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Abstract

Genetic and environmental models of neuropsychiatric disease have grown exponentially over the 

last 20 years. One measure that is often used to evaluate the translational relevance of these models 

to human neuropsychiatric disease is prepulse inhibition of startle (PPI), an operational measure of 

sensorimotor gating. Deficient PPI characterizes several neuropsychiatric disorders but has been 

most extensively studied in schizophrenia. It has become a useful tool in translational 

neuropharmacological and molecular genetics studies because it can be measured across species 

using almost the same experimental parameters. Although initial studies of PPI in rodents were 

pharmacological because of the robust predictive validity of PPI for antipsychotic efficacy, more 

recently, PPI has become standard common behavioral measures used in genetic and 

neurodevelopmental models of schizophrenia. Here we review “two hit” models of schizophrenia 

and discuss the utility of PPI as a tool in phenotyping these models of relevant risk factors. In the 

review, we consider approaches to rodent models of genetic and neurodevelopmental risk factors 

and selectively review “two hit” models of gene × environment and environment × environment 

interactions in which PPI has been measured.
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1. Introduction: Utility of Prepulse Inhibition in Models Relevant to 

Schizophrenia

Sensorimotor gating occurs when a motor responses is gated by a sensory event. One form 

of sensorimotor gating that has been studied at multiple levels of biology, from its cellular 

mechanisms (Frost et al., 2003; Nusbaum and Contreras, 2004; Rose and Scott, 2003) to its 

relationship to neuropsychiatric disease (Braff, 2010, 2011; Swerdlow et al., 2008), is 

prepulse inhibition (PPI) of startle. PPI occurs when a weak, subthreshold stimulus 

presented 30–500 ms prior to an intense startling stimulus inhibits the startle response 

(Graham, 1975; Hoffman and Ison, 1980). The circuitry of PPI has been studied most 

extensively in rodents and involves role of cortico-striatal-pedunculo-pontine (CSPP) 

circuitry in which limbic and descending pontine projections modulate the ability of the 

prepulse to inhibit the startle response, which occurs at the level of the pons (Swerdlow et 

al., 2001a; Swerdlow et al., 2008). Thus, PPI provides an operational measure of 

sensorimotor gating and may indicate the integrity of the underlying neural circuitry 

subserving sensorimotor gating mechanisms. PPI is an integral part of human 

psychophysiological studies of neuropsychiatric disease and is amenable to neuroscience-

based inquiry of deficits in functional domains. Indeed, in the Research Domain Criteria 

(RDoC) outlined by the National Institute of Mental Health, PPI is considered part of the 

“Auditory Perception” construct in the cognitive domain. In humans, startle to acoustic or 

tactile stimuli is most often measured from the eye blink response (Braff et al., 1992; 

Fridlund and Cacioppo, 1986; Kumari et al., 2003; Neuner et al., 2010; Swerdlow et al., 

2001b). PPI deficits were first observed in schizophrenia patients (for review see Braff et al., 

2001; Swerdlow et al., 2014; Swerdlow et al., 2008), but are also apparent in their unaffected 

first degree relatives (Cadenhead et al., 2000) as well as patients with schizotypal personality 

disorder (Cadenhead et al., 1993). A recent large, multi-site study reported PPI deficits in 

schizophrenia patients, corroborating the more than 40 single-site studies published to date 

(Swerdlow et al., 2014). PPI deficits, however, are not unique to schizophrenia and are also 

observed in several other neuropsychiatric disorders (Kohl et al., 2013), including 

Obsessive-Compulsive Disorder (Ahmari et al., 2012; Ahmari et al., 2016; Hoenig et al., 

2005; Swerdlow et al., 1993), Tourette’s syndrome (Buse et al., 2016; Castellanos et al., 

1996; Swerdlow et al., 2001b), Huntington’s disease (Swerdlow et al., 1995; Valls-Sole et 

al., 2004), manic bipolar patients (Perry et al., 2001), Panic Disorder (Ludewig et al., 2002), 

Fragile × syndrome (Frankland et al., 2004; Hessl et al., 2009), adults with autism (Perry et 

al., 2007), Asperger’s Syndrome (McAlonan et al., 2002), 22q11 Syndrome (Sobin et al., 

2005), nocturnal enuresis (Ornitz et al., 1992), and Kleinfelter Syndrome (van Rijn et al., 

2011). Thus, PPI deficits are observed across many neuropsychiatric disorders but have been 

the most widely replicated in schizophrenia patients (Braff et al., 2001; Kumari et al., 2008; 

Ludewig et al., 2003; Mackeprang et al., 2002; Swerdlow et al., 2008).

PPI has been a useful behavioral phenotype to consider in genetic mouse models relevant to 

schizophrenia and other neuropsychiatric diseases (Powell et al., 2012). Additionally, 

because PPI measures basic information processing and can be quantified in multiple 

species, it is a useful tool for understanding the biology of putative risk genes. Indeed, over 

the last 20 years a large number of genetic mouse models have been tested for differences in 
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PPI. These studies indicate that PPI can be either increased or decreased by a wide variety 

genes involved in neural development, neurotransmitter function, or basic cellular processes 

(Powell et al. 2009; Powell et al. 2012). Our recent review provided an update on mutant 

mouse models in which PPI was measured as a phenotype with comprehensive tables 

detailing PPI across a wide variety of mutant models and its pharmacological modulation, 

where appropriate (Powell et al., 2012). PPI has also proven to be a useful tool in evaluating 

the impact of environmental risk factors during development, which is covered briefly in 

Section 3.

Previous reviews summarized schizophrenia candidate genes (Arguello and Gogos, 2010; 

Arguello and Gogos, 2011; O’Tuathaigh and Waddington, 2015), while other reviews 

focused specifically on PPI, summarizing genetic mutants, strain differences, and the 

pharmacology of PPI in mice (Geyer et al., 2002; Powell et al., 2012; Powell et al., 2009; 

Swerdlow et al., 2008; van den Buuse, 2010), as well as recent reviews on models of gene × 

environment interactions (Ayhan et al., 2016; Moran et al., 2016). The etiology of 

schizophrenia is multifaceted and likely involves a convergence of both genetic and 

environmental risk factors (Cannon et al., 2003; Gottesman, 1991; Uher, 2014). Thus, 

experimental models evaluating gene-environment interactions are particularly informative 

for schizophrenia. In this review, we summarize approaches to rodent models of genetic and 

neurodevelopmental risk factors and selectively review “two hit” models of gene × 

environment and environment × environment interactions in which PPI has been measured. 

The review highlights approaches to combined risk factors for schizophrenia that have used 

PPI as a behavioral endpoint and discusses caveats of, and future directions for, double hit 

models.

2. Genetic Landscape of Schizophrenia

2.1 Approaches to genetic discoveries

The two primary approaches to understanding the genetics of neuropsychiatric disease are 

the common disease / common allele approach (CDCA) and the common disease / rare 

allele approach (CDRA) (Arguello and Gogos, 2011). Candidate gene or unbiased genome-

wide association studies (GWAS) focus on common genetic variants (>5% allele frequency); 

whereas, the CDRA approach focuses on the hypothesis that rare variants with high 

penetrance can cause common disease (Arguello and Gogos, 2011). Schizophrenia and other 

major neuropsychiatric and neurodevelopmental conditions are likely a combination of risk 

from both common and rare variants.

The recent Psychiatric Genomics Consortium (PGC) genome-wide association study 

(GWAS) of schizophrenia (Consortium, 2014) identified 108 genetic loci associated with 

schizophrenia. Some of the most notable findings in the PGC are loci containing genes for G 

protein coupled receptor signaling, glutamate neurotransmission, neuronal calcium 

signaling, synaptic function and plasticity, other neuronal ion channels, and 

neurodevelopment (Consortium, 2014). Because these associations imply the existence of 

one or more risk variants at the locus rather than a specific gene, it is premature to discuss in 

depth the role of any specific genes at these loci until there is a more complete 

understanding of the risk variants and whether the variants are functional. As the basic 
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biology of the identified loci begins to be investigated, there will certainly be many mouse 

mutants created to target those genes. One strategy for using the PGC GWAS data for 

neuroscience drug discovery put forth by Schubert and colleagues, is to prioritize gene 

targets based on knowledge of gene function and functional variants to identify putatively 

causal genes, and annotate these putatively causal genes with information on mRNA 

expression, de novo mutations, disease-associated rare mutations, and literature knowledge 

to determine targets for novel drug discovery (Schubert et al., 2014). A similar strategy 

could be taken by molecular biologists creating novel mouse mutants for basic biological 

interrogations of target genes. Another interesting finding emerging from large-scale GWAS 

studies across psychiatric disorders is the large degree of genetic overlap between 

schizophrenia and both autism spectrum disorder (ASD) and bipolar disorder, suggesting 

shared disease pathways or common risk. Thus, mouse models manipulating these genes 

should be considered a more general risk factor for multiple neurodevelopmental and/or 

neuropsychiatric disorders.

2.2 Genetics of PPI as an endophenotype

A complementary approach to large-scale GWAS or copy number variant (CNV) studies of 

schizophrenia are genetic studies of endophenotypes, which assume that the 

endophenotypemore proximal to the biological function of disrupted genes and/or be more 

easily and reliably quantified. Hence, psychophysiological processes such as PPI, have been 

used as endophenotypes in schizophrenia genetic studies (Braff et al., 2007; Greenwood et 

al., 2011; Greenwood et al., 2012; Greenwood et al., 2013) based on meeting criteria for a 

viable endophenotype (e.g. heritable, easily measured, good test-retest reliability; (Turetsky 

et al., 2007). PPI heritability has been estimated at 32%, which is similar to the 31% and 

44% schizophrenia heritability estimates for nuclear and extended families, respectively, 

suggesting similar heritabilities for the disease and the endophenotype (Greenwood et al., 

2007; Light et al., 2014).

Candidate gene studies indicated that polymorphisms in the CHRNA3 gene (Petrovsky et 

al., 2010), neuregulin 1 (Roussos et al., 2011), and COMT (Giakoumaki et al., 2008; 

Quednow et al., 2008; Roussos et al., 2008) are associated with PPI. In more recent studies 

of multiple SNPs using much larger sample sizes, however, only a few of these associations 

remained. In the larger, family-based COGS (Consortium on the Genetics of Schizophrenia) 

dataset, SNPs for CHRNA7, NCAM1, COMT, GRID2, CAMK2A were the most strongly 

associated with PPI, and NOS1AP, GRIK3, NRG1, GRIN3A, and DBH moderately 

associated with PPI (Greenwood et al., 2011). In a follow-up study based on non-familial 

samples from UCSD (Greenwood et al., 2012) only GRID2 achieved significance at more 

stringent significance levels. Other genes including GRIK3, CTNNA2, SLC6A3, SLC1A2, 

and GRIN2A were modestly associated with PPI. Across the endophenotypes studied in the 

UCSD and COGS samples, GRID2 and GRIK3 were significantly associated with PPI in 

both studies, strengthening the potential for these two genes to be promising genetic hits. 

The other gene that appeared across two separate studies was SLC6A3 (dopamine 

transporter gene). In addition to the modest association with PPI in the Greenwood et al. 

(2012) study, a genome-wide linkage analysis of the COGS sample suggested linkage (LOD 

score >2.2) for PPI on chromosome 5p15, a “gene dense” region that contains SLC6A3 
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(Greenwood et al., 2013), indicating that the dopamine transporter may be an additional 

gene of interest for follow up studies. Whether this endophenotype approach is more useful 

than genetic studies based on disease diagnosis is heavily debated in psychiatric genetics, 

but it is certainly complementary to GWAS studies of disease and may offer useful 

information regarding biological processes that cut across psychiatric diagnoses (Cuthbert 

and Insel, 2013).

2.3. Mutant Mouse Models: Where to go from here?

McCarroll et al. 2014 argue that a new “biological playbook” needs to be written to address 

the new genetic discoveries emerging from unbiased genome-wide studies (McCarroll et al., 

2014). The question for molecular biologists and basic neuroscientists is - what potential 

genetic “hits” from association studies are plausible targets for follow-up biological studies? 

Since the genes identified in the PGC study are common variants with small effect, 

biological models would likely need to manipulate multiple genes to see a biologically 

relevant effect (Need and Goldstein, 2014). Biological interrogation of the genetic regions 

identified through GWAS are hindered by: (1) lack of clear functional effects of the 

identified SNPs, (2) the likelihood that multiple genes interact to produce the full 

manifestation of disease, (3) the identified risk alleles can be distal to the causative gene, and 

(4) the likely possibility that common variants modify disease risk produced primarily by 

rare variants (Arguello and Gogos, 2011). Thus, the ability to target specific genes or 

multiple genes in rodent models becomes daunting. Need & Goldstein (2014) suggest that a 

better approach may be to focus basic biological and model organism studies on more highly 

penetrant rare mutations such as chromosomal deletions or duplications identified by CNV 

analyses (Need and Goldstein, 2014), while continuing to interrogate the function of the 108 

identified loci from the PGC study.

3. Neurodevelopmental models of schizophrenia

3.1. Neurodevelopmental risk factors

There is increasing evidence that schizophrenia has its roots in disrupted brain development 

due to both genetic and environmental risk factors, leading to psychosis emergence in 

adolescence and early adulthood (Cannon et al., 2003; Murray et al., 2002; Rapoport et al., 

2012). Environmental risk factors are evident throughout development and include prenatal 

and perinatal risk factors, psychological risk factors in early life and adolescence, and 

exposure to drugs of abuse or trauma in adulthood. Several general factors such as season of 

birth (late winter/early spring) (Boyd et al. 1986; Machon et al. 1983; Mino & Oshima 2006; 

Torrey et al. 1997) and social factors such as urbanicity, immigrant status, and social 

isolation are associated with increased schizophrenia risk (Cannon et al., 2008; Dean et al., 

2003; Marcelis et al., 1998). More specific risk factors include prenatal exposure to 

inflammation or birth complications, as well as adolescent exposure to drugs of abuse. Prior 

to discussing studies evaluating these risk factors in the context of gene × environment or 

environment × environment interactions, we first briefly review the evidence for the 

associated risk with schizophrenia. We focus on risk factors for schizophrenia because 

epidemiological studies of disease risk are what have produced candidate risk factors in 

model organisms in which PPI was measured.
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3.2. Prenatal, perinatal, and early postnatal risk factors

Early life exposures to adverse environmental factors, either in utero or during the perinatal 

period, increase the risk of schizophrenia and include maternal stress, maternal malnutrition, 

immune activation or infections, or obstetric complications (Lewis and Levitt, 2002). PPI is 

a behavioral measure that has been extensively studied in many of these neurodevelopmental 

models as we have previously reviewed (Powell, 2010).

Epidemiological studies suggest an increased incidence of schizophrenia after exposure to 

viral or bacterial infections during early to mid gestation (reviewed in Brown and Susser, 

2002; Fatemi and Folsom, 2009; Patterson, 2009; but see also Selten et al., 1999), with links 

being found between influenza (Mednick et al., 1988; O’Callaghan et al., 1991), bacterial 

infections (Sorensen et al., 2009), and also toxoplasmosis (Brown et al., 2005). These 

epidemiological studies have been supported by serological evidence of increased levels of 

gestational influenza infection (Brown et al., 2004a) and increased maternal levels of 

cytokines such as TNF-alpha (Buka et al., 2001) and IL-8 (Brown et al., 2004b) during 

pregnancy in mothers of individuals with schizophrenia. Animal studies have investigated 

the effects of maternal challenges with viral infection (e.g. influenza virus (Shi et al., 2003), 

immune activating agents such as the viral mimic polyriboinosinic-polyribocytidilic acid 

(PolyI:C), and bacterial endotoxin lipopolysaccharide (LPS) (for more thorough reviews see 

Estes and McAllister, 2016; Meyer, 2014; Meyer and Feldon, 2009a; Meyer and Feldon, 

2009b; Patterson, 2009; Powell, 2010).

Prenatal nutritional deficiency has also been shown to increases the risk of schizophrenia 

(Brown and Susser, 2008; Susser et al., 1996; Xu et al., 2009). Thus, nutritional deficiency 

has been modeled in rodents by examining prenatal protein deprivation, which produces PPI 

deficits in offspring (Palmer et al., 2004). Maternal vitamin D deficiency also results in brain 

and behavioral abnormalities related to schizophrenia (reviewed in Burne et al., 2004a; 

Burne et al., 2004b; Burne et al., 2006; Eyles et al., 2013; Eyles et al., 2009; Kesby et al., 

2006; Schoenrock and Tarantino, 2016) with some evidence of PPI deficits associated with 

vitamin D deficiency in rodents (Burne et al., 2004b; Kesby et al., 2006). Additionally, 

obstetric complications such as pre-eclampsia, cesarian section, and perinatal hypoxia have 

been well documented and linked to schizophrenia in several independent studies (Cannon et 

al., 2002; Hultman et al., 1997; Zornberg et al., 2000), and modeled in animals (reviewed in 

Boksa, 2004; Meyer and Feldon, 2009a; Powell, 2010).

There is an increased appreciation for the role of psychological stress, both prenatal and 

early and childhood, in the pathogenesis of schizophrenia (reviewed in Koenig, 2006; 

Koenig et al., 2002). The effects of prenatal stress on schizophrenia-related behaviors in 

animals have been mixed and depend on the methods of inducing “stress” in the pregnant 

dam (Koenig, 2006; Koenig et al., 2005; Lee et al., 2007; Lehmann et al., 2000). Childhood 

trauma or negative childhood experiences contribute to the development of neuropsychiatric 

disorders (Read and Bentall, 2012). The evidence for an association between psychosocial 

stress and psychosis is mixed with some studies showing an association between adverse life 

events and psychosis (Johns et al., 2004; Miller et al., 2001; Shevlin et al., 2008; Wiles et al., 

2006), and other studies failing to see an association between adverse lifetime events and 

psychosis in high risk individuals (Cannon et al., 2016; Mason et al., 2004), or higher rates 
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of childhood trauma in schizophrenia patients compared to controls (Kilian et al., 2017). 

Nevertheless, early postnatal stress has been assessed for its effects on schizophrenia-related 

behaviors with studies of more severe maternal deprivation (e.g. 24 hours) producing 

significant (Ellenbroek and Cools, 2000; Ellenbroek et al., 1998) or only mild or negligible 

deficits in PPI (Choy et al., 2009; Choy and van den Buuse, 2008), and shorter periods of 

maternal separation (e.g. 1–4 h/day) producing mild effects (Klug and van den Buuse, 2012) 

or no effect on PPI in rats (Finamore and Port, 2000; Weiss et al., 2001) or mice (Millstein et 

al., 2006). Many stress models, such as chronic unpredictable stress, social defeat stress, 

restraint stress, do not appear to affect PPI on their own. However, many of these 

manipulations have been used in combination with genetic risk factors (section 4.1) or other 

environmental manipulations (section 4.2) to affect PPI.

3.3 Adolescent Risk factors: social isolation and drugs of abuse

The juvenile/adolescent period is the time in which complex social behaviors develop and a 

critical period for remodeling of neural circuits important for social, emotional, and 

cognitive development (Casey et al., 2008; Giedd, 2008; Leon-Carrion et al., 2004). In 

schizophrenia, social withdrawal occurs early in the course of illness, prior to symptoms of 

psychosis, and predicts conversion to psychosis (Addington et al., 2008; Cannon et al., 2008; 

Moller and Husby, 2000). We have argued that social isolation and withdrawal in the course 

of schizophrenia can both trigger chronic stress cascades and be a consequence of the 

functional impairment resulting from premorbid social cognitive deficits in mental illness 

(Powell and Swerdlow, 2015). Because of the profound impact of social isolation and 

withdrawal on psychiatric health and the importance of the juvenile/adolescent period in 

social interaction and social development, post-weaning social isolation has been studied 

extensively in rodents. We refer the reader to our recent, more extensive review on the topic 

(Powell and Swerdlow, 2015).

Several studies have shown that drug abuse in adolescence increases the risk of developing 

schizophrenia (Nielsen et al., 2017), particularly adolescent cannabis use (Andréasson et al., 

1987; Arseneault et al., 2002; van Os et al., 2002). Epidemiological findings suggest a link 

between cannabis use and psychosis (Gage et al., 2016; Vaucher et al., 2017) and that use of 

cannabis leads to an onset of psychosis at an earlier age than those who develop psychosis 

without a history of cannabis use (Barnes et al., 2006; Donoghue et al., 2014). However, the 

role of cannabis in schizophrenia risk is still unclear, and likely involves an increased 

susceptibility in genetically or environmentally susceptible individuals (Caspi et al., 2005; 

Di Forti et al., 2012; van Os et al., 2002). The effects of cannabis use on PPI are mixed (see 

Discussion for more detail).

4. “Two Hit” Models of Risk factors of Schizophrenia

As reviewed above, early developmental factors are implicated in the pathogenesis of 

schizophrenia (Davis et al., 2016), and recent GWAS have identified multiple common 

schizophrenia risk alleles contributing small effect to disease risk (Owen et al., 2016). In 

addition to common variants with small effects, there is also evidence for the involvement of 

several large CNVs in schizophrenia (Ross et al., 2006). Additionally, there are several non-
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genetic second-hits (substance abuse (McKetin et al., 2013), adolescent cannabis exposure 

(Moore et al., 2007), childhood abuse (Mortensen et al., 1999), and residential status (e.g. 

urbanicity; (Kelly et al., 2010) that act at different periods of neurodevelopmental stages to 

increase risk. Such factors might have relatively weak effects on their own but when acting 

at specific developmental stages in genetically susceptible individuals (Gene × Environment; 

G × E) or in individuals exposed to other environmental risk factors (Environment × 

Environment; E × E), these factor may lead to the development of schizophrenia. Evaluating 

causation of risk factors in human studies is difficult since the risk factors cannot be 

manipulated. One of the primary issues that is difficult to disentangle in human studies is 

whether risk factors are causal to disease or whether some other factor (or covariate) 

influences both the risk factor and disease (Kendler and Gardner, 2010).

During recent years much research has focused on “two hit” developmental animal models 

to fully understand the changes in brain anatomy and behavior present in schizophrenia. The 

timing of these hits during neurodevelopment is very important because they can cause 

differing outcomes, where early developmental hits can lead to more widespread 

abnormalities and later, or second hits, can cause more specific changes (Davis et al., 2016; 

Pantelis et al., 2003). Thus, many rodent studies have employed a “two hit” approach to test 

the hypothesis that maldevelopment during two critical time periods, e.g. early brain 

development and then adolescence, may lead to schizophrenia (Keshavan and Hogarty, 

1999). Here we review recent research modeling combined genetic and environmental risk 

factors (G × E interactions) or combined environmental risk factors (E × E interactions) in 

preclinical studies with an emphasis on sensorimotor gating effects in the models.

4.1 Modeling Gene × Environment risk factors relevant to schizophrenia

Interaction between genetic risk factors and environmental stressors at specific 

developmental stages increases the chance of developing schizophrenia (Uher, 2014). 

Although the notion that schizophrenia results from a genetic predisposition followed by an 

environmental “hit” has been hypothesized for a number of years, only recently have these 

GxE interactions been evaluated in clinical studies (van Winkel et al., 2008). In human 

studies, GxE interactions have been reported for several candidate genes (Uher, 2014). One 

of the first examples showing an association between psychosis and a gene-environment 

combination was for the functional Val158Met polymorphism in catechol-O-

methyltransferase (COMT). Specifically, individuals with the Val allele (i.e. the more 

efficient allele) that had used cannabis in adolescence had an increased risk for psychosis 

(Caspi et al., 2005); however, this initial study was not replicated in subsequent studies (De 

Sousa et al., 2013; Kantrowitz et al., 2009; Zammit et al., 2011; Zammit et al., 2007). 

Additionally, childhood maltreatment may interact with cannabis exposure and COMT to 

increase psychosis risk. Indeed, there have been two reports of an association between 

COMT genotype, childhood maltreatment, and cannabis (Alemany et al., 2014; Vinkers et 

al., 2013). Another gene-environment interaction was reported for the AKT1 gene and 

cannabis, with individuals carrying a polymorphism in AKT1 more likely to develop 

psychosis after cannabis use (Di Forti et al., 2012; van Winkel, 2011). Childhood 

maltreatment has been shown to interact with several genes to increase risk of psychosis, 

including BDNF (Alemany et al., 2011; although see Ramsay et al., 2013), FKBP5, a co-
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chaperone of the glucocorticoid receptor (Collip et al., 2013), and SLC6A4, encoding the 

serotonin transporter, (Aas et al., 2012). In utero infections have also been evaluated in the 

context of gene-environment interactions and psychosis risk. For example, GRIN2B, a 

component of NMDA glutamate receptors, interacted with exposure to herpes simplex 

virus-2 in utero (Demontis et al., 2011), and preliminary evidence from systematic gene-

environment interaction studies indicated that CTNNA3, which encodes a cadherin-

associated protein, interacted with in utero cytomegalovirus exposure in schizophrenia cases 

(Borglum et al., 2014). Thus, there is increasing evidence for gene-environment interactions 

in schizophrenia risk. Whether or not these gene-environment interactions are relevant to 

sensorimotor gating in humans has yet to be determined. Nevertheless, some of these gene-

environment interactions have been studied in animal models and here we summarize how 

GxE interactions have affected PPI in animal studies (Table 1).

4.1.1. Disrupted-in-schizophrenia 1 (DISC1)—Disrupted-in-schizophrenia 1 (DISC1) 

was one of the first genes implicated in the pathophysiology of schizophrenia based on 

studies in a large Scottish family. The mutation involves a balanced chromosome 

translocation on chromosome 1q42 (Blackwood et al., 2001; Millar et al., 2000). DISC1 is a 

synaptic protein involved in cell proliferation, differentiation, and migration (Brandon and 

Sawa, 2011; Jaaro-Peled et al., 2009). Several different lines of transgenic mice containing 

DISC 1 gene mutations have been created to investigate its role in behavior and brain 

development (Ji et al., 2014). Here we summarize the current studies investigating DISC1 

mutant mice combined with environmental risk factors.

DISC1 × maternal immune activation: Lipina and colleagues created two point mutation 

mouse lines DISC1-L100P and DISC1-Q31L and showed that the schizophrenia related 

phenotypic effects were more pronounced in DISC1-L100P mice (Lipina et al., 2012; Lipina 

et al., 2011). Combining this point mutation with maternal immune activation by 

administration of a sub-threshold dose of PolyI:C (2.5 mg/kg) at GD 9 led to more robust 

PPI deficits and decreased startle amplitude in DISC1-L100P offspring compared to 

wildtype control mice. When MIA was combined with the DISC1-Q31L mutation, both 

DISC1-Q31L and PolyI:C (5 mg/kg) produced PPI deficits at 16 weeks, but these deficits 

were not further potentiated by their combination. Following the gestational exposure of 

PolyI:C, increased levels of interleukin-6 (IL-6) were more pronounced in DISC1-L100P 

compared to DISC1-Q31L mice or wild type controls. When an IL-6 antagonist was co-

administered at the time of maternal immune activation, PPI deficits were rescued in DISC1-

L100P mice (Lipina et al., 2013).

DISC1 × neonatal immune activation: Ibi and colleagues utilized transgenic dominant-

negative mutant DISC1 to study genetic and environmental risk factors by injecting poly I:C 

(5mg/kg) between PND 2 & 6. Neither DISC1 mutation nor neonatal poly I:C 

administration produced any changes in PPI (Ibi et al., 2010).

DISC1 × prenatal lead exposure: Recently, prenatal lead exposure has been associated 

with an increased susceptibility of schizophrenia in adulthood (Opler et al., 2004). Lead (Pb
++) is a potent antagonist of NMDA receptors and it is possible that Pb++ contributes to 
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schizophrenia in genetically vulnerable individuals. Hence, another study examined the 

interaction of inducible mutant human DISC1 (mhDISC1) with prenatal exposure to lead. 

Female, but not male, mhDISC1 mice with prenatal lead exposure showed mild PPI 

impairments (at low prepulse intensities 74 and 78dB) (Abazyan et al., 2014).

DISC1 × social defeat stress: Interactions between DISC1 point mutations and chronic 

social defeat have also been examined in DISC1-L100P and Q31L mice. Mutant DISC1-

L100P mice showed lower PPI than WT mice and DISC1- Q31L mice. Chronic social defeat 

stress did not affect PPI in WT, DISC1-L100P, or Q31L mice. Thus, there was no evidence 

of significant gene × environment interactions for social defeat stress and DISC1 mutations 

on PPI (Haque et al., 2012).

4.1.2. Nuclear receptor related 1 protein—The nuclear receptor related 1 (Nurr1) 

protein is a member of the orphan steroid hormone receptor family. Nurr 1 is expressed in 

mesencephalic dopaminergic neurons and is critical for their survival and differentiation 

(Kadkhodaei et al., 2009; Rojas et al., 2007). Nurr1 heterozygous mice showed reduced 

dopamine in both the mesolimbic and mesocortical dopamine pathways, suggesting that 

Nurr1 is involved in the maintenance of dopamine neurotransmission (Eells et al., 2002).

Nurr1 × maternal immune activation: To investigate the interaction of maternal immune 

activation and Nurr1, Nurr1 mutant (heterozygous deletion of the Nurr1 gene) mice were 

exposed to PolyI:C on GD 9. When tested in adulthood (PND 75-120), the combination of 

Nurr1 mutation and PolyI:C resulted in additive effects on PPI, with both genotype and 

gestational exposure exerting main effects and Nurr1 (+/−) mice exposed to PolyI:C showing 

the most pronounced PPI deficits (Vuillermot et al., 2012).

Nurr1 × social isolation: Another study investigated the interaction between Nurr1 and 

early postnatal social isolation. In this study, WT and Nurr1 null heterozygous mice 

subjected to social isolation from weaning were tested for PPI alterations after 12 weeks of 

isolation. Nurr1 heterozygous miceshowed decreased PPI after social isolation, with normal 

PPI associated with isolation rearing or genotype alone (Eells et al., 2006). Thus, social 

isolation potentiated the effects of Nurr1 mutation on PPI.

Nurr1 × infection: In a recent study, Nurr 1 (+/−) mice were infected with Toxoplasma 
gondi and tested in a behavioral battery of tests relevant to schizophrenia. Nurr 1 (+/−) mice 

showed reduced startle magnitude but no differences in PPI compared to WT controls before 

the infection. There were no gene × environment interactions in startle magnitude or PPI in 

male or female mice when tested 6 weeks after the infection (Eells et al., 2015).

4.1.3. Neuregulin 1—Another susceptibility gene studied for its association to 

schizophrenia and sensorimotor gating is Neuregulin 1 (NRG1). Indeed, a schizophrenia-

related NRG1 polymorphism has been associated with prepulse inhibition in human controls 

(Roussos et al., 2011) and schizophrenia patients (Greenwood et al., 2011). NRG1 is 

involved in neuronal migration, synaptogenesis, and neuron-glial interactions in the 

developing brain, as well as excitatory and inhibitory neurotransmission in the adult brain 
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(Harrison and Law, 2006). Because of the role in schizophrenia and brain development, 

NRG1 is an intriguing target to examine gene-environment interactions.

NRG1 × cannabinoid administration: The effects of cannabinoids in NRG1 mutant mice 

have been examined in several studies with some limited evidence of differential sensitivity 

to the behavioral effects of tetrahydrocannabinol (THC). In one study THC increased PPI 

and reduced startle in NRG1 HET mice, but not in WT mice (Boucher et al., 2007). Chronic 

adolescent exposure to THC (10 mg/kg; 21 days) had no effect in either NRG1 HET or WT 

mice (Long et al., 2013). In a subsequent study, Boucher and colleagues (Boucher et al., 

2011) investigated the interaction of NRG1 and cannabinoid administration during 

adulthood. Single administration of the synthetic cannabinoid CP55,940 decreased PPI in 

WT mice and increased PPI in NRG1 HET mice. On the other hand, CP55,940 decreased 

acoustic startle in both WT and NRG1 HET mice. Thus, there is limited evidence for an 

interaction between NRG1 and cannabinoids on PPI and startle, but the data do not suggest 

that NRG1 and cannabinoids have an additive or synergistic effect on reducing PPI; if 

anything, cannabinoids produced increases in PPI.

NRG1 × maternal immune activation: Another study explored the effects of maternal 

immune activation in heterozygous NRG1 TM-domain mice. PolyI:C- or saline-exposed 

offspring were further subjected to cross fostering. Although there was an overall effect of 

decreased PPI in NRG1 HET mice, no clear interaction between NRG1 genotype and 

PolyI:C treatment was observed. There was some evidence of a potentiation of the PPI 

deficit in NRG1 HET with PolyI:C exposure, but this interaction was not consistent and 

interacted in a complicated way with cross-fostering (O’Leary et al., 2014).

4.1.4. Other susceptibility genes

Reelin × hypoxia: Reelin glycoprotein is involved in synaptic plasticity and brain 

development. Reductions in Reelin mRNA and protein levels have been found in prefrontal 

cortex, hippocampus, and cerebellum of schizophrenia patients (Cassidy et al., 2010a; 

Cassidy et al., 2010b). To investigate gene-environment interactions Reeler mice 

(haploinsufficient for Reelin) were exposed to prenatal hypoxia (9% oxygen) on GD17 for 2 

hours. PPI was assessed at 3 months of age in mice exposed to hypoxia (9% oxygen) and 

normoxia in utero. PPI was increased in both WT and Reeler mice prenatally exposed to 

hypoxia. Interestingly, startle amplitude was decreased in WT hypoxia mice and Reeler 

normoxia mice compared to control WT normoxia mice (Howell and Pillai, 2016). Thus, the 

combination of Reelin haploinsufficiency and hypoxia did not produce PPI deficits.

Reelin × corticosterone: To model HPA increases during chronic stress, male and female 

heterozygous Reeler mice received chronic corticosterone treatment in the drinking water for 

21 days starting at 6 weeks of age. Corticosterone treatment reduced PPI in male WT mice 

but had no effect on PPI in male reeler mice, suggesting a potential protective effect of reelin 

deficiency (Schroeder et al., 2015).

PACAP × social isolation: Pituitary adenylate cyclase-activating peptide (PACAP) is a 

member of the vasoactive intestinal peptide (VIP)/secretin/glucagon superfamily and is 
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distributed widely in both brain and periphery (Waschek, 2013). Mice lacking Adcyap1 gene 

encoding PACAP (−/−) display several schizophrenia-related behavioral phenotypes that can 

be reversed by antipsychotics (Hashimoto et al., 2009; Hashimoto et al., 2001; Hashimoto et 

al., 2007; Tanaka et al., 2006). Four week old PACAP-null mutant and WT mice were 

housed in social isolation for two weeks. PACAP KO group-reared mice showed decreased 

PPI compared to WT group-reared mice. Social isolation also disrupted PPI in WT mice. 

PACAP KO mice reared in social isolation showed profound decrease in PPI compared to 

WT group-reared mice, indicating a significant G × E interaction in this model (Ishihama et 

al., 2010).

SNAP25 × prenatal stress: Synaptosomal-associated protein-25 (SNAP25) is a SNARE 

protein known to play a role in neurotransmitter release (Chen and Scheller, 2001) and long-

term potentiation (Jurado et al., 2013). GWAS have indicated the involvement of the 

SNAP-25 genomic region in schizophrenia (Lewis et al., 2003). Additionally, altered levels 

of SNAP-25 were found in frontal cortex (Honer et al., 2002) and hippocampus (Davidsson 

et al., 1999) of patients with schizophrenia. Based on this genetic association, Jeans et al. 

conducted a GxE study utilizing blind-drunk (Bdr) mice that express defective SNAP25 

protein due to a single amino acid substitution (167T) that disrupts the normal recycling of 

synaptic vesicles (Jeans et al., 2007). In this study Bdr mice were exposed to repeated 

prenatal variable stress carried out from GD 11.5 to 17.5. Male offspring were assessed in a 

battery of behavioral tasks at the age of 8–11 weeks. Brd mutants showed a significant PPI 

deficit compared to WT controls. Brd mutants exposed to prenatal stress showed 

enhancement of PPI deficits compared to non-stressed Brd mutants and prenatally stressed 

controls. These deficits were ameliorated by administration of clozapine in Brd mutants 

from both the stressed and non-stressed groups (Oliver and Davies, 2009), suggesting some 

degree of predictive validity in the model.

BDNF deficiency × adolescent drug abuse: Brain-derived neurotropic factor (BDNF) is 

growth factor involved in brain development and neuroplasticity, and altered BDNF 

signaling is reported in schizophrenia (Autry and Monteggia, 2012). Thus, a recent study 

evaluated the effects of repeated synthetic cannabinoid CP55,940 exposure for 3 weeks 

starting at PND42 in BDNF deficient mice. BDNF HET mice showed decreased PPI 

compared to WT mice, and repeated administration of CP55,940 did not alter PPI in WT 

females or males. Acute challenge with CP55,940 increased PPI, particularly in the “double 

hit” group (BDNF HET male mice exposed to chronic CP55,940) but these effects should be 

interpreted with caution since acute CP55,940 reduced startle magnitude, which could 

confound PPI results (Klug and van den Buuse, 2013). Thus, chronic CP55,940 did not 

produce the expected potentiation of PPI deficits in BDNF HET mice. Chronic adolescent 

methamphetamine administration was also examined for its effects in BDNF HET mice. 

While both male and female BDNF HETs showed decreased PPI, chronic METH during 

adolescence did not potentiate these PPI deficits or have an effect on its own (Manning and 

van den Buuse, 2013).

Tap 1 knock out × neonatal influenza A virus: Another study that looked at G × E 

interaction infected immunodeficient Tap 1 mice (due to targeted disruption of the gene 

Khan and Powell Page 12

Schizophr Res. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encoding MHC class 1 and therefore lack functional CD8+ T cells) with influenza virus 

during the neonatal period (PND 3&4). Virus-infected Tap 1 KO mice, but not WT control 

mice, had impaired PPI, indicating long-term deficits in sensorimotor gating in immune 

deficient mice exposed to neonatal infection (Asp et al., 2010).

GCPII × folate deficiency: Glutamate carboxypeptidase II is a neuropeptidase that is 

present in astrocytes and catalyzes N-acetylaspartylglutamate (NAAG) into glutamate and 

N-acetylaspartate (Berger et al., 1999; Luthi-Carter et al., 1998). GCPII is also involved in 

dietry folate metabolism and absorption (Devlin et al., 2000), and thus the combined effect 

of dietry folic acid deficiency and mutation of GCPII was examined in mice. On PND25 

GCPII (heterozygous mice) were either assigned to control folate diet (2 mg/kg) or folate 

deficient diet (0.3 mg/kg folate). The combination of GCPII mutation and folic acid 

deficiency did not affect PPI (Schaevitz et al., 2012).

NMDA receptor × social isolation: Jiang et al, 2013 examined G × E interaction by 

postnatal deletion of NMDA receptor in subset of cortical interneurons combined with post-

weaning social isolation in mice (Jiang et al., 2013). In this study Ppp1r2-Cre/floxed-GluN1 

(NR1 KO) mice were generated that have 40–50% deletion of NR1 in inhibitory 

interneurons by PND21. NR1 KO mice showed impaired PPI compared to WT controls. 

Isolation rearing alone did not produce PPI deficits; however, PPI was impaired in NR1 KO 

mice reared in social isolation. Chronic treatment with apocynin (starting at the age of 2 

weeks) prevented PPI deficits in NR1 KO group-reared and isolation-reared mice (Jiang et 

al., 2013).

4.2 Environment × Environment interactions

Many environmental risk factors have been implicated in schizophrenia such as malnutrition, 

prenatal exposure to infections, stress during neonatal and postnatal development, and 

substance abuse (reviewed in Section 3). There is evidence of additive effects of urbanicity, 

cannabis use, and childhood trauma on risk of psychotic experiences (Guloksuz et al., 2015) 

or between cannabis use and childhood trauma (Harley et al., 2010; Houston et al., 2008; 

Houston et al., 2011; Konings et al., 2012; Murphy et al., 2013). This section focuses on the 

role of two environmental “hits”, or environment-environment interactions, in rodent models 

of PPI.

4.2.1. Immune dysregulation or Infections—It is well established that in utero or 

maternal exposure to infection is associated with increased risk of schizophrenia in offspring 

(Brown and Susser, 2002). The emergence of schizophrenia pathology in infected offspring 

during adulthood depends on the timing of infection during gestational period (Buka et al., 

2008; Cheslack-Postava et al., 2015). Of course, all individuals who are exposed to 

infections in utero do not go on to develop schizophrenia, thus consideration of genetic 

susceptibility and/or additional environmental insults are important. Animal models of 

maternal infection include gestational exposure to either the TLR 3 agonist polyinosinic-

polyctidylic acid (poly I:C), a synthetic analogue of double-stranded RNA, or 

lipopolysaccharide (LPS), a bacterial endotoxin that activates TLR 4.
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Maternal immune activation × stress: Several recent studies have evaluated the interaction 

of maternal immune activation and juvenile/adolescent stress in mice. Giovanoli et al. (2016) 

exposed pregnant dams to a subthreshold dose of PolyI:C (1 mg/kg) or saline on GD 9 and 

offspring were subsequently exposed to varied unpredictable stress between postnatal day 30 

and 40 (i.e. Electric foot shock, restraint stress, swimming stress, food deprivation, repeated 

home cage changes applied to alternate days). Neither prenatal immune activation nor stress 

alone affected PPI; however, peripubertal unpredictable stress was associated with disruption 

of PPI in offspring born from Poly I:C-infected mice but not saline controls. Thus, the 

combination of maternal immune activation and peripubertal stress disrupted PPI. Preventive 

treatment with minocycline (tetracycline antibiotic) before and throughout the exposure of 

stress prevented the PPI deficits in stressed PolyI:C offspring (Giovanoli et al., 2016).

An earlier study investigated the combined effects of maternal immune activation on GD 12 

(20mg/kg) and juvenile stress in C57BL/6 mice. Pups born form poly I:C-infected dams 

were subjected to restraint stress for 3 consecutive days from PND 33 to 35. Juvenile 

restraint stress or gestational Poly I:C alone did not alter PPI when tested 24 hours after the 

last stress episode on PND 36; however, mice exposed to both maternal immune activation 

and juvenile restraint stress did show PPI deficits (Deslauriers et al., 2013). Administration 

of the antioxidant α-lipoic acid before restraint stress prevented the PPI deficits in the two-

hit group and reduced oxidative stress levels in frontal cortex (Deslauriers et al., 2014). 

Other studies have failed to show a potentiating effect of stress on maternal immune 

activation-induced PPI deficits in rats (Yee et al., 2011), suggesting potential species 

differences in the interaction. Nevertheless, the prevention of some of the behavioral effects 

of the combined maternal immune activation and juvenile/pubertal stress with drugs 

targeting inflammation or oxidative stress indicates that this combined model may be useful 

in drug development.

4.2.2. Social isolation—As reviewed above, social isolation in rodents is a developmental 

manipulation in which rodents are raised singly-housed in absence of any social interaction 

with other rats or mice. In this section we summarize the effects of combining social 

isolation with other developmental insults on PPI.

Neonatal domoic acid × social isolation: A recent study investigated the interaction 

between neonatal domoic acid injections and isolation rearing in Sprague-Dawley rats. 

Domoic acid is an AMPA/kainite agonist that, when administered during the second 

postnatal week, results in later onset of behavioral phenotypes consistent with schizophrenia 

(Burt et al., 2008a, b). In this dual-hit study, pups were injected with domoic acid (20 μg/kg 

s.c.) from postnatal day 8–14 and then assigned to group-housing or social isolation at 

weaning. Isolated rats showed PPI deficits. Interestingly, domoic acid treatment increased 

PPI in isolates but no effects were found in group housed animals (Marriott et al., 2016).

Social isolation × methamphetamine: Another study examined E × E interaction by 

utilizing social isolation from weaning and chronic methamphetamine administration. 

Female Wistar rats were reared in social isolation or group housing from weaning. Another 

environmental hit was added by administering escalating doses of methamphetamine (2–6 

mg/kg b.i.d) for 16 days from PND 35 to 50. On PND 78, female rats were tested in PPI. 
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Social isolation alone reduced PPI in rats, and chronic administration of methamphetamine 

reduced PPI to the same extent in isolation-reared and group-housed controls (Strauss et al., 

2014).

Neonatal NMDA antagonist × Social isolation: Lim and colleagues examined E × E 

interaction by combining perinatal MK801 treatment with social isolation in Sprague-

Dawley rats. Rats were injected with MK801 (0.2 mg/kg) from PND 7 to 10 and either 

isolated or group housed at the time of weaning (PND 21). When tested in adulthood (PND 

91) rats exposed to MK-801 and social isolation showed robust PPI deficits (Lim et al., 

2012). Similarly, Gaskin et al evaluated the effects of two developmental insults by 

combining neonatal phencyclidine (PCP) injections and social isolation from weaning in 

Lister-hooded rats. Rats that received both insults showed deficits in PPI, which were not 

present in groups subjected to social isolation or neonatal PCP administration alone (Gaskin 

et al., 2014). These studies indicate that neonatal NMDA antagonist administration, 

combined with post-weaning social isolation, produce robust disruptions in PPI.

4.2.3. Maternal Separation

Maternal separation × Conditioned avoidance × PCP: Another study utilized a multiple 

hit approach during different developmental stages in Sprague- Dawley rats to examine 

combined environmental insults (Chen et al., 2011). Rats were subjected to maternal 

separation from PND 3 to 10 (first-hit) and then to avoidance conditioning on PND 49–56 

(second-hit) and injected with PCP (3 mg/kg) immediately after each avoidance training 

(third-hit). The three hits were then assessed for their effect on change in %PPI from 

adolescence to adulthood. Maternal separation blocked the adolescent to adult increase in 

PPI observed in saline-treated rats but this effect was not evident in rats exposed to 

avoidance training, suggesting that the second hit remediated some of the effects of the first 

hit. This study demonstrates the complexity of using multiple “hits” within the same 

experiment, when triple interactions are being tested.

Maternal separation × corticosterone treatment: In this study Wistar rats underwent 

maternal deprivation on PND 9 for 24 h and then corticosterone treatment for 2 weeks in 

young adulthood (starting at 8 weeks of age). There was no effect of maternal separation, 

chronic corticosterone, or their combination on baseline PPI. Apomorphine disrupted PPI in 

all groups except those sustaining the combination of maternal separation and chronic 

corticosterone; whereas, amphetamine disrupted PPI in all groups except the maternally 

deprived groups. Thus, rather than an increased sensitivity, rats exposed to maternal 

deprivation and early adult corticosterone showed a decreased sensitivity to dopamine 

agonists (Choy and van den Buuse, 2008).

5. Discussion

Here we summarize schizophrenia risk factors, neurodevelopmental animal models, and the 

current findings from two hit models of these risk factors published in recent years. As 

reviewed above, we focused on PPI because of its strong relationship with schizophrenia, its 

heritability, and its sensitivity to developmental risk factors. Taken together, the studies 
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suggest that some gene and environment combinations result in more pronounced PPI 

deficits than either manipulation alone. For example, post-weaning social isolation 

potentiates the PPI deficits in inhibitory neuron-specific NR1 KO mice (Jiang et al., 2013), 

PACAP KO mice (Ishihama et al 2010), and Nurr1 HET mice (Eells et al., 2006), and 

prenatal stress potentiates PPI effects in SNAP25 (Brd) mutants (Oliver and Davies, 2009). 

Inflammation is another second hit that has been shown to enhance PPI deficits in genetic 

mutants. Neonatal influenza produced PPI deficits in immunodeficient Tap 1 KO mice (Asp 

et al., 2010), and maternal immune activation with PolyI:C increases PPI deficits in Nurr1 

HET mice (Vuillermot et al., 2012) and DISC1 mutant mice (Lipina et al., 2013) but failed 

to interact with NRG1 HETs (O’Leary et al., 2014). The evidence for adolescent 

cannabinoids interacting with genetic risk factors is less compelling. There was no evidence 

that THC or the synthetic cannabinoid agonist CP55,940 potentiated the effects of genetic 

risk factors on PPI (Long et al., 2013). In fact, where there was an interaction with genotype, 

cannabinoids actually increased PPI in the mutant mice (Boucher et al., 2007; Boucher et al., 

2011; Klug and van den Buuse, 2013). Considering that the effects of cannabis use on PPI 

are mixed in the clinical literature, these results may not be surprising. In adults, chronic 

marijuana use was not associated with PPI (Quednow et al., 2004); however, adult marijuana 

users that initiated use during adolescence had decreased PPI compared to non-using 

controls in a task that involved attending to the auditory stimuli (Kedzior and Martin-

Iverson, 2006, 2007; Scholes and Martin-Iverson, 2009). The timing of marijuana initiation 

may be important to the effects on PPI. In fact, there is evidence that cannabis use increased 
PPI in “at risk” and “early psychosis” subjects (Cadenhead, 2011). Human studies indicate 

that age of cannabis use onset, duration of use, and stage of illness at the time of PPI testing 

contribute to the effects of cannabis use on PPI. Thus, recapitulating these effects in animal 

models may be particularly challenging, and it is not clear the direction of prediction (i.e. 

increased or decreased PPI) considering the equivocal effects of cannabis use on PPI in 

humans. Animal studies of cannabinoids and PPI are equally equivocal. Acute and repeated 

juvenile and peri-pubertal administration of the cannabinoid agonist, WIN55,212-2, 

disrupted PPI in adulthood (Schneider et al., 2005; Schneider and Koch, 2002, 2003; 

Wegener and Koch, 2009); however, other groups have failed to replicate these findings 

(Bortolato et al., 2005; Bortolato et al., 2014). Adolescent exposure to other drugs of abuse, 

including amphetamine and alcohol, do not appear to affect PPI in adulthood (Coleman Jr et 

al., 2011; Richetto et al., 2013). Thus, there is not a lot of compelling evidence from animal 

studies that exposure to drugs of abuse in adolescence has an enduring effect on PPI. It 

should be noted, however, that animal studies use either THC or synthetic cannabinoid 

agonists; whereas, humans smoke cannabis, which contains many constituents in addition to 

THC, making it difficult to model drug exposure in model organisms. These clinical and 

preclinical studies of cannabis and PPI suggest that PPI may not be the most relevant 

measure of the link between cannabis use and psychosis.

Regarding double hits of two environmental/developmental risk factors, there is evidence for 

the combined effects of maternal immune activation and adolescent stress on PPI in mice 

(Deslauriers et al., 2013; Giovanoli et al., 2013), but not in rats (Yee et al., 2011). 

Additionally, perinatal NMDA antagonism combined with post-weaning social isolation 

produced deficits in PPI in rats (Gaskin et al., 2014; Lim et al., 2012). Many of these 
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psychosocial stressors and neonatal/prenatal immune activation manipulations, as well as 

risk gene models, often have effects on their own, making it difficult to determine additivity 

or synergy in the combined models or producing ceiling effects in which further disruption 

is not achievable. For example, although both social isolation and adolescent 

methamphetamine reduced PPI in rats, the combination had no additive or synergistic effect 

(Strauss et al., 2014). Similarly, prenatal hypoxia produced PPI deficits in Het and KO 

Reeler mice (Howell and Pillai, 2016). To address the issue of main effects and to provide 

adequate behavioral windows to assess potentiation, many studies have used sub-threshold 

manipulations (e.g. lower, sub-threshold dose of PolyI:C as used in Giovanoli et al., 2013) 

and/or heterozygous mutant mice to assess effects of double hits. This approach may provide 

models that better mimic the nature of genetic and environmental interactions in the human 

population.

Most of the G × E models we reviewed looked at one susceptibility gene and environmental 

factors; however, schizophrenia involves more than one gene (Owen et al., 2016) and thus 

studies will likely also begin examining multiple risk genes to investigate epistatic 

interactions. Additionally, most of the studies reviewed focused on the neuronal function of 

susceptibility genes; however, the function of these genes in other cells such as glia should 

also be considered. For example, DISC1 is expressed in astrocytes and microglia (Seshadri 

et al., 2010). Mutant DISC1 expressed in astrocytes decreased production of D-serine in 

astrocytes, which was associated with a greater response to MK-801 in PPI (Ma et al., 

2013). Similarly, astrocytes also produce BDNF (Girardet et al., 2013; Sun et al., 2014) and 

overexpression of BDNF in hippocampal astrocytes produces anxiolytic and antidepressant-

like effects (Quesseveur et al., 2013); however, behavioral changes relevant to schizophrenia 

have not been evaluated. It will be interesting to look at the role of these susceptibility genes 

or multiple developmental insults in microglia and/or astrocytes in GxE or ExE interactions.

One observation emerging from these studies is sex-specific effects of G × E and E × E 

interactions. In schizophrenia, sex-specific effects are observed in the course and symptoms 

of the illness with males having an earlier onset than females, thus it is not surprising that 

animal models related to the disease report different effects in males and females. 

Additionally, schizophrenia is increasingly considered a neurodevelopmental disorder 

(Section 3.0) and the developmental timing of environmental insults can greatly impact the 

pattern of results in the model. For example, maternal immune activation by administration 

of Poly I:C at early and late gestation affect behavior of the offspring differently (Meyer et 

al., 2006; Smith et al., 2007). Similarly, the effects of postnatal hypoxia on PPI depend on 

the timing and severity of the hypoxia. For example, hypoxia at PND 9 had no effect on PPI 

even though it altered mesolimbic dopamine neurochemistry (Sandager-Nielsen et al., 2004). 

Sub-chronic exposure to hypoxia from PND 4–8 did produce PPI deficits in adult rats (Fendt 

et al., 2008). Similarly, when a multiple-hit approach is applied, more attention should be 

paid to the timing of environmental insult and first and second order interactions among 

these hits, either gene or environment.

Animal models of schizophrenia utilizing multiple hits should have face (behavioral 

similarities, symptoms homology), construct (replicates pathology), and predictive (show 

pharmacological reversal of deficits or lack of pharmacological response) validity. Many of 
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the models reviewed here have met these criteria and have shown that combining genetic and 

environmental risk factors or multiple developmental/environmental risk factors improves 

the model. Whether or not these models will offer better predictive validity for drug 

development is not yet known. The appeal of genetic and/or developmental models is the 

opportunity to intervene early in the progression of pathology and test potential preventive 

treatments. In several “single hit” models, particularly prenatal exposure to PolyI:C and 

neonatal ventral hippocampal lesion, preventative treatments have shown the ability to block 

some of the behavioral abnormalities, including reduced PPI (reviewed in Millan et al., 

2016). In mice exposed to gestational PolyI:C, typical and atypical antipsychotics as well as 

antidepressants prevent PPI deficits in the model (Meyer et al., 2010). In the neonatal ventral 

hippocampal lesion model, the emergence of PPI deficits was prevented by adolescent 

treatment with antioxidants (Cabungcal et al., 2014). Perinatal NMDA antagonist 

(phencyclidine administration, PND 7–11)- induced PPI deficits were prevented by the 

mGlu5 positive allosteric modulator AD47273 and the nicotinic alpha-7 partial agonist, 

SSR180711 (Kjaerby et al., 2013). Preventive treatments have also been tested in a few two-

hit models as well. In an effort to target the neuropathology in the model, pubertal treatment 

with minocycline prevented PPI deficits in mice exposed to MIA+juvenile stress (Giovanoli 

et al. 2016). In another study in inhibitory neuron-specific NR1 KO mice exposed to social 

isolation, chronic treatment with apocynin reversed PPI deficits in the mice (Jiang et al., 

2013). Of course, none of these novel therapies have been shown to fully reverse the 

neuroanatomical and neurochemical deficits in individuals suffering from schizophrenia, but 

there is increasing evidence that neuroinflammation and oxidative stress may affect a subset 

of patients with schizophrenia and thus demonstrating efficacy in double hit models adds to 

our understanding of these putative risk factors and potential treatment approaches.

Another important point to consider in assessing models of risk factors for neuropsychiatric 

disease is that most of these risk factors, including both genetic and environmental, increase 

risk only moderately. For example, the estimated odds ratio for the exposure to obstetric 

complications increasing the risk of schizophrenia is 2.0, indicating a rather low relative risk 

associated with obstetric complications (Rapoport et al., 2005). Thus, it is not surprising that 

manipulating these risk factors on their own, or even in combination with one additional risk 

factor, does not produce profound behavioral alterations in model organisms. We must also 

realize that most environmental risk factors for schizophrenia are complex and occur in the 

context of other risk factors and/or protective factors, making them difficult to translate to 

animal models. For example, adolescents that smoke cannabis and are also socially isolated 

from peers may be more at risk than adolescents who smoke cannabis and have a supportive 

social network. Maternal infection combined with inadequate prenatal care may put the 

offspring more at risk than maternal infection combined with good prenatal care. The goal of 

animal models should not be to recapitulate the messy complexity and variability of the 

human condition, however. After all, the goal of animal research is to create simplified 

models to systematically manipulate variables of interest and control for as many other 

extraneous variables as possible. The hope is that these models will move beyond mere 

characterizations of behavioral/cognitive constructs deficient across neuropsychiatric 

disorders toward models with predictive power for drug development (Powell et al. 2012). 

Perhaps the combination of susceptibility genes and developmental risk factors will provide 

Khan and Powell Page 18

Schizophr Res. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



better models for medication development for neuropsychiatry. As our knowledge of the 

clinical condition improves, our models should attempt to more closely represent etiological 

risk factors and/or neuropathology in order to develop more predictive models for drug 

development (Moore, 2010). Combining risk factors, as reviewed here, moves the field 

toward developing these more refined models with potential for better translatability. We are 

well aware that all aspects of a heterogeneous disease will not be recreated in model 

organisms with a genetic mutation and/or developmental risk factors. Additionally, no single 

phenotype such as PPI is either necessary or sufficient to substantiate a model as having 

relevance to neuropsychiatric disease. Thus, as human studies materialize with more 

neurobiologically defined functional domains (as outlined in initiatives such as the NIH 

RDoC), translating these measures or “endophenotypes” to animal models will improve. As 

a preclinical behavioral measure, PPI has shown predictive validity in rodent 

pharmacological models, cross species homology, and sensitivity to genetic and 

neurodevelopmental risk factors for schizophrenia. Whether or not PPI has fulfilled its 

promise of informing clinical neuropsychiatry has been recently considered (Swerdlow et 

al., 2016; Swerdlow and Light, 2016). In terms of the double hit models reviewed here, PPI 

does not appear to be a sensitive measure of combined risk factors in many cases. Some 

double hit paradigms (e.g. MIA + adolescent stress), however, have shown synergistic 

effects on PPI that can be prevented by novel therapeutics, indicating a potentially enhanced 

ability to discover novel therapeutics (Giovanoli et al., 2016). While these rodent models are 

not without shortcomings, they are more closely approximating etiology by examining 

multiple risk factors. Hence, further consideration of environmental risk factors and 

systematic approaches to studying these combined risk factors would greatly benefit the 

genetic models. As the primary “hits” from GWAS studies emerge, future studies should 

focus on a sub-set of genes and either combine these candidate genes to examine epistatic 

interactions or, as reviewed here, combine candidate genes with environmental/

developmental risk factors.
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