Skip to main content
. 2018 Apr 16;9:513. doi: 10.3389/fpsyg.2018.00513

Table 5.

Comparisons of various GAMLSS models with different distributions and different levels of modeling of parameters.

Model Global Deviance df for μ df for σ df for ν df for τ df AIC BIC
IG, μ 10,450 104.47 1.00 0 0 105.47 10,661 11,224
IG, μ and σ 10,246 117.55 52.38 0 0 169.93 10,586 11,492
DEL, μ 10,456 79.73 1.00 1 0 81.73 10,619 11,055
DEL, μ and σ 10,356 83.24 20.42 1 0 104.66 10,565 11,123
DEL, μ, σ, and ν 10,344 83.14 18.86 4.00 0 106.00 10,556 11,121
BCCG, μ 10,424 105.68 1.00 1 0 107.68 10,640 11,214
BCCG, μ and σ 10,222 121.08 48.71 1 0 170.79 10,563 11,474
BCCG, μ, σ, and ν 10,219 121.38 49.42 3.00 0 173.80 10,567 11,494
BCT, μ 10,403 109.62 1.00 1 1 112.62 10,628 11,228
BCT, μ and σ 10,199 123.14 53.59 1 1 178.73 10,557 11,510
BCT, μ, σ, and ν 10,184 124.54 55.24 6.22 1 187.00 10,558 11,555
BCT, μ, σ, ν, and τ 10,184 124.54 55.24 6.22 1 187.00 10,558 11,555

In each model, a penalized P-spline smooth function is used for the three continuous predictors, and a penalized random effect smoother for the categorical variable. The three lowest AIC and BIC are in bold. IG, inverse-Gaussian; DEL, Delaporte; BCCG, Box-Cox Green and Cole; and BCT, Box-Cox t