystal 

structures of this RC6, contribute to an understanding of how light energy is captured and 

stored in photosynthesis. Photon absorption creates an excited state that eventually leads to 

charge separation in the RC7. This is accomplished in the B. viridis RC by two 

transmembrane subunits L and M that support a special pair of bacteriochlorophylls (P960), 

two monomeric bacteriochlorophylls (BCh), two bacteriopheophytins (BPh), a tightly bound 

menaquinone (QA), and a mobile ubiquinone (QB) arranged around an axis of pseudo two-

fold symmetry. The RC is capped from the cytoplasm by the H-subunit and from the 

periplasm by the C-subunit, which is a tetraheme c-type cytochrome. Photo-oxidation of 

P960 causes an electron to move to QB on the opposite side of the membrane, while P960+ 

is reduced by the heme groups of the C-subunit8–9.

This protein complex is a well-accepted model to evaluate new structural approaches for 

membrane proteins10–12. Although mass spectrometry (MS) cannot provide an atomic 

resolution structure, it enables proteomic approaches to determine primary and higher order 

structures. Primary structure determination is important to determine sequence and post-

translational modifications (PTM)13–14. Higher order structural features, including topology, 

stoichiometry, number and relative binding of cofactors, are particularly important for 

proteins in photosynthesis. Native MS maintains the integrity of many membrane protein 

complexes15–17, an especially desirable capability for photosynthetic RCs and light-

harvesting complexes, which are mostly transmembrane protein complexes containing many 

cofactors that non-covalently interact with the protein scaffold. An example of native MS in 

this area is our characterization of the RC from Rhodobacter sphaeroides (Rb. sphaeroides) 

in lauryl-β-D-maltoside (DDM) micelles18.

The Robinson19 and Heck20 research groups have done extensive studies to validate the 

ability of native MS to introduce intact protein complexes into the gas phase. This approach, 

however, still needs further validation (compared to widely adopted LC-MS/MS), especially 

on membrane proteins that are typically stabilized by detergent molecules. Suitable MS 

parameters and sample-preparation guidelines are required to understand the limitations of 
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native MS and to establish it for all kinds of membrane proteins. Furthermore, RC systems 

are a stringent test of the hypothesis that native MS introduces proteins in their native or 

near-native state to the gas phase. Without higher order structure and proper folding, the 

inclusion of various cofactors is not possible. Specifically, the special interaction of two BCh 
pigments (known as the special pair) with all RC protein scaffolds is well documented21,22, 

and its maintenance in native MS would constitute evidence of its effectiveness. Our 

previous study on Rb. sphaeroides RC utilizing native MS found that only two BCh, most 

likely the special pair, remain bound to the protein after extensive collisional dissociation 

events23. Other purple bacterial RC proteins such as from B. viridis offer a challenge of 

determining topology and relative binding strengths of co-factors to the protein scaffold.

The evolution of photosynthetic reaction centers has been a matter of debate. Surprisingly, 

Roszak and co-workers24 found that the RC from B. viridis had undergone extensive 

evolution in the laboratory. Among the identified amino-acid substitutions, an interesting 

change from a leucine to glycine caused a more sterically favored conformation of the 

carotenoid.

Herein we describe a proteomics study of this membrane protein to determine primary 

sequence and PTMs of this RC complex from B. viridis and to evaluate the topology and co-

factor binding of the RC by using the native MS platform. Success of the latter will 

strengthen the groundwork for future native MS studies on transmembrane photosynthetic 

membrane proteins.

Experimental Procedures

Cell culture and RC preparation

B. viridis strain DSM 133 cells were grown anaerobically in 1:1 YPS/RCV media and 

harvested25. A Branson 450 sonifier (Fisher Scientific, Hampton, NH) was used to break the 

cells. After sonication, the sample was centrifuged at 10 000 × g for 1 h at 4 °C using a 

Sorvall SS-34 rotor (Thermo Fisher, Waltham, MA) to pellet the cell debris. The supernatant 

was spun at 450 000 × rpm for 4 h at 4 °C using a Beckman Type 70 Ti (BT) rotor 

(Beckman Coulter, Brea, CA). After pelleting the membranes, 30% (v/v) 

lauryldimethylamine N-oxide (LDAO, Sigma, St Louis, MO) was added to the membrane 

pellets resuspension. The resuspension was stirred at 1.5% (v/v) final LDAO concentration 

at room temperature for ~1 h followed by centrifugation (450 000 × rpm for 1 h at 4 °C 

using a Beckman Type 70 Ti (BT) rotor (Beckman Coulter, Brea, CA)). The supernatant was 

loaded on a HiTrap Q HP anion-exchange column (GE Healthcare, Chicago, IL) and eluted 

with a gradient of NaCl-containing buffer (20 mM Tris). The separation was further 

elaborated by elution from a Sephacryl S-200 (GE Healthcare, Chicago, IL) gel filtration 

column previously equilibrated with a buffer containing 100 mM NaCl (20 mM Tris).

Intact protein analysis by LC-MS

For intact protein MS analysis, the experiment was conducted by using the protocol 

described in a previous publication26. Briefly, the purified RC was precipitated by adding 

pre-chilled acetone, and the pellet was solubilized in 40% formic acid immediately prior to 
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analysis. After separation on a custom-packed capillary column (PLRP/S, 5 μm, 1000 Å, 

~10cm) (Waters Inc., Milford, MA), a hybrid ion-mobility quadrupole TOF (Synapt G2, 

Waters Inc., Milford, MA) was used to determine the molecular weights of protein subunits.

Bottom-up LC-MS

Cyanogen bromide (CNBr) cleavage of the RC was performed by following a published 

protocol27–28. The product was vacuum dried and then dissolved in 10 μL of 8 M urea in 

preparation for digestion. Lysyl endopeptidase (WAKO Chemical, Richmond, VA) was 

added to the solution and digestion was performed for 2 h at 37 °C. Half of the solution was 

quenched by formic acid, and the other half was treated with sequencing grade modified 

trypsin (Promega, Madison, WI) at 37 °C overnight. The resulting peptide mixtures were 

trapped by a guard column (Acclaim PepMap100, 100 μm × 2 cm, C18, 5 μm, 100 Å; 

Thermo Fisher Scientific, Breda, Netherlands) and then fractionated on a ACQUITY UPLC 

Peptide BEH C18 Column (10 K psi, 130 Å, 1.7 μm, 75 μm X 100 mm, Waters Corporation, 

Milford, MA). The MS analysis was with a Thermo Scientific™ Q Exactive™ hybrid 

quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen Germany). 

Peptides were eluted with a 120 min, 250 nL/min gradient coupled to the nanospray source. 

The default charge state chosen for the MS was 3, and the scan range was from m/z 380–

1500. Mass spectra were obtained at high mass resolving power (70,000, FWHM at m/z 
200) and the top 15 most abundant ions corresponding to eluting peptides per scan were 

submitted to CID in the ion trap, with charge-state rejection of unassigned and > 8 ions 

enabled. Precursor ions were added to a dynamic exclusion list for 8 s to ensure good 

sampling of each elution peak.

M subunit gene identification

B. viridis genomic DNA was extracted by GenElute™ Bacterial Genomic DNA Kits (Sigma-

Aldrich, St. Louis, MO). Target genes were PCR-amplified by left primer 

CTCTGGTGTGTCAAGCATGG and right primer GAAGCGAGGTTGTTCTCGTC. The 

purified PCR product was cloned and sequenced.

Native MS analysis of reaction center

Buffer exchange assisted by a 100 kDa MWCO filter (Millipore Amicon Centrifugal Filters, 

Billerica, USA) was conducted on the purified RCs. After 5 cycles of concentration-dilution, 

10 μL of the mixture was loaded into an off-line electrospray capillary (GlassTip 2 μm ID, 

New Objective, Woburn, USA). The sample solution was injected to a hybrid ion mobility 

quadrupole time-of flight mass spectrometer (Q-IM-TOF, SYNAPT G2 HDMS, Waters Inc., 

Milford, MA). The instrument was operated in the “sensitive” mode under gentle ESI 

conditions (ES387, Hudson, New Hampshire, Thermo Scientific, source temperature 37 °C). 

The sampling-cone and extraction-cone voltages were adjusted to obtain the best signal for 

the protein complexes. The pressure of the vacuum/backing region was 5–6 mbar. The 

instrument was externally calibrated up to 10000 m/z with a NaI solution. The peak picking 

and data processing were performed in Masslynx (v 4.2, Water Inc, Milford, MA).
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MS data processing

The intact protein MS raw data file was combined and smoothed in Masslynx (v 4.2, Water 

Inc, Milford, MA). The mass list with intensities was exported and saved as a txt file for re-

plotting and data analysis. The Massign software package was used to assign peaks in the 

RC mass spectra29. The bottom-up MS data were processed by PEAKS software and 

searched against the B. viridis proteomics database. Search parameters: Variable 

Modifications: Carboxymethyl: 58.01, Oxidation (M): 15.99, Fragment ion tolerance: 0.02, 

L equals I: true, Q equals K: true, Report number: 1 Maximum # of PTMs: 3, De novo score 

(ALC%) threshold: 15 Peptide hit threshold (−10logP): 30.0, Peaks run ID: 8, Merge 

Options: no merge, Precursor Options: corrected, Charge Options: no correction, Filter 

Options: no filter.

Results

Intact protein analysis by MS

We examined the mass spectra of the intact components of the purified RC to remove any 

concerns about contaminants during the purification process as well as to examine the 

possible existence of isoforms. We observed a total of four protein components by intact 

protein LC-MS. The experimental MWs of the four protein subunits taken from the charge 

distributions of those four protein subunits (Figure 1) from the RC, H, M, L and C are 

different than the theoretical MWs based on the published genome sequence30 (experimental 

MWs based on the intact-protein results are listed in Table 1). The small MW discrepancies 

of H, L and C subunits are likely caused by the presence of PTMs or by the combinatorics of 

amino-acid substitutions from mutations in the DNA. These explanations are likely 

insufficient, however, for the more than 600 Da MW discrepancy for the M subunit. Thus, 

we decided to use bottom-up MS sequencing to decipher the unusually large MW 

discrepancy shown by the M subunit.

Bottom-up MS analysis of RC

Membrane proteins do not offer sufficient polar residues for efficient enzymatic digestion, so 

we utilized a combination of chemical and enzyme-cleavage reagents, cyanogen bromide 

(CNBr) and trypsin, to locate as many PTM/mutations as possible. Because multiple amino-

acid substitutions and few PTM were reported9, 24, 31, we utilized “PEAKS SPIDER” 

function whereas “PEAKS PTM” function was disabled to identify better the potential 

amino-acid substitutions. The MS/MS product-ion spectra with a score of lgP > 80, De novo 

only ALC (%) > 80 are shown in Supplementary figure 1 (See supplementary figure 3 for 

protein coverage and supplementary table 1 for protein lists generated by PEAKS software). 

We identified many substitutions on all four subunits. This is expected in view of the 

findings of Rosak and co-workers24, who report that the RC from the strain we studied 

underwent significant sequence evolution over 14 years in the laboratory. They identified a 

total of 16 amino acid substitutions by comparing the genome sequence of the current active 

strain and the glycerol stock strain from 14 years ago. In our work, we identified multiple 

substitutions by MS/MS sequencing. Most of those mutations are conservative; an example 

is one in which a hydrophobic amino acid is substituted by a different hydrophobic one. 
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Although the reasons for these changes are not clear, the data clearly show that this species 

is “evolutionarily active”.

The most surprising finding in the current results is not the large number of substitutions, as 

that was reported previously24, but the seven-amino acid alteration followed by a seven-

amino acid extension on the C-terminus of the M subunit (Figure 2). When we performed 

multiple rounds of database searching by using different parameters, we considered that 

single or multiple PTMs are attached to the M subunit, causing a several hundred Dalton 

mass shift. When we identified the large MW discrepancy of the M subunit by intact protein 

MS, we continued with the explanation that PTMs are the most likely reason given that no 

publications show any hints that the length of this protein subunit can be altered. One of the 

de novo tags obtained by PEAKS software, however, attracted our attention because this 

peptide is highly similar to the C-terminal region of M subunit whereas no PTM was 

identified (Figure 2, see Supplementary figure 2 for the product-ion spectrum). This unusual 

de novo tag seems to suggest there might be some alteration in the C-terminus of the M 

subunit, causing the mass shift of more than 600 Da.

To determine whether this unusual alteration and extension is initiated at the genomics level, 

we sequenced cellular DNA for pufM and pufC, and discovered that the C-terminal 

sequence is mostly the same as identified by MS (Figure 3). This suggests a substantial 

mutation in the strain we studied. The UV/vis absorption spectrum of this RC shows no 

abnormalities (data not shown), suggesting that the function of this RC is not perturbed by 

this mutation. In addition, the cells were grown photosynthetically, which requires that the 

RC complex be functional. Updating the M subunit C-terminal sequence in the database, as 

assisted by PEAKS identification software, we observed that two peptides map the whole 

region of this C-terminal extension (Figure 2B and Figure 2C for product-ion (MS/MS) 

spectra). The peptides reported here were generated by treatment with dilute acid (e.g., 

cleavage at aspartic acid)32 and enzymatically. Although the sequence obtained by de novo 

tag is mostly consistent with the real sequence (Figure 2A), verification at the genomic level 

is still important. After updating the protein sequence database, the protein sequence can be 

successfully determined by a software search.

There is some precedent for an extended C terminus. The core subunit D1 in RC (PSII) from 

cyanobacteria is first synthesized with a C-terminal extension and must be processed by a C-

terminal peptidase before incorporation into PSII and final assembly. In higher plants, this 

core subunit D1 is essential not only for the PSII assembly but also for the formation of 

supercomplexes33. Here, we also report an extension on the C-terminus of one subunit from 

the RC from purple bacteria. The evolutionary relationship of RC among cyanobacteria, 

higher plants, and purple bacteria is an intriguing topic for future studies34.

Native MS analysis of RC

To investigate further the structure of the RC from B. viridis, we turned to native MS 

experiments. Native MS analysis on intrinsic membrane proteins, an emerging and quickly 

developing field16, 35, enables us to obtain structural information on the native or near-native 

state while consuming small amounts of sample. The mass spectra show that the intact RC 

can be observed in the gas phase with and without co-factors (Figure 4A and 4B). Applying 
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medium collisional energy, we can “shake off” the detergent micelles and observe a series of 

peaks corresponding to an intact RC protein scaffold that binds different numbers of co-

factors (see Figure 4A for the charge distribution of the RC).

Observation of the RC with cofactors adds to the growing evidence that native MS can 

maintain a native or near-native structure in the gas phase because any significant loss of 

higher order structure is likely to result in loss of cofactors. The theoretical MWs were 

calculated based on the individual MWs measured by MS of the intact proteins. Owing to 

mild native MS conditions20, 35, various numbers of water or ammonium ions remain 

attached to the RC, causing small increases in the experimental MW compared to the 

theoretical one. Increasing the collisional energy in the trap region of the mass spectrometer 

leads to the gradual losses of these adducting species and of co-factors (Figure 5). Under the 

most vigorous conditions (200 V of collisional voltage), the RC undergoes a structural 

change, allowing all co-factors to be stripped away and leaving only the protein scaffold 

(Figure 4B), indicating that the RC can remain intact even in the absence of co-factors.

Further evidence of a native or near-native structure comes from our observation that the RC 

protein scaffold containing four bacteriochlorophylls comprises a stable complex in the gas 

phase, affording the most intense peaks under intermediate collisional energy and remaining 

during application of the largest collisional energy available on the instrument (Figure 4A 

and 4B).

Our previous analysis on a different RC from Rb. sphaeroides23 provides a starting point for 

the conclusion that RCs can be observed in the gas phase in a near-native state. In that state, 

they retain the bacteriochlorophyll special pair23. Indeed, we observed that the reaction-

center protein from B. viridis also strongly binds the special pair. Under intermediate-energy 

collisional activation, the RC protein scaffold continues to binds minimum of cofactors, 

including the special pair (Figure 4A, blue rectangular peak series). The RC investigated 

here does preserve more co-factors than the one from Rb. sphaeroides (i.e., four 

bacteriochlorophylls, including the special pair and some peripheral ones (Figures 4, 5)). 

These two RCs adopt a similar overall architecture and maintain the protein-pigment 

interactions36, which explains that they both tend to preserve the special pair in the center.

In addition, the RC from B. viridis binds more strongly, as determined under similar 

experimental conditions, to accessory bacteriochlorophylls than does the RC from R. 
sphaeroides. There are several possible reasons. First, the difference obtained in native MS 

analysis may be attributed to the extra cytochrome subunit in the RC from B. viridis, a 

protein that stabilizes and protects the co-factors in the protein complex. The RC from R. 
sphaeroides lacks a cytochrome subunit. Second, the distribution of the co-factors in R. 
viridis leads to a more compact structure than for R. sphaeroides, as seen after superposition 

of the two RC structures36. Thirdly, the M chain from R. viridis has an extra 18 residues at 

the C terminus compared to R. sphaeroides36, and these amino acids function to anchor the 

cytochrome subunit. The R. sphaeroides RC doesn’t have these additional amino acids. The 

extension at the C-terminus of the M subunit may also explain why R. viridis is more 

capable of retaining the co-factors under vigorous conditions, although further experiments 

are needed to prove that.
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Discussion

The RC from B. viridis, one of the most studied intrinsic membrane proteins, has been often 

utilized as a model membrane protein for the development of new analytical approaches. 

The RC from B. viridis can be introduced in the gas phase in a native or near-native state 

that maintains all four bacteriochlorophyll molecules. Although the quaternary structure of 

this RC as evaluated by native MS is consistent to that obtained by X-ray crystallography, 

we found significant differences in its primary sequence. Comparing the sequence of the 

strain in our lab with the sequences in the database, we found many amino-acid substitutions 

in all four subunits (e.g., substitution of valine for leucine, aspartic acid for glutamic acid). 

In addition, the unusual alteration and extension on the C-terminus by 14 amino acids of the 

M subunit, as determined by proteomics analysis, was also verified at the genome level. This 

unusual result is not consistent with any of the previous reported crystallographic structures 

and the genome database sequences. Considering that this RC system is “evolutionally 

active”, we recommend further characterization of RC (e.g., by low-temperature absorption 

and fluorescence spectroscopy, time-resolved sub-picosecond spectroscopy and MS-based 

characterization) if this RC system is included in any additional studies.

It is well established that bacteria evolve in culture37. That we observed such significant 

evolutionary changes in the RC in a relatively short time is surprising, but not 

unprecedented. Changes undoubtedly take place in all bacterial cultures, but are often 

undetected because the complexes are not routinely subjected to the detailed analyses that 

reveal what changes have taken place. We recommend these analyses prior to other 

biophysical studies.

The possibility that studies like this can give insights into the assembly of integral 

membrane protein complexes in general and photosynthetic reaction centers in particular is 

an important aspect that requires further research. If this approach can be validated by more 

studies, then it opens up a new method for tracking the assembly of large multi-subunit 

protein complexes. Experiments such as those reported here may reveal whether the most 

tightly bound cofactors are inserted earliest in the assembly of the complex. Very little is 

now known about the assembly pathways of photosynthetic reaction centers
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Abbreviation

B. virids Blastochloris viridis
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Rb. spharoides Rhodobacter sphaeroides

BCh Bacteriochlorophylls

BPh Bacteriopheophytins

CNBr Cyanogen Bromide

DDM lauryl-β-D-maltoside

MS Mass Spectrometry

PTM Post-translational Modification

RC Reaction Center
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Figure 1. 
Denaturing mass spectra of the four subunits from RC (B. viridis)
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Figure 2. 
(A) Alignment of sequences obtained from database, de novo tag and both genomic and 

proteomic study38. (B) The C-terminal sequence on the M subunit identified by tandem MS; 

the colored bars below the sequence show the sequence coverage of overlapping peptides. 

(C) The MS/MS product-ion spectra.
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Figure 3. 
The sequencing results of PCR products was blasted against Blastochloris viridis DNA, 

complete genome, strain: DSM 133 (Sequence ID: AP014854.2). The alteration and 

extension region is highlighted with a red oval.
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Figure 4. 
Native mass spectrum of RC under (A) medium collisional energy: each peak series 

represents RC protein complex with 2 BCh, 3 BCh, 4 BCh, 4 BCh and 1 BPh, 4 BCh +2 

BPh, 4 BCh + 2 BPh + Quinone and 4 BCh + 2 BPh + Quinone + car accordingly (B) the 

highest collision energy that can be achieved: each peak series represents RC protein 

complex with no co-factor, 4 BCh and BCh + 1 Bph. See supplementary Table 2 for 

theoretical MW, experimental MW, and pigment component analysis for each peak series. 

The x-axes are relative abundance.
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Figure 5. 
Loss of the peripheral pigments: carotenoid, quinone, and bacteriopheophytin. The peak 

highlighted in green represents the intact RC carrying four bacteriochlorophylls. The peaks 

highlighted in blue represent the intact RC carrying four bacteriochlorophylls as well as 

other peripheral pigments: carotenoid, quinone, and bacteriopheophytin. The protein with 

four bound bacteriochlorophylls remains as the most abundant component under these 

conditions.
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Table 1

Comparison of molecular weights (MW) determined by MS analysis of the intact protein and its genomic 

sequence.

Subunit Experimental (Da) Theoretical (Da)

H 28549 28526

M 36713 36035

L 30495 30447

Cytochrome 40612 40443
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