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INTRODUCTION

Atopic dermatitis (AD) is the most common chronic skin dis-
ease worldwide.1,2 It affects about 20% of children and 5% of 
adults.1,3-5 Patients with persistent or severe AD suffer from pro-
found impairment  of their quality of life.2,6,7 Additionally, AD 
places a heavy economic burden on patients and their family.8,9 
AD is strongly associated with the development of food allergy, 
bronchial asthma, and allergic rhinitis, commonly referred to 
as the Atopic March.10-15 The epidermis provides a physical and 
functional barrier to the human body, and skin barrier defects 
are the most important pathologic findings in AD skin.16-18 Skin 
barrier defects have been considered an initial step in develop-
ing AD.4,17 Recently, investigators have demonstrated that mul-
tiple factors, including immune dysregulation, defects in termi-
nal epithelial differentiation such as lack of filaggrin (FLG), de-
ficiency of antimicrobial peptides (AMPs), altered composition 
of stratum corneum intercellular lipids, and altered skin micro-
biome may affect skin barrier function (Fig. 1).2,4,16,19,20 These 
factors interact with each other and may modify skin barrier 
function. In this review, we discuss normal skin barrier and 
pathogenesis of skin barrier defects associated with the devel-
opment of AD skin disease. Additionally, we review the role of 
emollients, anti-inflammatory agents, sodium hypochlorite, 
probiotics, and microbiome in the treatment and prevention of 
AD development. Moreover, various types of immune-directed 
targets for biologic therapy are reviewed.

Normal skin barrier  
The skin barrier plays a critical role in preventing allergen and 

microbial penetration into the human body.4,10,21 The epidermis 
consists of a 15- to 30-nm-thick layer of proteins and lipids, and 
provides a physical and functional barrier to the human 
body.22,23 The physical skin barrier is mainly localized to the up-
permost area of the epidermis which is the cornified layer (stra-
tum corneum).22,24 The epidermis is continuously regenerated 
by terminally differentiating keratinocytes, which is known as 
cornification or keratinization.22,23 Cornification begins with the 
migration of keratinocytes from the basal to upper layers, and 
ends with the formation of the cornified layer.22,23 During epi-
dermal differentiation, lipids are produced by keratinocytes 
and extruded into the extracellular space to form extracellular 
lipid-enriched layers.22-24 Omega-hydroxy-ceramides are cova-
lently bound to cornified envelope proteins and form the back-
bone for the subsequent addition of free ceramides, free fatty 
acids, and cholesterol in the cornified layer.22-24 The epidermis 
undergoes complete turnover every 28 days.25

Cell proliferation, differentiation, and death occur sequential-
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ly, and each process is characterized by the expression specific 
proteins, including occludin, claudins, keratins, transglutamin-
ases (TGs), loricrin, and FLG.22,23,26,27 Keratinocytes express spe-
cific differentiation markers according to their stage of epider-
mal differentiation.22 For instance, keratin 5 and TG2, which are 
expressed in the basal layer, represent early differentiation 
markers. In contrast, FLG, which is expressed in the upper 
granular and cornified layers, is a late differentiation marker. 
Tight junctions (TJs), desmosomes, and adherens junctions are 
paracellular proteins that form a permeability barrier between 
adjacent cells and involve cell adhesion.26-29

Keratinocytes also produce AMPs including cathelicidin (LL-
37) and beta-defensins (HBDs), which kill microbes and play 
important roles in maintaining skin homeostasis.30,31 In addi-
tion to their antibacterial activity, AMPs kill viruses and fungi 
through multiple modes of action.31 The levels of AMPs, such as 
HBDs and LL-37 in epidermis, are low in normal health condi-
tions, but are highly expressed upon infection and inflamma-
tion.31,32 AMPs form an innate epithelial chemical barrier and 
have pleiotropic functions.31,33 They not only kill microbes, but 
also control inflammation and regulate the skin barrier.31,34,35 
Impaired TJ protein expression contributes to skin barrier dys-

function in AD.36 HBD-3 improves the function of the epithelial 
TJ barrier by inducing expression of several claudins.34 HBDs 
and LL-37 also induce production of IL-18 through p38 and Erk 
mitogen-activated protein kinase activation in human kerati-
nocytes.37 Additionally, they induce expression of IL-6, IL-10, 
macrophage inflammatory protein-3 alpha, and RANTES.38 
Furthermore, it has been reported that HBDs and LL-37 induce 
keratinocyte migration, proliferation, re-epithelialization, neo-
vascularization, and wound healing.31,35,38,39  

The cornified layer is surrounded by a continuous lipid matrix 
which provides a barrier against water and prevent water 
loss.24,40,41 The lipid matrix mainly consists of 3 lipid classes: 
cholesterol, free fatty acids, and ceramides.23,42 Therefore, the 
lipid matrix in the cornified layer may play crucial roles as a 
part of skin barrier and shows altered composition in AD skin. 

It has also recently been reported that the epidermal microbi-
ome may also play crucial roles in maintaining skin barrier 
function.4,16,43 Previously, the biogeography of the skin microbi-
ome has been reported in children and adults.44,45 Several stud-
ies have shown that human skin microbiome is site-specific.44-46 
Recently, it has been reported that the gut and cutaneous com-
mensal bacteria, including Staphylococcus (S.) epidermidis, and 

Fig. 1. Impaired skin barrier enhances allergen penetration and activates the innate immune system. Multiple factors, including immune dysregulation, defects in 
terminal epithelial differentiation such as lack of filaggrin (FLG), deficiency of antimicrobial peptides (AMPs), altered composition of stratum corneum intercellular 
lipids, and altered skin microbiome cause skin barrier defects. Source: Czarnowicki et al. J Allergy Clin Immunol 2017;139:1723-34.
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S. hominis, play important roles in skin homeostasis and host 
defense against microbial penetration.47-50

Dysregulation of the skin barrier in AD
Epidermal barrier proteins, including FLG, TGs, keratins, lo-

ricrin and intercellular proteins, are cross-linked to form an im-
permeable skin barrier.22,23 Skin barrier defects facilitate aller-
gen sensitization and lead to systemic allergic responses, such 
as increased IgE levels and airway hyperreactivity.36,51-53 Tran-
sepidermal water loss (TEWL) is a noninvasive measurement 
used to evaluate skin barrier function.54 Patients with AD have 
increased TEWL, which reflects skin barrier dysfunction in AD, 
and can precede clinical AD.55,56 

AD skin is characterized by overexpression of Th2 and Th22 
cytokines that contribute to skin barrier dysfunction by altering 
protein and lipid content in the skin (Table 1).2,4,57,58 FLG is a key 
epidermal barrier protein.22,59 It is degraded into free amino ac-
ids and these amino acids are essential for maintaining skin pH 
and the retention of water contributing to osmolarity in the cor-
nified layer.60-62 FLG deficiency alters the shape of corneocytes 
in the skin and enhances skin inflammation by facilitating epi-
cutaneous sensitization in murine models of eczema.41,63 FLG 
deficiency also causes paracellular skin barrier abnormality 
that reduces inflammatory thresholds to irritants and hap-
tens.41,64 FLG proteolysis occurs upon exposure to a low humid-
ity environment and can be prevented by high humidity.65 FLG 
is decreased in AD skin by overexpression of IL-4, IL-13, IL-25, 
IL-17A, and IL-22 (Fig. 2).57,59,66,67 Additionally, loricrin, and in-
volucrin, which are major epidermal barrier proteins, are also 
down-regulated by Th2 cytokines through STAT6 signaling in 
AD skin.68 It is well known that FLG mutation is a major predis-
posing factor for AD development, particularly in patients who 
have early-onset AD and those with persistent AD.21,55,69-72 How-
ever, a significant number of AD patients do not have any type 
of FLG gene mutation, and about 40% of individuals with FLG-
null alleles do not have AD.21,73 Moreover, most of the patients 
with AD and FLG mutations eventually recover from AD.21,73,74 
Therefore, FLG mutations contribute to AD, but in isolation it is 

not sufficient to generate AD. There are other factors that result 
in AD development. Intercellular proteins, including TJs, des-
mosomes, and adherens junctions, form a permeability barrier 
between adjacent cells and aids with cell adhesion.26-29 Th2 cy-
tokines down-regulate TJs, and impaired TJs contribute to ab-
normal skin barrier function in AD.36,75 Corneodesmosin 
(CDSN) is an intercellular protein that plays a critical role in 
maintaining skin barrier function.29,76 Recently, Lee et al.77 have 
reported that CDSN expression is down-regulated by cytokines, 
including IL-4, IL-13, IL-22, IL-25, and IL-31. Additionally, 
CDSN deficiency resulted in lethal-skin barrier disruption in a 
mouse model,76 and enhanced viral penetration in an organo-
typic skin model.77 Therefore, a variety of cytokines modulate 
epidermal barrier proteins, and cause skin barrier defects.  

AMPs, such as LL-37 and HBD-3, are highly expressed by ke-
ratinocytes during infection, inflammation, and wounding.30,31 
AMPs form an innate multidimensional epithelial chemical 
barrier.31,33 They not only have antimicrobial activities, but also 

Table 1. Epidermal Barrier Dysfunction in atopic dermaitis

Epidermal Barrier Abnormalities Functional effects References

Terminal epithelial differentiation products Reduced filaggrin, loricrin, involucrin, 
corneodesmosin, keratin 1 and 10.

Decreased skin water content, enhanced allergen,  
microbial penetration, and increase skin pH.

32, 60, 68, 77, 82

Tight junctions Decreased claudin-1, 8, and 23. Increased transepidermal water loss (TEWL), enhanced 
allergen and microbial penetration, and decreased 
cohesion.

36, 75

Microbial barrier Cutaneous dysbiosis Skin inflammation, microbial skin infections, keratino-
cytes death, and exacerbation of AD.

3, 49, 81, 94

Lipids Altered compostion of epidermal lipids 
and decreased ceramide.

Staphylococcal infection, dry skin, and increased 
TEWL.

4, 86, 88

Immune barrier Decreased cathelicidin, HBD-2, and 
HBD-3.

Recurrent microbial infections, skin dysbiosis, and  
exacerbation of AD.

4, 30, 31, 33

Fig. 2. Keratinocytes differentiated in the presence of IL-4 and IL-13 exhibit sig-
nificantly reduced filaggrin. Primary human keratinocytes were cultured for 5 
days in 0.06 or 1.3 mmol/L CaCl2 in the presence of IL-4 plus IL-13 or interferon 
(IFN)-gamma. *P<0.05; ***P<0.001 between the exposure groups. Source: 
Howell et al. J Allergy Clin Immunol 2007;120:150-5.
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regulate the skin barrier.31,34,35 AMP expressions are inhibited in 
AD skin by Th2 cytokines, which are overexpressed in AD 
skin.32,78-80 The deficiency of AMPs and over-expressed Th2 cy-
tokines in AD skin is associated with a higher propensity to S. 
aureus infection, which is known to play critical roles in the ex-
acerbation of AD.30,31,81 Son et al.82 have reported that S. aureus 
inhibited expression of terminal differentiation markers, in-
cluding FLG, loricrin, and keratina 1 and 10. Recently, Brauwei-
ler et al.83 have also demonstrated that S. aureus lipoteichoic 
acid inhibits keratinocyte differentiation markers, including 
keratins 1 and 10, and desmocollin1, through a p63-mediated 
pathway. Therefore, deficiency of AMPs and overexpressed Th2 
cytokines in AD skin may lead to frequent microbial skin infec-
tions and skin barrier defects.32,84,85

AD skin also has a defective lipid matrix. This causes impaired 
skin barrier function.18,86,87 Stratum corneum intercellular lipid 
composition in AD skin is characterized by altered expression 
of enzymes involved in the biosynthesis of free fatty acids and 
ceramides.86,88 Researchers have demonstrated that altered 
composition of stratum corneum intercellular lipids correlates 
with S. aureus colonization status in AD.89 Additionally, it has 
been reported that a synthetic omega-hydroxyceramides en-
hanced the integrity of the stratum corneum, and accelerated 
the recovery of damaged skin barrier function by stimulating 
differentiation processes.90 Lowe et al.91 also reported that rou-
tine lipid replacement reduced the incidence of AD during the 
active treatment period by approximately fifty percent. There-
fore, the lipid matrix in the cornified layer may play a crucial 
role as part of the skin barrier.

Microbiome
AD is associated with abnormal skin colonization of patho-

gens, such as S. aureus.4,92 Commensal bacteria induce AMPs 
and inhibit S. aureus on the human skin.16 In contrast, cutane-
ous dysbiosis affects skin immune responses and causes skin 
inflammation.49,93,94 Moreover, skin dysbiosis may cause skin 
barrier defects.95,96 Species-level investigation of AD flares dem-
onstrated greater S. aureus predominance in patients with 
more severe disease, and S. epidermidis predominates in pa-
tients with less severe disease.49 Additionally, S. aureus isolates 
from AD patients with more severe flares induced epidermal 
thickening and expansion of cutaneous Th2 and Th17 cells.49 
However, Kennedy et al.97 reported that commensal staphylo-
cocci were significantly less abundant in infants with AD. This 
finding suggests that commensal bacteria might protect against 
the development of AD. 

AMPs, such as HBD-3 and LL-37, are highly expressed after 
various exposures in the normal healthy skin.31 Down-regulat-
ed AMPs by Th2 cytokines in AD skin causes recurrent micro-
bial infections and may affect skin pH.41,85,98 Several factors, in-
cluding FLG, cytokines, proteases, enzymes, and microbes, al-
ter skin pH.42,98,99 Skin pH is an important factor controlling skin 

homeostasis. Increased skin pH also facilitates microbial skin 
infections and skin barrier defects.4,98,99 Additionally, Brauweiler 
et al.100 have demonstrated that staphylococcal alpha toxin, a 
primary toxin of S. aureus, causes cell death and consequently 
skin barrier defects. Thus, decreased levels of AMPs may cause 
skin dysbiosis and skin barrier defects. In summary, the skin 
dysbiosis and deficiency of AMPs may affect skin homeostasis 
and cause skin barrier defects in AD skin.4,16,47,49 However, addi-
tional studies are needed to elucidate how dysbiosis affects epi-
dermal barrier function. 

Clinical implications in the treatment of AD  
Moisturizers, including petrolatum, physiological lipid mix-

tures, and ceramide-dominant triple-physiolosic lipid (ceramide: 
cholesterol:free fatty acids at a 3:1:1 molar ratio), play critical 
roles in AD management.1,101,102 They improve clinical symp-
toms and skin barrier function, and reduces bacterial coloniza-
tion.4,102-107 Petrolatum improves skin barrier functions by up-
regulation of AMPs, including LL-37, HBD-2, elafin, and S100 
proteins.101 Additionally, epidermal differentiation markers, 
such as FLG and loricrin, are induced by moisturizers.4,101 
Moreover, petrolatum significantly reduces T-cell and dendritic 
cell infiltration in AD skin.101 Glatz et al.108 have reported that 
early emollient therapy alters the skin barrier and microbes in 
high-risk newborns. Of note, Nakatsuji et al.16 have demonstrat-
ed that application of coagulase-negative Staphylococcus 
strains to the skin of patients with AD decreases colonization by 
S. aureus. 

It has been reported that use of dilute bleach (sodium hypo-
chlorite) baths and intranasal mupirocin treatment improves 
AD symptoms.109 Other investigators have reported that topical 
use of bleach inhibites S. aureus and show beneficial effects on 
AD skin possibly through intrinsic anti-inflammatory ef-
fects.110,111  

Hyung et al.112 reported Lactobacillus strain, CJLP55, isolated 
from kimchi, reduced infiltration of mast cells, eosinophils, and 
production of Th2 cytokines in AD-induced mouse skin. Addi-
tionally, Notay et al.113 analyzed 315 articles and reported that 
probiotics and prebiotics improved AD symptoms including 
quality of life and clinical severity. 

Recently, various types of immune therapy have been devel-
oped (Table 2). Clinical studies with broad and targeted thera-
pies have been applied for patients with moderate-to-severe 
AD.1 Cyclosporine and oral glucocorticoids have been used, but 
there are limitations due to multiple adverse reactions. Dupil-
umab, anti-IL-4 Rα monoclonal antibody, improved clinical 
findings in adults with moderate-to-severe atopic dermatitis, 
without significant safety concerns.114-117 Additionally, dupilum-
ab up-regulated genes involved in skin barrier function.117 It 
will be interesting to learn if early treatment of AD with dupil-
umab could prevent progression of the atopic march. 
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Prevention of AD development
Recent studies have demonstrated that moisturizers reduce 

rates of AD development4,104,105 and that probiotic supplemen-
tation may prevent AD.118,119 Additionally, investigators have re-
ported that skin commensal bacteria, including S. epidermidis 
and S. hominis, play crucial roles in skin homeostasis and de-
fense against microbial penetration.47-49 It has also been sug-
gested that colonization by commensal staphylococci can 
modulate skin immunity and might prevent development of 
AD.16,97 Therefore, correcting dysbiosis in AD skin may improve 
skin barrier function and prevent AD development. Recently, 
Kelleher et al.120 have demonstrated that increased TEWL at 2 
days and 2 months predates and predicts AD at 1 year. Kim et 
al.121 have also reported that thymic stromal lymphopoietin 
(TSLP) predicts the development of AD during infancy. These 
data suggest that detection of increased TEWL, TSLP, and skin 
dysbiosis in early life might predict AD and facilitate introduc-
tion of strategies to prevent AD development. These would in-
clude early use of moisturizers, topical anti-inflammatory 
agents, probiotics as well as correction of microbial dysbiosis. 

CONCLUSIONS AND FUTURE DIRECTIONS

Factors, including immune dysregulation, epidermal gene 

mutations, deficiency of AMPs, and skin dysbiosis, may interact 
with each other and cause skin barrier defects. Several strate-
gies have been utilized to improve skin barrier function and to 
control AD. Recently, moisturizers, probiotics, and targeted mi-
crobiome therapy have been suggested to prevent AD develop-
ment in early life. Additionally, broad-spectrum and targeted 
therapies have been considered to control AD and prevent the 
atopic march in patients with moderate-to-severe AD. Further 
studies are warranted to determine the efficacy of these diverse 
strategies, including emollients, probiotics, and commensal 
bacteria, to prevent development of AD. It is noteworthy that 
recent data suggests AD is not just a local skin disease, but a 
systemic immune disease because nonlesional skin and blood 
profile show inflammatory findings. Therefore, we may need to 
expand our scope of management, in the future, to systemic 
treatment in patients with moderate-to-severe AD.
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Table 2. Recent controlled trails in patients with atopic dermatitis

Agent Trade name Target Drug Phase Manufacturer ClinicalTrials.gov

Dupilumab IL-4Rα Anti-IL-4Rα mAb Phase III published Regeneron NCT01949311
Crisaborole PDE4 Topical PDE4 Inhibitor Phase III published Pfizer NCT02118766

NCT02118792
Ustekinumab Stelara IL-12/23p40 Anti-p40 mAb Phase II published Janssen NCT01806662
Tralokinumab IL-13 Anti-IL-13 mAb Phase II completed MedImmune NCT02347176
Tofacitinib JAK1/3 Topical JAK1/3 Inhibitor Phase II published Innovaderm NCT02001181
Lebrikizumab IL-13 Anti-IL-13 mAb Phase II completed Hoffmann-La Roche NCT02340234
CIM331/Nemolizumab IL-31R Anti-IL-31R mAb Phase II completed Chugai NCT01986933
QGE031 IgE Anti-IgE mAb Phase II completed Novartis NCT01552629
Apremilast Otezla PDE4 PDE4 Inhibitor - Oral small molecule Phase II completed Celgene NCT02087943
QAW039/Fevipiprant CRTH2 CRTH2 Inhibitor - Oral small molecule Phase II completed Novartis NCT01785602
ILV-094 IL-22 Anti-IL-22 mAb In Phase II Pfizer NCT01941537
GBR830 OX40 Anti-OX40 mAb In Phase II Glenmark NCT02683928
Secukinumab Cosentyx IL-17 Anti-IL-17 mAb In Phase II Novartis NCT02594098
OC000459 CRTH2 CRTH2 Inhibitor - Oral small molecule In phase II Atopix NCT02002208
Baricitinib JAK1/2 Jak1/2 inhibitor - Oral small molecule In Phase II Eli Lilly NCT02576938
PF-04965842 JAK1/2 Jak1/2 inhibitor - Oral small molecule In Phase II Pfizer NCT02780167
ZPL389 H4R Histamine H4 receptor inhibitor -  

Oral small molecule
Phase II completed Ziarco Pharma NCT02424253

BMS-981164 IL-31 Anti-IL-31 mAb Phase I completed BMS NCT01614756
AMG157/Tezepelumab TSLP Anti-TSLP mAb Phase I completed Amgen NCT00757042
MK-8226 TSLPR Anti-TSLPR mAb In Phase I Merck NCT01732510

CRTH2, Prostaglandin D2 receptor 2; H4R, histamine H4 receptor; IL-4R, IL-4 receptor; TSLPR, thymic stromal lymphopoietin receptor.
Source: Brunner et al. J Allergy Clin Immunol 2017;139:S65-76.
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