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Abstract

How DNA lesions in nucleosomes are recognized for global genome nucleotide excision repair 

(GG-NER) remains poorly understood, and the roles that histone tails may play remains to be 

established. Histone H3 and H4 N-terminal tails are of particular interest as their acetylation states 

are important in regulating nucleosomal functions in transcription, replication and repair. In 

particular the H3 tail has been the focus of recent attention as a site for the interaction with XPC, 

the GG-NER lesion recognition factor. Here we have investigated how the structure and dynamics 

of the DNA lesion cis-B[a]P-dG, derived from the environmental carcinogen benzo[a]pyrene 

(B[a]P), is impacted by the presence of flanking H3 and H4 tails. This lesion is well-repaired by 

GG-NER, and adopts a base-displaced/intercalated conformation in which the lesion partner C is 

displaced into the major groove. We used molecular dynamics simulations to obtain structural and 
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dynamic characterizations for this lesion positioned in nucleosomal DNA so that it is bracketed by 

the H3 and H4 tails. The H4 tail was studied in unacetylated and acetylated states, while the H3 

tail was unacetylated, its state when it binds XPC (Kakumu, Nakanishi et al. 2017). Our results 

reveal that upon acetylation, the H4 tail is released from the DNA surface; the H3 tail then forms a 

pocket that induces flipping and capture of the displaced lesion partner base C. This reveals 

synergistic effects of the behavior of the two tails. We hypothesize that the dual capability of the 

H3 tail to sense the displaced lesion partner base and to bind XPC could foster recognition of this 

lesion by XPC for initiation of GG-NER in nucleosomes.
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Introduction

In nucleosomes [1, 2], there is considerable interest in the functions of the histone N-

terminal tails [3]. The tails are important sites for posttranslational modifications (PTMs) 

[4–8]. Among the PTMs, lysine acetylation, which neutralizes the lysine positive charge, has 

been identified to play a critical role for opening chromatin structure for transcription, 

replication and repair [9–11]. It has been established for many years that hyperacetylation in 

nucleosomes is associated with DNA damage [12–14] to create access to DNA lesions for 

repair [15–18]. DNA becomes more accessible in nucleosomes upon acetylation [11], as 

well as in nucleosomal arrays when the H4 tail is neutralized with acetylation mimics [19]. 

The functions of the H3 and H4 tails (Figure 1, A and B) are under intensive investigation. 

The H4 tail is implicated in chromatin condensation through its interaction with the negative 

acidic patch of an adjacent nucleosome, because it contains a highly positively charged basic 

region [3, 20–22]. The H3 tail is involved in gaining access to DNA lesions for repair [23, 

24]. Recently, it was found that chromatin assembly that is replication-dependent requires an 

H3/H4 complex containing the relevant N-terminal tail domains in vivo [25]. However, 

whether and how histone tails cooperate to carry out their functions is poorly understood. 

Nonetheless, there are indications that the H3 and H4 tails act synergistically to provide 

access to local DNA upon lysine acetylation [19, 26].

An interesting recent study has shown that the H3 tail, when unacetylated, binds to XPC 

[27], the global genome nucleotide excision repair (GG-NER) lesion recognition protein 

[28]. GG-NER is responsible for the ultimate excision of bulky DNA lesions such as those 
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derived from the ubiquitous environmental pre-carcinogen benzo[a]pyrene (B[a]P) [29, 30]. 

Metabolic activation of B[a]P through the well-studied diol-epoxide pathway [31] leads to a 

variety of DNA adducts [32], including the 10R (+)-cis-anti-B[a]P-N2-dG adduct (cis-B[a]P-

dG) (Figure 1, box) that is well-repaired by GG-NER in both HeLa cell extracts [33, 34] and 

with purified proteins [35], and it is repaired in nucleosomes (Geacintov N.E., manuscript in 

preparation). The cis-B[a]P-dG adduct adopts a base-displaced/intercalated conformation 

(Figure 1, box); in this conformation, the modified base G is displaced from the double helix 

and resides in the minor groove, the B[a]P aromatic rings are inserted into the helix with the 

hydroxyl-containing benzylic ring in the minor groove, and the partner C to the damaged G 

is displaced into the major groove [36]. A recent computational study determined the 

binding free energy pathway of Rad4, the yeast orthologue of human XPC, with cis-B[a]P-

dG, using umbrella sampling with restrained molecular dynamics (MD) simulations and free 

energy calculations [37]. A key finding was the initial capture of the extruded partner C by 

the Rad4 protein. Since lesion partner base flipping is required for productive lesion binding 

by Rad4 [38], the capture of the pre-flipped partner C should play a critical role in the initial 

recognition of this lesion for subsequent successful NER.

Our prior MD simulations investigated the cis-B[a]P-dG adduct placed at the dyad axis in a 

nucleosome core particle (NCP); this study was based on a nucleosome crystal structure [39] 

with PDB [40] ID: 2NZD, in which histone N-terminal tails were truncated [41]. The results 

showed that this base-displaced/intercalated adduct weakens local histone-DNA interactions 

and causes severe local DNA distortions [41]. Additionally, we have studied a 

stereoisomerically different B[a]P-derived DNA adduct, the 10S (+)-trans-B[a]P-N2-dG 

adduct which resides in the B-DNA minor groove [42]; it was placed at super-helical 

location (SHL) ~ 3 in the nucleosome environment [43, 44]. In this case, a single nearby 

histone H2B tail was stably engulfed by the B[a]P ring system [43], and upon lysine 

acetylation of the tail, tail-B[a]P interactions were destabilized [44]. To further investigate 

the interactions of histone tails with DNA lesions, here we investigated the well-repaired cis-

B[a]P-dG DNA adduct [33–35] bracketed by the H3 and H4 tails in a nucleosome with all 

tails present (PDB [40] ID: 1KX5 [45]), and considered the H4 tail in unacetylated and 

acetylated states. We wished to determine whether the cis-B[a]P-dG lesion that is well-

repaired by NER, when flanked by the H3 and H4 tails, would induce local structural and 

dynamic changes that might be sensed by XPC; furthermore, we wished to establish whether 

such changes would be modulated by the DNA accessibility provided by H4 tail acetylation.

Methods

We have carried out 3 µs MD simulations for a system that has the cis-B[a]P-dG DNA 

adduct (Figure 1, box) embedded in a tail-containing nucleosome core particle (PDB [40] 

ID: 1KX5 [45]). We have placed this lesion at SHL= − 1, where it is flanked by the H3 and 

the H4 tails (Figure 1, A and B). The amino acid sequences of the two tails are given in 

Figure 1C. We investigated the H3 tail in an unacetylated state, as required for loading XPC 

[27]; the H4 tail was studied in unacetylated and acetylated states at lysines 5, 8, 12, and 16, 

which are observed to be acetylated in vivo [46–51]. We modeled the cis-B[a]P-dG lesion 

with its displaced partner C (Figure 1, box) into the nucleosome based on an MD [34] 

equilibrated NMR solution structure [36]. Thus, we have here prepared two models: lesion-

Cai et al. Page 3

DNA Repair (Amst). Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



containing NCP with unacetylated H4 tail and with acetylated H4 tail. An unmodified 

control with unacetylated H4 tail (lesion-free NCP) was also investigated. Additional 

simulations were performed to further explore transitions observed in the 3 µs simulation 

and to investigate the role of the H3 tail, that are described below.

The AMBER14 simulation package [52] with force field ff14SB [53] and previously 

published additional parameters for the cis-B[a]P-dG lesion [35] was utilized for carrying 

out MD simulations. Table S1 gives box sizes, number of waters, and length of MD 

simulations. The CPPTRAJ module [54] of the AMBER14 package [52] was used for 

structural analyses. The best representative structures were obtained using the cluster 

analysis in the CPPTRAJ module with the average linkage hierarchical agglomerative 

method [55]. VMD [56] was used for molecular modeling and trajectory viewing. PyMOL 

(The PyMOL Molecular Graphic System, version 1.3×, Schrödinger, LLC) was used for 

structural viewing, images and movies. Full details of the force field, parameters, modeling, 

MD protocols, further analyses, and ensemble sampling are given in Supplementary Data.

Results

Our study reveals that interactions of the two tails with the lesion-containing DNA depend 

on the acetylation state of the H4 tail. Best representative structures from our MD 

simulations are shown in Figure 2 for the cis-B[a]P-dG lesion-containing NCPs, containing 

unacetylated (Figure 2A) and acetylated (Figure 2B) H4 tails. We observe that when the H4 

tail is unacetylated (Figure 2A, and Movie S1), it condenses on the DNA minor and major 

grooves and interacts with the DNA and cis-B[a]P-dG lesion. The contact surface area 

(CSA) shows the interaction between the unacetylated H4 tail and the DNA grooves (Figure 

2, between A and B). Hydrogen bonding interactions between the H4 tail and the lesion-

containing DNA are given in Table S2, and van der Waals interactions are given in Figure 

S1, Supplementary Data. The bulky B[a]P aromatic ring system is intercalated, with the 

hydroxyl groups in the minor groove and the displaced partner C is on the major groove 

side, similar to the NMR solution structure [36]. The cis-B[a]P-dG lesion in its base-

displaced/intercalated conformation (Figure 1, box) opens the minor groove both in free 

DNA [35, 36] and in the nucleosome (Figure S2, Supplementary Data).

By contrast, when the H4 tail is acetylated, it is released from the DNA (Figure 2B, and 

Movie S2); this results from the reduction in positive charges on the tail, which weakens the 

interactions between the tail and the negatively charged DNA backbone. Hydrogen bonding 

is also reduced (Table S2, Supplementary Data). The acetylation of the H4 tail exposes the 

local DNA and provides greater accessibility to the vicinity of the lesion-containing DNA. 

The CSA between the H4 tail and the DNA is significantly lower in the acetylated case 

(Figure 2, between A and B).

In the presence of the lesion and upon the H4 tail acetylation, the H3 tail forms a pocket that 

is flexible due to rotation of the sidechains; this pocket captures the flipping, extruding 

partner C. Prior to the flipping, the partner C remains in the major groove (State I). The 

flipping and capture occur at ~ 1.3 µs in the MD simulation. The captured state (State II) 

persists to ~ 2.7 µs; then the C flips back to its original position in the major groove (State I) 
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and remains there till the end of the ~ 3.0 µs MD simulation). Figure 2C gives three 

snapshots along the flipping transition with their varying flipping dihedral angles (defined in 

Figure 2D). Figure 2E shows time dependence of the flipping dihedral angle. Movie S3 

shows the process of flipping the C into the pocket in the H3 tail. The pocket that captures 

the base C is composed of H3 tail residues Pro16, Arg17, Lys18, Ser28, Ala29, Pro30, 

Ala31, Pro38, His39, and Tyr41 (Figures 1C and 2B). Figure 2F shows time dependence of 

the van der Waals interaction energies between the partner C and the residues that surround 

the pocket, which reveals that the interaction is minimal until the C is captured. Furthermore, 

Pro30 plays an important role in interacting with the flipped out partner C base, anchoring it 

near the bottom of the pocket (Figure S3, Supplementary Data). The importance of CH/π 
interactions between aromatic rings and proline has been discussed by Zondlo et al. [57].

In order to further explore the transitions and states observed in the ~ 3 µs simulation, we 

carried out additional 12 independent 500 ns MD simulations. Each simulation started from 

the same structure (Figure S4) just prior to the flipping and capture at ~ 1.3 µs and had a 

flipping dihedral angle of ~ 90° (Figure 2E). In this structure, the partner C is in the major 

groove and a pocket had already formed in the H3 tail (Details are given in Supplementary 

Data). Figure 3A shows the time dependence of the flipping dihedral angles in these 12 

simulations. In 5 of them there was no transition, and the partner base C stayed close to the 

initial state (State I, with partner C in the major groove, Figure 3B). In addition, one 

simulation made a brief transition to State II in the beginning of the simulation and then 

returned to State I for the remainder of the simulation. In 3 simulations, the transition from 

State I to II (in which partner C is captured) occurred within the first 50 ns and persisted 

throughout the simulation (Figure 3C). In one simulation, the partner C episodically 

transited between State I and State II, especially in the second half of the simulation. In two 

of the simulations we observed a transition from State I to II, and then rapidly (all within the 

first 65 ns) from State II to III, in which the partner C resides in the minor groove (Figure 

3D); in this case, the transient capture of the C by the H3 tail facilitates the shift of the C 

from the major to the minor groove, which does not happen directly and was not observed in 

the 3 µs long MD simulation.

To further substantiate the role played by the H3 tail in the flipping of the displaced C, we 

also carried out 10 additional 200 ns MD simulations that had the full length H3 tail 

truncated when the H4 tail is acetylated (Details given in Supplementary Data). The results 

revealed that, without the H3 tail, the partner C remains stably on the major groove side. 

Thus, these studies show that the partner C explores more conformations in the presence of 

the nearby H3 tail and with the H4 tail acetylated; this suggests a synergistic effect of the H3 

and H4 tails in bringing about an enhanced dynamic range of the partner C.

Conclusion

We used MD simulations to investigate a base-displaced/intercalated cis-B[a]P-dG lesion 

positioned in nucleosomal DNA placed at SHL = −1, where it is bracketed by the H3 and H4 

tails. We found that the behavior of the H3 tail and the base C that is partner to the cis-

B[a]P-dG lesion is greatly impacted by the state of acetylation of the H4 tail, indicating 

synergy between the behavior of the two tails. In particular, when the H4 tail is in the 
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unacetylated state, it is collapsed on the lesion-containing DNA surface and the lesion 

partner C stays in the major groove, so that the H3 tail does not interact with it. However, 

upon charge-neutralizing acetylation, the H4 tail is released from the DNA surface. In this 

altered electrostatic environment of the DNA, the H3 tail forms a pocket near the partner 

base C. This pocket induces the flipping and capture of the partner C. The key role played 

by the H3 tail in this flipping process is substantiated by the observation that the absence of 

this tail abolishes the flipping transition.

Thus, our work reveals that a nucleosomal tail can capture the displaced partner base C of 

the cis-B[a]P-dG lesion. The generality of this phenomenon if the cis-B[a]P-dG lesion were 

placed at different rotational and translational positions in the nucleosome will require 

further investigation. We envision that the amino acid sequence and the length of the tail, its 

state of acetylation, and the location of the cis-B[a]P-dG lesion vis-à-vis one or more tails 

would interplay to govern the outcome, representing a complex set of variables whose 

combined impact is hard to predict. However, the capacity of the partner C to be captured is 

clearly revealed here and it is plausible that the phenomenon would be manifested at other 

nucleosomal settings. The SHL = + 1 position, flanked by the second set of H3/H4 tails 

could be such a location. More broadly, our work shows the capacity of the displaced lesion 

partner C to interact with nearby proteins in general; an example is its capture by Rad4 [37]. 

It will be interesting to learn if DNA adducts that adopt base-displaced/intercalated 

conformations generally utilize their displaced lesion partner bases to bind with interacting 

proteins.

The H3 tail/partner base complex could foster detection of the lesion by the GG-NER lesion 

recognition factor XPC. The recent work of Kakumu et al. [27] showed that XPC binds to 

the unacetylated H3 tail and these studies suggested that the H3 tail could act as a platform 

for recruiting XPC in chromatin. The importance of the H3 tail in XPC recruitment has 

recently been reinforced by a study of the cis-syn cyclobutane pyrimidine dimer (CPD); this 

lesion specifically requires DDB2 for its primary recognition and its handoff to XPC. It was 

found that a methylase is recruited by DDB2 that methylates lysine 4 of the histone H3 tail 

to aid in the docking of the XPC to nucleosomes [58].

A single flipped out deoxyribonucleotide present on the undamaged partner strand has been 

shown to trigger assembly of excision complexes in the case of the 10R (+)-cis-anti-B[a]P-

N2-dG adduct (cis-B[a]P-dG), its (−) stereoisomeric adduct, as well as the adduct derived 

from the binding of N-acetylaminofluorene (AAF) to the C8-position of guanine [59]. The 

relevance of the displaced partner C in the well-repaired cis-B[a]P-dG lesion to its 

recogntion has been computationally elucidated; it was found [37] that Rad4, the yeast 

homolog of XPC, captures the displaced partner C of cis-B[a]P-dG as an initial recognition 

event in GG-NER.

Our present findings suggest the hypothesis that lesion recognition by XPC could be 

fostered by the dual capability of the H3 tail to interact with XPC and also to sense specific 

intrinsic lesion-induced DNA distortions, such as a flipped out base observed for the base-

displaced/intercalated conformational theme [34, 60] reviewed in [61]. Future studies are 

needed to understand how the interactions of lesion-containing DNA with the histone H3 tail 
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in nucleosomes and higher order structures would affect the tail’s biological roles, including 

in NER. Striking single molecule imaging studies are providing insights on the dynamic 

process of lesion-recognition by XPC [62]. In addition, recent work has provided evidence 

that UV-DDB2 opens chromatin around a site that is damaged by UVC, based on real-time 

tracking of parental H3 and H4 histones in human cells, and suggests that histone 

reorganization or eviction accompanies XPC recognition of the lesion [63]. Understanding 

these higher order dynamic processes in molecular detail is a future challenge.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Nucleosomal histone tails play key roles in chromatin unpacking for NER.

• H3 and H4 tails impact the structure of a nearby benzo[a]pyrene derived DNA 

lesion.

• H3 tail induces capture of the displaced partner C to the cis-B[a]P-dG lesion.

• Acetylation state of the H4 tail modulates the H3 tail’s capture of partner C.

• H3 tail’s dual ability to bind XPC and partner C could foster lesion 

recognition.
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Figure 1. 
(A) Top view of the nucleosome core particle structure (NCP) in the investigated lesion-free 

model, indicating the positioning of histones H3 (purple) and H4 (green) and their tails on 

the DNA surface. The other histones are grey. The position of the dyad axis and super-

helical locations (SHLs) are indicated. The model is based on the crystal structure with PDB 

[40] ID 1KX5 [45]. The H3 and H4 tails investigated are from Chain A and Chain B, 

respectively, in the crystal structure. The red star indicates the modification site for the 

lesion-containing cases. The chemical and NMR solution structures of the cis-B[a]P-dG 

adduct [36] are shown in the inset box. (B) Side view of the same NCP structure as in (A), 

with the core histones not displayed except for the H3 and H4 tails investigated here. The 

two gyres of the DNA are shown: the one from SHL = 0 to SHL = ~ − 7 is blue, and the 

other, from SHL = 0 to SHL = ~ 7, is grey. For clarity, the gyre with SHL = 1 to SHL = ~ 7 

is not displayed in (A). In the window which is the region of interest, the DNA is flanked by 

the H4 tail on one side, and the H3 tail on the other. (C) The amino acid sequences of the H4 

and H3 tails are given. The acetylation sites lysines 5, 8, 12, 16 on the H4 tail are designated 

in green.
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Figure 2. 
(A) When the H4 tail (green surface) is unacetylated, it is collapsed on the DNA minor and 

major grooves, and interacts with the cis-B[a]P-dG lesion. (B) When acetylated, the H4 tail 

is released from the DNA surface, as reflected in the inserted histogram which gives the 

contact surface area (CSA) between the H4 tail and the DNA surface. Also in (B), the 

partner base C to the cis-B[a]P-dG lesion is flipped out and can be captured by the nearby 

H3 tail, which is rearranged to form a pocket (yellow surface) for the C base. The pocket and 

its volume were computed using the POCASA web server [64]. The pocket is surrounded by 

amino acid residues Pro16, Arg17, Lys18, Ser28, Ala29, Pro30, Ala31, Pro38, His39, and 
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Tyr41 (purple surface). The amino acids comprising the pocket were computed with the 

CASTp web server [65–67]. These residues are rendered in purple surface in both (A) and 

(B) to highlight the rearrangement of the H3 tail upon H4 tail acetylation. (A) and (B) show 

the same region of interest as in Figure 1B. The N-terminus of each tail is shown as a black 

sphere. The color code is the same as in Figure 1. See also Movies S1 and S2. (C) Transition 

of the C opposite the cis-B[a]P-dG lesion into the varying-sized pocket of the H3 tail when 

the H4 tail is acetylated. Only the window highlighted in the grey box in (B) is shown. (i) A 

snapshot at ~1.2 µs, where the partner C is on the major groove side and the pocket has 

formed. (ii) an intermediate snapshot between 1.2 µs and 1.3 µs, in which the partner C is 

flipped out but is not yet captured by the pocket. (iii) A snapshot at ~1.3 µs, in which the 

partner C has been captured by the pocket in the H3 tail. The dihedral angles (defined in 

(D)) for (i), (ii), and (iii) are respectively, 76 °, 140 °, and 157 °. The pocket volumes are 

respectively, 61, 39, and 59 Å2. See also Movie S3. (D) The flipping dihedral angle a-b-c-d 
is defined as the center of mass of 4 groups, a, b, c, and d; a is the base A that is the 5’- 

neighbor to the partner C; b is the sugar of the 5’- neighbor base A to the partner C; c is the 

sugar of the partner C; and d is the partner base C. (E) Time dependence of the flipping 

dihedral angle of the partner base C for the lesion-containing NCP with the H4 tail in 

unacetylated state (blue line) and in acetylated state (red line). (F) Time dependence of van 

der Waals interactions between the partner C base and the H3 tail residues that are 

components of the pocket that can capture the partner base C when the H4 tail is acetylated.
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Figure 3. 
Conformational transitions of the partner C in the presence of the H3 tail when H4 tail is 

acetylated. (A) Time-dependence of flipping dihedral angle (defined in Figure 2D) during 

the 12 additional MD simulations of 500 ns, showing the transitions between the distinct 

states. (B), (C) and (D) are the best representative structures of these states. Each color in 

Figure 3A provides the time dependence of the flipping dihedral angle from one MD run of 

the 12 simulations.
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