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Abstract

Disease represents a specific case of malfunctioning within a complex system. Whereas it is often 

feasible to observe and possibly treat the symptoms of a disease, it is much more challenging to 

identify and characterize its molecular root causes. Even in infectious diseases that are caused by a 

known parasite, it is often impossible to pinpoint exactly which molecular profiles of components 

or processes are directly or indirectly altered. However, a deep understanding of such profiles is a 

prerequisite for rational, efficacious treatments. Modern omics methodologies are permitting large-

scale scans of some molecular profiles, but these scans often yield results that are not intuitive and 

difficult to interpret. For instance, the comparison of healthy and diseased transcriptome profiles 

may point to certain sets of involved genes, but a host of post-transcriptional processes and 

regulatory mechanisms renders predictions regarding metabolic or physiological consequences of 

the observed changes in gene expression unreliable. Here we present proof of concept that 

dynamic models of metabolic pathway systems may offer a tool for interpreting transcriptomic 

profiles measured during disease. We illustrate this strategy with the interpretation of expression 

data of genes coding for enzymes associated with purine metabolism. These data were obtained 

during infections of rhesus macaques (Macaca mulatta) with the malaria parasite Plasmodium 
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cynomolgi or P. coatneyi. The model-based interpretation reveals clear patterns of flux 

redistribution within the purine pathway that are consistent between the two malaria pathogens and 

are even reflected in data from humans infected with P. falciparum.
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Introduction

In contrast to many other complex diseases, such as cancer, Crohn’s disease, or metabolic 

syndrome, infectious diseases have the distinction of a clear root cause: a pathogen has 

invaded the body and was not stopped by the host’s natural immune defenses. If the 

pathogen can be eliminated with medical or pharmaceutical means, the disease has a 

straightforward cure. However, in many cases this is not directly possible, or it requires a 

relatively long period of time, during which the patient is at risk of deteriorating, with 

possibly lethal consequence. In these cases, the root cause becomes almost immaterial, and 

it is the complex system of interactions between the pathogen and the host that needs to 

move to the center of attention [1]. The intriguing aspect of these interactions is that we 

often have no real understanding of which specific subsystems in the host or the pathogen 

are turned on or off, so that any molecular characterization of the disease, or any attempt of a 

targeted intervention, becomes an enormous challenge. As an illustration, we use in this 

paper a case study of malaria, which afflicts more than 200 million people world-wide and 

kills about half a million individuals per year, many of whom are children [2]. While malaria 

is initially a disease of the blood, it quickly affects other tissues and organ functions and 

triggers uncounted responses of the host’s defense systems. To measure the molecular state 

of a person is therefore an unsurmountable problem. The Malaria Host Pathogen Interaction 

Center (MaHPIC; www.systemsbiology.emory.edu/) actually offers the great advantage of 

allowing us to collect very large datasets on infections of different monkey species with 

different malaria parasites. These non-human primates (NHPs) present with symptoms of 

malaria that are very similar to those in humans and permit experiments that would not be 

possible in humans, due to ethical and other considerations.

The complexity of host responses to parasites poses a grand challenge. Namely, it is not even 

clear what exactly should optimally be measured, even if one had the luxury of being able to 

obtain measurements frequently. Of course, some experimental targets are quite evident. For 

instance, one can certainly measure the numbers of pathogens on a regular basis during an 

infection in order to characterize the extent of the disease. Such measurements can then be 

used to develop models of specific aspects of the disease [3–5]. One can also measure 

generic physiological markers like body temperature and blood cell counts, which reflect the 

severity of the disease at a high level. However, if the goal is to identify specific drug targets, 

a much deeper understanding of the molecular events during an infection is required. This 

necessity of a better characterization of processes is problematic, because it is generally 

much more difficult to measure processes than states. As a consequence, disease 
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investigations must usually resort to measuring molecular profiles. The good news is that the 

–omics revolution has rendered it possible to assess molecular profiles incomparably more 

comprehensively than just a couple of decades ago. For instance, we can relatively easily 

and reliably measure the expression of most genes, and in the process distinguish between 

host and pathogen genes. Modern mass spectrometry has rendered it possible to establish 

profiles of many thousands of native and foreign metabolites and their break-down products, 

even though it is not always entirely clear how such high-throughput results are to be 

interpreted. While not yet as definitive as genome analyses, proteomics, metabolomics, and 

lipidomics offer a glimpse into the abundances of subclasses of metabolites, proteins, and 

lipids. Taken together, modern biology allows us to convert small volumes of biological 

samples into enormous datasets.

The sheer sizes of -omics datasets pose challenges that are relatively new to the field of 

biology [6]. Namely, it is no longer easy to discern valid information or true signals in the 

data from uncertainties, variability, and noise. Every diseased individual is different, and 

many differences in gene expression within a patient cohort may simply be manifestations of 

their genetic make-up and health histories. As a pertinent example in our case study, which 

we will discuss later in this article, seemingly similar macaques responded very differently 

to malaria infections, with some suffering relatively lightly, some very severely, and one not 

even surviving [7]. Clearly, humans and monkeys are dynamical entities whose features 

change over time. Also, of course, all experiments are burdened with certain inaccuracies, 

which may not be fully characterized. As a consequence of these and other complications, 

the expression of a given gene or protein at a given time point may be suggestive of a 

biomarker of disease, but it may also be a spurious event.

In this article, we describe, as a proof of principle, a computational strategy for approaching 

the complex questions raised in the previous paragraphs. We use malaria as an example and 

discuss how different types of experiments and computational analyses have shed light on 

unforeseen aspects of the disease. However, we certainly do not claim to have obtained 

complete or definitive answers to the questions we had asked at the beginning of our 

analysis. In other words, this article focuses on strategies rather than results.

Material and Methods

A Brief Background on Malaria

In all types of malaria, the sporozoite form of the Plasmodium parasite enters the human or 

NHP host through a mosquito bite. Moving quickly with the blood stream, the sporozoites 

soon reach the liver, where they infect hepatocytes. Depending on the species, the pathogens 

may remain in the liver for a long time in the form of hypnozoites, or they multiply 

aggressively and over time release thousands of merozoites into the bloodstream. The 

merozoites invade red blood cells (RBCs), where they multiply and, after a day or two, 

depending on the species, are released and infect other RBCs. Eventually, some of the 

parasites transform into sexual forms, called gametocytes, which are taken up by another 

mosquito. They mate within the mosquito, thereby completing the pathogen’s life cycle.
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The responses of the human and NHP hosts to the Plasmodium parasite are multifold, 

complicated and in very many aspects ill understood. It is not surprising that the invasion 

and destruction of RBCs typically leads to anemia. However, the details of how the disease 

affects the erythropoietic system and thus the dynamics of new RBC formation, as well as 

their aging and removal, are not well understood. A second clearly affected host subsystem 

is the immune system. The presence of the pathogen very definitively triggers numerous 

cellular and humoral immune responses, but the chains of events leading to these responses 

have remained obscure.

The reasons for these gaps in our understanding are manifold. First and foremost, the 

immune system is exceedingly complicated. It contains uncounted components in the form 

of different immune cells and specific proteins, such as immunoglobulins and cytokines, 

whose roles are not always exactly known. Confounding the situation is the difficulty of 

obtaining sufficiently large high-quality datasets. Yet another puzzle is the observation that 

the host often seems to clear an infection, only to suffer a relapse, which has different 

characteristics than the initial infection. Even this very coarse overview of a few aspects of 

malaria will render it evident that the disease is systemic and that large numbers of 

physiological subsystems interact in a life-or-death effort to control the disease.

Generic Data-Based Characterization of a Complex Disease

Extracting information from large omics datasets has been compared to “drinking from a 

firehose.” Yet, even comprehensive attempts to measure pertinent data are not always 

sufficient. Within the context of our case study, our Malaria Host Pathogen Interaction 

Center (MaHPIC; www.systemsbiology.emory.edu/) has been collecting frequent –omics 

datasets to characterize the process accompanying malarial infections in NHPs. Although 

well-equipped and well-funded, this effort has been encountering complicated obstacles that 

are typical for investigations of complex diseases.

Even specifically with respect to the –omics of blood, which is much easier to obtain than 

measurements from other tissue samples, the following limitations arose. First, issues of 

ethics and animal welfare restrict blood draws from macaques, for example, to 10 milliliters/

kilogram/month, or to 6 milliliters/kilogram/month if the animal is anemic. This regulation 

results in a spacing of measurement time points that obviously precludes the assessment of 

immediate metabolic host responses to the emergence of pathogens in the bloodstream. In 

fact, one is led to assume that metabolism, measured in this manner, is always in a steady 

state. It is permissible to obtain blood from the monkeys daily through standard procedures 

involving ear pricks, where no anesthesia is required, but it surprisingly turned out that blood 

from this source is metabolically quite different from venous blood [8].

Second, multi-omics approaches are often envisioned to include genomics, proteomics, 

metabolomics, and maybe other measurements from the same source at the same time. In 

our case, it is of course possible to subject blood samples to these different omics 

measurements. However, these measurements shed light on different blood components. 

RBCs, which are affected most directly, have no nuclei or mitochondria and therefore no 

DNA. Thus, “blood genomics” automatically and necessarily excludes about 99% of all 

blood cells, as it is restricted to white blood cells and parasites. By contrast, plasma 
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proteomics is overshadowed by typical proteins like albumins, while membrane-proteomic 

measurements from infected RBCs are dominated by the host RBC membrane proteins, 

simple due to their sheer number. Metabolomics suffers from the fast time scale of metabolic 

profiles that change very quickly, even with quenching. Thus, the “different omics from the 

same source” turn out to yield a heterogeneous gemisch of information. Notwithstanding, 

this information is very valuable, but it is by far not as straightforward, comprehensive and 

indicative of the same molecular events as one might naïvely assume.

In spite of this unavoidable, natural heterogeneity, the different –omics measurements can be 

used to identify correlations and associations with methods of statistical machine learning. 

As a case in point, we analyzed the transcriptional response in the bone marrow (BM) of 

macaques of the species Macaca mulatta to infection with the malaria parasite Plasmodium 
cynomolgi to test the overarching hypothesis that infected animals during relapses exhibit 

substantial molecular changes similar to those observed during the primary infection [9]. 

Contrary to this hypothesis, we found very little impact on the transcriptional profiles in the 

BM during relapses. We then correlated gene- and pathway-level changes in the 

transcriptional profiles during peak parasitemia with immunological and chemical profiles 

and found that differentially expressed genes in the BM were primarily related to ongoing 

inflammatory responses that were measurable in the periphery and dominated by interferon 

signatures. The analysis ultimately suggested that malarial anemia may be driven by 

monocyte-associated suppression of the transcription factors GATA1/2 in erythroid 

progenitors, resulting in disrupted erythropoiesis and insufficient erythropoietic output. 

Further study led to the creation of an atlas of tissue-specific Multi-Omics Relatedness 

Networks (MORNs) of malaria, which exhibit differential dynamics of the host-immune 

response to P. cynomolgi infection in the peripheral blood and BM. When the MORNs were 

integrated with immunological profiles—including cytokine profiles—and clinical traits to 

bridge molecular mechanisms with disease outcomes, we found a positive correlation of 

PD-1 and mTOR signaling with PD-1+ central memory CD8+ T cells and PD-1+ B cells, 

which suggested a possible involvement of the combination of these signals in immune 

memory.

Direct Data Generation and Analysis

1. Details of Induced Malaria Infections—Details of data acquisition and raw data 

analysis for infections of rhesus macaques (M. mulatta) with P. cynomolgi were recently 

described in [7]. Here, we use, for easy comparisons, the same names for the macaques as in 

[7], namely, RFa14, RFv13, RIc14, RMe14, and RSb14. Corresponding details for infections 

with P. coatneyi will be published elsewhere. The names of the macaques in this study were 

RCs13, RTi13, RUn13, RWr13 and RZe13. For the following, it is sufficient to present the 

most pertinent highlights.

1.1. Parasites: Infections were introduced using P. coatneyi or P. cynomolgi B/M strain 
sporozoites and carried out for approximately 100 days. Baseline control measurements 

were taken before infections were introduced. Each infection was started with an inoculum 

of about 100 P. coatneyi or 2,000 P. cynomolgi sporozoites that were freshly dissected from 

the salivary glands of Anopheles mosquitos bred at a laboratory of the Centers of Disease 
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Control and Prevention (CDC). Some auxiliary data analyzed here pertained to human 

infections with P. falciparum, which corresponds closely to the macaque parasite P. coatneyi.

1.2. Monkeys: The rhesus macaques (M. mulatta) used for the infections under investigation 

were malaria-naïve males, which had been born and raised at the Yerkes National Primate 

Research Center at Emory University. The limitation to one gender eliminated potential 

blood loss issues associated with the female menstrual cycle, which could have confounded 

efforts to characterize malarial anemia. All experimental methods followed standard 

protocols that were approved by Emory’s Institutional Animal Care and Use Committee 

(IACUC). The monkeys were followed throughout the infections and through relapses in the 

case of P. cynomolgi, if they occurred within the 100-day experimental period. Details for P. 
cynomolgi were described in [7], and the corresponding details for P. coatneyi will be 

published elsewhere.

1.3. Time Point Sampling: In each experiment, the first sample was taken at time point 1 

(TP1), which served as a baseline control. TP2 was chosen at peak parasitemia and TP3 

immediately after this peak. TP4 – TP7 were spread out over the remaining days during the 

100-day experiments; some were coarsely aligned with relapses, others with phases in 

between.

2. Transcriptome Analysis

2.1. Library preparation for RNASeq: RNAs were extracted from whole blood using 

Tempus-Spin RNA isolation kits and from BM mononuclear cells using Qiagen RNEasy 

Mini-Plus kits, according to the manufacturer’s instructions. Sufficient quality of RNA 

samples was confirmed using an Agilent Bioanalyzer. Approximately 1 μg of total RNA per 

sample was reverse-transcribed into double-stranded cDNA. Strand-specific libraries were 

generated using Illumina TruSeq Stranded mRNA Sample Prep kits. For quality control, 

spike-in RNAs with known GC proportion and concentration (ERCC Spike-In Control, Life 

Technologies) [10] were added to each library to constitute 1% of total RNA.

2.2. Quantification of gene expression: Libraries were sequenced on the Illumina HiSeq 

2000 at the Yerkes Genome Core. RNASeq reads were aligned to a reference genome 

(assembly of M. mulatta version 4.0, GenBank accession number PRJNA214746 ID: 

214746) using Tophat2 with default parameters [11, 12]. Reads mapping to multiple 

genomic locations were excluded from the analysis to ensure high-confidence mapping. 

Transcript abundance was inferred at the level of annotated genes using HTSeq v0.5.4 [13]. 

Data reliability was assessed by quality control: linear correlation of spike-in control 

abundance with known concentration; confirmation of strand-specificity of controls as 

99.9%; and confirmation of the absence of 3’ bias in the controls with the RSeqC software 

[14]. Gene expression was normalized to library size with the R package DESeq 

(version1.10.1; [15]), using default parameters.

2.3. RNASeq Data Processing: To minimize noise, features below a minimum FPKM 

(Fragments Per Kilobase of transcript per Million mapped reads) cutoff value of 32 were 

excluded from further analysis. Gene expression data were log2-transformed. A large 
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variance in gene expression was observed among animals. Supervised Normalization of 

Microarrays (SNM) [16] was used to remove the variance associated with the animal effect. 

The SNM model was used with “longitudinal time points” as the biological variable, 

representing the course of pre-infection, acute primary infection, post-peak, inter-relapse and 

relapses, and “animal” as the adjustable variable.

2.4. Differential Expression Analysis (DEA): DEA analysis was performed using analysis 

of variance in the JMP Genomics software (SAS Institute Inc., Cary, NC). “Individual 

animal” was set as random effect and the “longitudinal time point” as a fixed effect. 

Differences in gene expression across all genes among the fixed effects were tested. 

Benjamini-Hochberg false discovery rate (FDR; [17]) corrections were used to adjust for 

multiple hypothesis testing; FDR ≤ 0.05 was used as the significance threshold.

2.5. Human transcriptome analysis: In order to assess whether the NHP results on changes 

in purine metabolism might be relevant for human malaria, we took advantage of a human 

malaria study [18] and downloaded the human transcriptome data of this study from the 

Gene Expression Omnibus (GEO accession number GSE67184). Briefly, 12 individuals in 

this study volunteered in a challenge trail. Blood samples were taken at two time points, 

namely prior to a P. falciparum challenge (baseline) and at the day of diagnosis (infection). 

Data processing and normalization were described in the original paper. Normalized 

expression values for selected genes were used for modeling in the same way as described 

for non-human primate models.

3. Gene Set Enrichment Analysis—To identify pathway-level changes in gene 

expression, we performed Gene Set Enrichment Analysis (GSEA; [19, 20]), which 

determines the statistical significance of the frequency of changes in expression for specific 

sets of genes within a larger set of genes. GSEA leads to a ranked list of pathways that are 

likely to be most affected, as judged by differentially expressed genes.

4. Dynamic Modeling—To interpret the implications of transcriptional changes during the 

infection, we employed a kinetic model of purine metabolism that we had developed, 

diagnosed, and validated a number of years ago [21–24]. This model has the format of a 

Generalized Mass Action system, where all processes are represented as products of power-

law functions. It contains 16 metabolites and 37 fluxes, as well as a large number of 

regulatory signals. A diagram of the model structure is shown in Figure 1 and the equations 

are presented in the Supplements. It is evident that the pathway system is tightly regulated 

through numerous inhibiting and activating signals. The mathematical formulation of the 

model was established for purine metabolism in humans, and we assume here that this 

implementation is applicable to NHPs as well. We therefore use the model without changes.

To achieve a coarse interpretation of the transcriptomics data in this study, we supposed that 

fold-changes in the expression of pertinent coding genes correspond to the same fold-

changes in enzyme amounts. Though this assumption ignores issues of post-transcriptional 

regulation, it is expected that it may be qualitatively, and possibly quantitatively, appropriate, 

at least approximately. Thus, the differential expression of each gene was incorporated as a 

corresponding change in enzyme amount. For missing values, where a transcript had not 
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been measured, we retained the original parameters. In cases of isozymes, the gene 

expression values were averaged.

In the original model formulation, the enzyme activities were lumped into apparent rate 

constants. Therefore, the differential expression of each gene was modeled as a 

corresponding change in its respective reaction rate constant parameter. All other parameters 

were retained at the same values as at the original steady state. The model equations were 

then integrated to obtain a new steady state, and the variable concentrations and fluxes of the 

system were studied. This analysis was performed for every monkey and every time point 

during its infection.

As an example, consider the dynamics of xanthosine monophosphate (XMP; X7), an 

intermediate between inosine monophosphate (IMP; X2) and the pool of guanosine 

phosphates (GTP, GDP, GMP; “GXP”; X8). The production of XMP depends on the 

substrate, IMP, and is inhibited by both XMP and GXP. It is catalyzed by the enzyme IMP 

dehydrogenase (IMPD). The dynamics of XMP is formulated in the Generalized Mass 

Action (GMA) model as

X
.
7 = 1.2823 X2

0.15X7
−0.09X8

−0.03 − 0.3738 X4
0.12X7

0.16

(see Supplements for other equations). In GMA models, which are based on Biochemical 

Systems Theory [24–27], all factors contributing to a process are modeled as power-law 

functions, in which the exponent, called the kinetic order, quantifies the strength of the effect 

of the variable on the production term. The kinetic order associated with the substrate, IMP, 

in the term for the production of XMP is positive, whereas the two inhibitory signals, from 

XMP and GXP, are negative. The product of these power-law functions is multiplied by a 

rate constant. The amount or activity of the catalyzing enzyme, IMPD, is not explicit in the 

synthesis term, but subsumed in this rate constant. The degradation term of X7 is constructed 

similarly.

To account for a change in the expression of the gene coding for IMPD, we replace the value 

1.2823 of the rate constant with 1.2823 × (fold-change in IMPDH1) (see Figure 2). This 

procedure was repeated for all significant changes in transcriptomics at a given time point 

for a given animal.

Results

Interpretation of Blood Transcriptomics

Transcriptomics is generally viewed to be the most reliable source of omics information. 

However, its output is not always easy to interpret in terms of phenotypical outcomes, as 

gene expression is two or three steps removed from metabolic, immunological, or 

physiological manifestations. Faced with this challenge, we employed computational 

modeling to interpret transcriptomic information.
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Gene Set Enrichment Analysis of transcriptional data during malarial infection showed 

significant changes in the expression of genes associated with purine pathway, leading us to 

choose this pathway as an example for interpreting transcriptomic changes with metabolic 

models. This pathway is furthermore of interest, as it has been implicated in a variety of 

inflammation studies (see Discussion).

Specifically, we considered gene expression at seven time points (TPs). Measurements at 

TP1, which preceded the infections, were used as “baseline control” values to which other 

TP measurements were normalized. TP2 coincided with the peak of infection. Interestingly, 

the most significant changes in purine metabolism transcriptional profiles occurred at TP3, a 

few days after peak parasitemia (Figure 2). The expression patterns more or less returned to 

the baseline at later time points.

Quite similar transcriptomic patterns were obtained for NHPs infected with different 

Plasmodium species (P. cynomolgi and P. coatneyi), and even with data from a human cohort 

(see later). In the cases of rhesus macaques, the strength of the pattern correlated with the 

severity of parasitemia [7]: animals with higher parasitemia at TP3 showed more 

pronounced patterns than the animals with lower parasitemia.

The altered expression of numerous genes coding for enzymes within purine metabolism is 

interesting, but difficult to interpret, because altered gene expression levels do not reveal 

much regarding changes in the metabolic concentration or flux profile, which in turn could 

lead to new functional insights or hypotheses. For example, simultaneous up-regulation of 

separate genes coding for the production and for the degradation of a metabolite could result 

in no net changes in the level of that metabolite.

Thus, our first goal was to assess to what degree transcriptomic changes alone are predictive 

of changes in metabolic fluxes. Such predictions are complicated due to the fact that changes 

in enzyme activities lead to changes in fluxes, which cause alterations in metabolite 

concentrations, which in turn affect the magnitudes of fluxes. Because purine metabolism 

constitutes a complex, highly regulated pathway system, intuition regarding the ultimate 

consequences of quantitative alterations in transcripts is quickly overwhelmed.

We therefore employed the kinetic model of purine metabolism described in the Section 

Materials and Methods and implemented significant fold-changes in the expression of 

pertinent coding genes as the same fold-changes in enzyme amounts (Figure 2). A priori, 
one might expect that a plot of the magnitudes of changed fluxes at the steady state would 

exhibit a clear positive trend. However, this trend, while it does exist, is quite weak (Figure 

3), with a correlation coefficient of 0.1228; the difference between this value and 0 itself is 

significant with a correlation coefficient of 0.00069. These findings suggest that 

transcriptomic data alone are insufficient to predict flux distributions in this system.

Changes in Purine Metabolism Following Peak Infection

Faced with the observation of unreliable predictability of metabolic fluxes from 

transcriptional changes, we explored what the kinetic model, implemented with altered 

transcriptional profiles, might suggest about metabolic responses during malarial infection. 
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While we analyzed changes in purine metabolism for all measured time points, but the most 

substantial changes were noticed immediately following the peak of infection (TP3).

Although quite coarse, the model-based interpretation of the transcriptomics data revealed 

striking results. In the experiments with P. cynomolgi [7], two particular animals (RFa14 and 

RMe14) displayed severe symptoms and needed and received sub-curative treatment during 

the acute primary infection in order to aid in the control of the parasites and disease 

manifestations; one monkey (RFv13) actually had to be euthanized. By contrast, two other 

animals of the same cohort, RSb14 and RIc14, recovered without treatment, while 

experiencing much higher parasitemia. It is to be expected that these two untreated animals 

probably suffered from more severe inflammation at TP3. Particularly strong changes were 

observed in the fluxes from PRPP to IMP, from GMP/GDP/GTP to IMP, from IMP to 

HX/Ino/dIno, from HX/Ino/dIno to Xa, and the excretion of HX and Xa, which were 

elevated more than two-fold at TP3 compared to baseline. The concentration of the HX/Ino/

dIno pool also increased more than two-fold at TP3 compared to baseline. By contrast, the 

two animals with lower parasitemia showed no changes in these fluxes or metabolite 

concentrations (data not shown).

In a similar experiment with P. coatneyi infections (manuscript in preparation), the macaques 

RWr13 and RTi13 exhibited higher parasitemia at TP3 and also showed much more 

pronounced changes in fluxes in the purine model than two other animals with lower 

parasitemias (Figure S2 and S3). Intriguingly, the same purine fluxes were increased as in 

the P. cynomolgi infection: from PRPP to IMP, from GMP/GDP/GTP to IMP, from IMP to 

HX/Ino/dIno, from HX/Ino/dIno to Xa, and the excretion of Xa and HX. These fluxes at TP3 

were elevated more than two-fold compared to the baseline value before the infection (TP1). 

Also as in the P. cynomolgi infection, the concentration of HX/Ino/dIno increased more than 

two-fold at TP3 compared to baseline.

Taken together, the profile analysis of purine fluxes and metabolites computed with the 

model, based on transcriptomics data, reveals a distinct signature in the affected purine 

pathway. In the P. coatneyi infection experiment at TP3, clustering of the profiles of the 37 

simulated fluxes in the model grouped the animals with high and low parasitemias 

separately (Figure 5A). Similar results were seen in clustering profiles of simulated 

concentrations of the 16 metabolites (Figure 5B). The P. cynomolgi infection experiments 

yielded the same results: both TP3 profiles of model fluxes (Figure 5C) and metabolite 

concentrations (Figure 5D) clustered the high-parasitemia and low-parasitemia animals 

separately.

Changes in Human Purine Metabolism during Malaria

To assess whether these results on macaques had any relevance for human malaria, we 

analyzed transcriptomics data from a human study [18], in which volunteers were enrolled 

for a challenge trial with P. falciparum, which is closely related to the macaque parasite P. 
coatneyi. RNASeq analysis was performed on 12 individuals. Blood samples were taken 

before the challenge (baseline) and at the day of diagnosis, which here is considered as a 

time point during infection. Normalized expression values of pertinent genes were used for 

simulation. Quite strikingly, we observed similar pattern of purine metabolism in some of 

Tang et al. Page 10

Biochim Biophys Acta. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individuals as in the severe animals (Figure 6). In particular, the same fluxes we observed in 

macaques exhibited significant alterations in humans, namely, the fluxes from 

GMP/GDP/GTP to IMP, from IMP to HX/Ino/dIno, from HX/Ino/dIno to Xa, as well as the 

excretion of HX and Xa. These results suggest that molecular mechanisms perturbing purine 

metabolism during malaria are conserved from non-human primates to humans.

Changes in Purine Metabolism during Chronic Infection

In contrast to P. cynomolgi, P. coatneyi infections can become chronic, thereby causing 

persistent inflammation. Model simulations across all time points during primary and 

chronic infection with P. coatneyi showed purine-related responses in monkeys with higher 

parasitemia (RTi13 and RWr13) that were different from those with low parasitemia. 

Specifically, we found prolonged increases in fluxes from IMP to HX/Ino/dIno and the 

excretion of HX/Ino/dIno and Xa during the entire time from acute primary infection to 

recrudescence patency. These two animals also showed prolonged increases in the 

concentration of HX/Ino/dIno across all seven time points (Figures S4A and S4B). These 

changes were not observed for acute infections with P. cynomolgi. These findings are 

interesting, because HX and Ino have been shown to be associated with inflammation [28, 

29].

Discussion and Conclusions

Disease reflects the malfunctioning of a very complex system. To combat disease effectively, 

we need to develop a deep understanding of the molecular signatures and events that the 

malfunctioning system exhibits. Especially within the setting of personalized disease and 

medicine, these signatures and their trends must be characterized in individualized detail, so 

that population-averaged information may be substituted with patient-specific parameters 

[30, 31]. In the past, experimental and clinical limitations allowed the quantification of only 

very restricted subsets of relevant biomarker signatures. The omics revolution has 

fundamentally changed this situation, because single experiments can easily yield thousands 

of data points, each of which could potentially be a biomarker. The new challenge 

accompanying these experiments is that it is often difficult to interpret the phenotypical 

ramifications of changes in patterns of molecular biomarkers. Here, we take as a pertinent 

example high-throughput transcriptional data, widely viewed to be comprehensive and 

useful. However, clinical manifestations in terms of metabolic or physiological aberrations, 

which may have their root causes in transcriptional changes, are several steps removed from 

the expression of genes so that the specific consequences of altered gene expression are 

difficult to intuit. Here, we address this issue by proposing an interpretation of genomics 

information through a dynamic model that allows us to translate changes at the transcript 

level into alterations in metabolic signatures.

We used as an example for our demonstration the responses of hosts to infections with 

malaria parasites. More precisely, we focused on purine metabolism, which was identified 

by gene set enrichment analysis as significantly affected during infection. While the 

expression of many genes associated with this pathway system was indeed changed to some 

degree, the functional impacts of this expression profile could not be interpreted easily. By 
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contrast, using the transcriptome changes as corresponding changes in enzyme amounts in a 

dynamic model of purine metabolism and integrating this model to the steady state revealed 

a pattern of flux rearrangement within the pathway system. This pattern was consistent 

among different monkeys and even among infections with different Plasmodium parasites 

and in part correlated with parasitemia levels. The main results of this flux rearrangement 

were identified as an increased production and excretion of inosine (IN), hypoxanthine (HX) 

and xanthine (XA), as well as less dramatic changes in a few other compounds.

The fact that the same pattern was seen in many of the infected monkeys, and was somewhat 

corroborated by human malaria data, directly leads to new hypotheses regarding the 

synthesis and utilization of specific purine compounds. This type of hypothesis generation is 

valuable, but it is clear that the mathematical model alone is not in a position to provide a 

possible rationale for such changes. Nonetheless, the literature documents a number of 

observations regarding the roles of purines in malaria, and these may or may not turn out be 

relevant and/or explanatory. Two classes of observations with particular pertinence are the 

following.

1. Purine compounds are often associated with inflammation

It has been known for a while that the end product of the pathway, uric acid, is known to 

stimulate immune activation, even in the absence of bacteria or other stimuli [28, 29]. At the 

same time, IN inhibits inflammatory cytokine production [32] and, upon metabolic stress, 

cells release IN into the extracellular space, where elevated inosine levels are present in 

various inflammatory states. Along the same lines, HX and XA are increased in synovial 

fluid during inflammatory arthritis [33]. It has also been shown that adenosine and IN have 

anti-inflammatory effects [34–36]. More generically, a recent review described the role of 

purinergic signaling in the immune system [37].

Specifically with respect to malaria, hypoxanthine accumulates in infected RBCs [38]. 

When these release schizonts, the parasites precipitate uric acid, which is released into the 

blood stream [39]. HX is also released into circulation, where it may be converted into uric 

acid. Uric acid precipitates are considered key inflammation signals in malaria [38]. They 

are highly inflammatory molecules and serve as danger signals for the innate immune 

system [28]. In particular, uric acid precipitates move into micro-vessels, where they 

stimulate immune cells to produce IL-6, IL-8, IL-10, TNFα, sTNFRII, MCP-1, and IP-10 

[40]. These inflammatory cytokines are considered important components of the host’s 

inflammatory reaction to Plasmodium infection and a major cause of malaria pathogenesis.

2. The Plasmodium parasite needs large amounts of purines for proliferation

Plasmodium does not have the metabolic machinery to synthesize purines de novo [41]. 

However, it propagates very quickly within RBCs and thus requires rapid large-scale 

synthesis of DNA, RNA and of ubiquitous factors like ATP and GTP. In particular, HX is 

essential for Plasmodium growth and commonly used as a required reagent in parasite 

cultures; its concentration in infected RBCs is much higher than in uninfected ones [38, 39]. 

An article by Downie et al. [41] summarized alternative mechanisms in Plasmodium for 

providing purines. Most importantly, the parasite relies on salvaging purine compounds, 
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which are mainly funneled through HX to IMP. HX is transported from plasma into the 

cytoplasm and can also be produced from adenosine or IN. To augment the typical salvage 

observed in mammals, which is facilitated by the enzymes HGXPRT and APRT, P. 
falciparum has an additional enzyme, PfHGXPRT, that utilizes XA instead of HX or 

adenine, respectively. As an aside, enzymes involved in purine metabolism have been 

proposed as potential drug targets [42].

The predictions of the model have yet to be validated against independent data which, 

however, are presently not available. We actually took metabolomic measurements, but 

limitations in annotation prevented us from a more detailed validation of our predictions. 

Because of these challenges, we analyzed the human data, which showed consistent trends, 

and which we consider a type of independent validation. More generally, mechanistic-level 

validation data would be difficult to obtain. For instance, the increased appearance of purine 

compounds in the blood stream, or the lack of significant changes in metabolic profile 

within serum, could both be explained in numerous ways. First, the main driver of blood 

metabolites is the liver, which dwarfs any action by white blood cells whose transcriptional 

profiles are being analyzed here, thus limiting interpretability of experimental measurements 

of serum purine levels. Second, suppose the parasite indeed somehow triggered the 

production of purines in white blood cells. It would most likely do so in order to utilize these 

compounds, which it cannot synthesize de novo. Thus these compounds would easily enter 

the red blood cells, where they would quickly be used up by the parasites, causing them to 

not be measured and providing a false negative result for validation.

Our results and the corresponding observations documented in the literature are intriguing 

and puzzling at the same time. The consistency among species and the correlation with the 

degree of parasitemia suggest that the changes are not merely spurious occurrences. Also, at 

first glance, the results seem to suggest that more hypoxanthine and inosine are produced 

because the parasites require them. However, such a casual interpretation of the results 

requires caution and careful consideration. After all, the parasites invade RBCs, which do 

not have nuclei and therefore cannot respond with transcriptional changes as they are 

observed in the white blood cells (WBCs). This difference in involvement in the host 

response raises a complicated question regarding causality of events: Do the parasites 

deplete purine compounds like ATP in RBCs, which then signal the need for purines, to 

which WBCs respond with transcriptomic and metabolic alterations? Of course, the model 

cannot help with a biological interpretation of such speculations, the computational 

inferences, or the data themselves. Nonetheless, it is remarkable that a metabolic model 

analysis of the type shown here can lead to new hypotheses regarding the targeted rerouting 

of fluxes, and regarding a rationale for changes in transcriptomics. It is now up to wet lab 

experimentalists to test these hypotheses.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

It is often difficult to identify the molecular root causes of a disease

A molecular understanding of a disease is mandatory for targeted interventions

Changes in gene expression during disease are often difficult to interpret

We show how metabolic modeling aids the interpretation of transcriptomic data

We demonstrate our approach with malaria infection data
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Figure 1. Model diagram of purine metabolism (adapted from [23])
Peach-colored boxes contain metabolites or pools of metabolites. Blue arrows indicate 

enzyme-catalyzed reactions or transport steps. Subscripted quantities v denote enzymes 

primarily responsible for associated steps. Solid green and dashed red arrows represent 

activating or inhibiting signals, respectively. Abbreviations of metabolite pools: PRPP, 

phosphoribosylpyrophosphate; IMP, inosine monophosphate; S-AMP, adenylosuccinate; 

Ado, adenosine; AMP, adenosine monophosphate; ADP, adenosine diphosphate; ATP, 

adenosine triphosphate; SAM, S-adenosyl-L-methionine; Ade, adenine; XMP, xanthosine 

monophosphate; GMP, guanosine monophosphate; GDP, guanosine diphosphate; GTP, 

guanosine triphosphate; dAdo, deoxyadenosine; dAMP, deoxyadenosine monophosphate; 

dADP, deoxyadenosine diphosphate; dATP, deoxyadenosine triphosphate; dGMP, 

deoxyguanosine monophosphate; dGDP, deoxyguanosine diphosphate; dGTP, 

deoxyguanosine triphosphate; RNA, ribonucleic acid; DNA, deoxyribonucleic acid; HX, 

hypoxanthine; Ino, inosine; dIno, deoxyinosine; Xa, xanthine; Gua, guanine; Guo, 

guanosine; dGuo, deoxyguanosine; UA, uric acid; R5P, ribose-5-phosphate. The 

Supplements contain a list of the reactions names and their abbreviations.
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Figure 2. Heat map of changes in gene expression at different time points (TP2 – TP7) during P. 
cynomolgi infection
Shown here are transcriptomic changes in the bone marrow of monkey RSb14, relative to 

gene expression at TP1. TP3, which immediately follows the peak of infection (TP2), 

exhibits the strongest changes. Other expression patterns were similar for different monkeys, 

infected with the same parasite (P. cynomolgi; see Supplement Figure S1) or even a different 

parasite (P. coatneyi). Results are shown on a log-10 scale.
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Figure 3. Limited predictability of fluxes from transcriptomics data alone
Fold-changes in steady-state fluxes, computed with the dynamic model, are plotted against 

fold-changes in gene expression in monkey RIc14 for time points TP2, …, TP7 during 

infection with P. cynomolgi. Both axes are presented on a log-2 scale, so that 1 represents a 

two-fold change. One notes horizontal lines, which correspond to several genes associated 

with the same pathway.
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Figure 4. Identification of changes in fluxes and concentrations within purine metabolism 
immediately after peak infection (TP3) in monkey RSb14, which was infected with P. cynomolgi
All metabolites or metabolite pools are color-coded to show fold-increases or decreases in 

concentrations between post-peak and baseline: red colors represent increased 

concentrations at post-peak, while green colors represent decreased concentrations at post-

peak, according to the log-2 color bar. White boxes indicate no significant changes. Red and 

green colors of fluxes represent up- or down-regulation at post-peak compared to baseline. 

Only fluxes with fold-changes greater than 2 are colored; others are shown in blue. The 

degree of change is indicated by the line thickness. For simplicity, regulatory signals are not 

shown (cf. Figure 1).
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Figure 5. Heat maps of simulated fluxes and metabolites immediately following the peak of 
infection
The results show that animals with higher parasitemia are clustered together, separately from 

two animals with lower parasitemia. This finding is true in both P. coatneyi and P. cynomolgi 
infections.

A. Heat map of model-inferred fluxes in P. coatneyi infections.

B. Heat map of model-inferred metabolites in P. coatneyi infections.

C. Heat map of model-inferred fluxes in P. cynomolgi infections.

D. Heat map of model-inferred metabolites in P. cynomolgi infections.
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Figure 6. Changes in fluxes and concentrations within purine metabolism before and during 
infection in a human volunteer challenge trial with P. falciparum
All metabolites or metabolite pools are color-coded to show fold-increases or decreases in 

concentrations between infection and baseline: red colors represent increased concentrations 

at post-peak, while green colors represent decreased concentrations at post-peak, according 

to the log-2 color bar. White boxes indicate no significant changes. Red and green colors of 

fluxes represent up- or down-regulation at post-peak compared to baseline. Only fluxes with 

fold-changes greater than 2 are colored; others are shown in blue. The degree of change is 

indicated by the line thickness. For simplicity, regulatory signals are not shown (cf. Figure 

1).
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