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Introduction

Thyroid cancer (TC) is one of the most common cancers 
around the world [1]. Although thyroid nodules were 
usually diagnosed as benign, 5~15% proved to be malig-
nant [2, 3]. Fine-needle aspiration (FNA) biopsies were 
the common way to determine the malignancy of thyroid 
nodules. However, 15~30% of aspirations reported an 
indeterminate cytologic finding [4, 5]. Most of these 
patients were recommended for a diagnostic thyroid sur-
gery, but only 15~25% proved malignant [6]. Thus, the 
surgery was unnecessary for a significant number of 
patients, which were exposed to a 2~10% risk of serious 
surgical complications. Moreover, lifetime levothyroxine 
supplementation and additional medical costs were also 

required [7]. In clinical practice, it had a critical need 
to increase the diagnostic accuracy for TC.

Recently, several molecular signatures have been identi-
fied to improve TC diagnosis [8, 9]. However, most sig-
natures were limited in the sample size and absence of 
a specific diagnostic formula and cross-validation. With 
the development of high-throughput gene detection tech-
nology, gene expression profiles were available to identify 
more novel and robust biomarkers. On the other hand, 
diverse biological algorithms provided the possibility to 
integrate the samples in different batches and construct 
a more practical diagnostic or prognostic signature [10]. 
In this study, we integrated a large number of samples 
and developed and validated an individualized diagnostic 
signature in TC.
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Abstract

New molecular signatures are needed to improve the diagnosis of thyroid cancer 
(TC) and avoid unnecessary surgeries. In this study, we aimed to develop a 
robust and individualized diagnostic signature in TC. Gene expression profiles 
of tumor and nontumor samples were from 13 microarray datasets of Gene 
Expression Omnibus (GEO) database and one RNA-sequencing dataset of The 
Cancer Genome Atlas (TCGA). A total of 1246 samples were divided into a 
training set (N  =  435), a test set (N  =  247), and one independent validation 
set (N  =  564). In the training set, 115 most frequent differentially expressed 
genes (DEGs) among the included datasets were used to construct 6555 gene 
pairs, and 19 significant pairs were detected to further construct the diagnostic 
signature by a penalized generalized linear model. The signature showed a good 
diagnostic ability for TC in the training set (area under receiver operating char-
acteristic curve (AUC)  =  0.976), test set (AUC  =  0.960), and TCGA dataset 
(AUC  =  0.979). Subgroup analyses showed consistent results when considering 
the type of nontumor samples and microarray platforms. When compared with 
two existing molecular signatures in the diagnosis of thyroid nodules, the sig-
nature (AUC  =  0.933) also showed a higher diagnostic ability (AUC  =  0.886 
for a 7-gene signature and AUC = 0.892 for a 10-gene signature). In conclusion, 
our study developed and validated an individualized diagnostic signature in TC. 
Large-scale prospective studies were needed to further validate its diagnostic 
ability.
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Method

Data collection

Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) was searched for related gene expression 
profiles from inception to 1 October 2017. Datasets were 
included if fulfilled the following criteria: containing both 
TC samples and nontumor samples (adjacent normal tissues, 
thyroid adenoma, or healthy controls); based on the chip 
platform of Affymetrix Human Genome U133 Array (GPL96, 
GPL570, or GPL571); a sample size of more than 10. The 
datasets with a sample size of more than 50 and at least 
20 nontumor samples were merged into one set for signature 
identification (training set), while the remaining were pooled 
into one set for signature validation (test set). Moreover, 
another RNA-sequencing dataset from The Cancer Genome 
Atlas (TCGA) (https://cancergenome.nih.gov/) was also 
selected as an independent validation set.

Data preprocessing

Normalized gene expression profiles were downloaded by 
an ftp method (ftp://ftp.ncbi.nlm.nih.gov/geo/series/). The 
probe IDs were matched to gene symbols using the 
Affymetrix annotation files (http://www.affymetrix.com). 
When multiple probes matched to an identical gene sym-
bol, we took the average value of expression values across 
multiple probe IDs to represent the corresponded gene 
symbol [11].

Differentially expressed genes (DEGs) 
screening

Linear model was used to screen the DEGs between tumor 
and nontumor samples in each included dataset of the 
training set. The false discovery rate (FDA) <0.05 and 
|log2 fold change (FC)| >0.585 were chosen as the cutoff 
criteria.

Signature construction

In training set, the most frequent DEGs among the included 
datasets were selected, and the gene expression level in 
a specific sample underwent pairwise comparison with 
generate a score for each gene pair. If the first gene of 
a gene pair had a higher expression value than the second 
gene, a gene-pair score of 1 was assigned; otherwise, the 
gene-pair score was 0. Then, a LASSO penalized general-
ized linear model was used in the training set to identify 
significant gene pairs [12]. The penalty parameter was 
estimated by 10-fold cross-validation at 1 standard error 
(SE) beyond the minimum partial likelihood deviance.

Signature evaluation and validation

The coefficients of significant gene pairs in the model 
were extracted to calculate a diagnostic score for each 
sample in the training set, test set, and TCGA set. 
Receiver operating characteristic (ROC) curves and area 
under ROC curve (AUC) were used to evaluate the 
diagnostic ability of the signature score, validate it in 
different sets, and compare it with other molecular 
signatures.

Statistical analysis

All statistical analyses were performed using R software 
(version 3.4.2, https://www.r-project.org/). DEG analysis 
was conducted with limma (version 3.6) package. The 
generalized linear model was constructed with glmnet 
package (version 2.0-13). ROC analysis was performed 
with ROCR (version 1.0-7) package. A two-sided P value 
<0.05 was considered statistically significant.

Results

Characteristics of included datasets

Thirteen GEO datasets and one TCGA dataset were identi-
fied with a total of 1246 samples (925 tumor samples 
and 321 nontumor samples) (Table  1). Ten microarray 
datasets were based on the platform of GPL570, and three 
on GPL96. Five datasets (GSE27155, GSE33630, GSE35570, 
GSE60542, and GSE82208) were merged into a training 
set with a total of 263 tumor and 172 nontumor samples. 
The remaining eight datasets (GSE29265, GSE3467, 
GSE3678, GSE53157, GSE5364, GSE58545, GSE6004, and 
GSE65144) were pooled into a test set with a total of 
157 tumor and 90 nontumor samples. Another independ-
ent validation set of TCGA had a total of 505 tumor 
and 59 nontumor samples.

Signature construction and evaluation

In training set, 115 genes were identified as DEGs among 
at least four included datasets (Figure S1). These genes 
were used to construct 6555 gene pairs. The LASSO penal-
ized generalized linear model identified 19 significant gene 
pairs (consisting of 26 genes), which showed an obviously 
different distribution in tumor and nonsample samples 
(Fig.  1). Then, a diagnostic score was developed based 
on these gene pairs and their coefficients in the model 
(Table  2). The score showed a good diagnostic ability for 
TC (AUC = 0.976) (Fig. 2). Subgroup analyses also showed 
consistent results when considering the type of nontumor 
samples and microarray platforms.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
ftp://ftp.ncbi.nlm.nih.gov/geo/series/
http://www.affymetrix.com
https://www.r-project.org/
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Signature validation

We also constructed the same 19 gene pairs in the test 
set and TCGA set. The coefficients of the 19 gene pairs 
in the model of training set were extracted to calculate 
a diagnostic score for each sample in test set and TCGA 
set. The score also showed a good diagnostic ability in 

both test set (AUC = 0.960) and TCGA set (AUC = 0.979) 
(Fig.  3).

Comparison with other molecular signatures

A 7-gene signature and 10-gene signature were published 
recently, both of which showed a good diagnostic ability 

Table 1. Details about the datasets used in this study.

Accession Year Area Platform Number of samples

Total Tumor Nontumor

Training set
GSE27155 2011 USA GPL96 99 78 21
GSE33630 2012 Belgium GPL570 105 60 45
GSE35570 2015 Poland GPL570 116 65 51
GSE60542 2015 Belgium GPL570 63 33 30
GSE82208 2017 Poland GPL570 52 27 25

Test set
GSE29265 2012 Belgium GPL570 49 29 20
GSE3467 2005 USA GPL570 18 9 9
GSE3678 2006 USA GPL570 14 7 7
GSE53157 2013 Portugal GPL570 27 24 3
GSE5364 2008 Singapore GPL96 51 35 16
GSE58545 2015 Poland GPL96 45 27 18
GSE6004 2006 USA GPL570 18 14 4
GSE65144 2015 USA GPL570 25 12 13

Independent validation set
TCGA 2015 USA IlluminaHiSeq 564 505 59

Figure 1. Heatmap of the gene-pair scores in tumor and nontumor samples of training set.
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Table 2. Signature information.

Gene pair 1 Full name Gene pair 2 Full name Coefficient

CA4 Carbonic anhydrase IV CDH3 Cadherin 3, type 1, 
P-cadherin

−0.343957681

CA4 Carbonic anhydrase IV DPP4 Dipeptidyl-peptidase 4 −0.414152857
DPP4 Dipeptidyl-peptidase 4 SMAD9 SMAD family member 9 0.198178763
GLRB Glycine receptor, beta SEMA3D Sema domain, immuno-

globulin domain (Ig), short 
basic domain, secreted, 
(semaphorin) 3D

0.213058352

GLT8D2 Glycosyltransferase 8 domain 
containing 2

IER2 Immediate early response 2 0.054809905

GLUL Glutamate-ammonia ligase TFF3 Trefoil factor 3 0.106305040
HSPA5 Heat shock 70 kDa protein 5 TFF3 Trefoil factor 3 0.137164218
ID1 Inhibitor of DNA binding 1 TPO Thyroid peroxidase 0.133836321
ITIH5 Interalpha-trypsin inhibitor 

heavy chain family, member 
5

LRP4 Low-density lipoprotein 
receptor-related protein 4

−0.449239654

KRT19 Keratin 19 LMOD1 Leiomodin 1 0.166685729
KRT19 Keratin 19 LRP1B Low-density lipoprotein 

receptor-related protein 
1B

0.026410689

LMOD1 Leiomodin 1 SLC34A2 Solute carrier family 34, 
member 2

−0.134480682

LRP1B Low-density lipoprotein 
receptor-related protein 1B

LRP4 Low-density lipoprotein 
receptor-related protein 4

−0.180802140

LRP1B Low-density lipoprotein 
receptor-related protein 1B

MYEF2 Myelin expression factor 2 −1.070962895

LRP1B Low-density lipoprotein 
receptor-related protein 1B

SLMO1 Slowmo homolog 1 −0.158658033

LRP4 Low-density lipoprotein 
receptor-related protein 4

TNFRSF11B Tumor necrosis factor 
receptor superfamily, 
member 11b

0.149105475

NELL2 NEL-like 2 TCEAL2 Transcription elongation 
factor A (SII)-like 2

0.178969566

QPCT Glutaminyl-peptide 
cyclotransferase

TNFRSF11B Tumor necrosis factor 
receptor superfamily, 
member 11b

0.692483617

TCEAL2 Transcription elongation 
factor A (SII)-like 2

TRAPPC6A Trafficking protein particle 
complex 6A

−0.229715917

Figure 2. Receiver operating characteristic (ROC) curves and area under 
ROC curve (AUC) of the diagnostic signature in training set.

Figure 3. Receiver operating characteristic (ROC) curves and area under 
ROC curve (AUC) of the diagnostic signature in test set.
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for thyroid nodule malignancy [13, 14]. As all nontumor 
samples in GSE82208 were obtained from thyroid nodules 
and diagnosed as follicular adenoma, this dataset was 
selected to reevaluate the two signatures using a logistics 
regression model. In result, the gene-pair signature 
(AUC  =  0.933) showed a better diagnostic ability than 
the 7-gene signature (AUC = 0.886) and 10-gene signature 
(AUC  =  0.892) (Fig.  4).

Discussion

With the development of microarray and RNA-sequencing 
technology, we were entering a new era of big biological 
data. A tremendous amount of genomic information was 
detected in individual samples, which promoted the iden-
tification of novel biomarkers, therapeutic targets, and 
potential pathogenesis. However, most studies were limited 
in the sample size, and it was difficult to integrate the 
samples in different sets for batch effects. The TCGA 
plan has finished RNA sequencing of a relatively large 
number of tumor samples in multiple cancers. LncRNA 
and mRNA prognostic signatures of TC have been devel-
oped using the TCGA data [15, 16]. However, few studies 
focused on the microarray and RNA-sequencing data to 
identify diagnostic signatures in TC. The 167-gene model 
by Alexander et  al. was the first signature based on TC 
microarray data [17]. It showed a good diagnostic ability, 
but it was really difficult for clinical practice, considering 
the lack of a specific diagnostic formula and cross-validation 
based on large-scale samples and multiple platforms.

Multiple microarray platforms occurred in recent years. 
Thereinto, Affymetrix Human Genome U133 Arrays were 
well illustrated and widely used. In this study, we reviewed 
all TC studies based on the Affymetrix U133 platform in 
GEO database and selected those with tumor and nontu-
mor samples for further analyses. Datasets with a relatively 

large sample size were included for DEGs analysis. 
Considering the significant heterogeneity between studies, 
we chose the most frequent DEGs among individual stud-
ies as candidate genes. In gene ontology analysis, these 
DEGs showed an association with thyroid hormone meta-
bolic process (Figure S2). Subsequently, we constructed 
6555 gene pairs with the 115 DEGs. The signature consisting 
of 19 gene pairs showed a good diagnostic ability for TC. 
The 26 genes constituting the gene pairs also related with 
multiple biological processes, especially estrogen-related 
process which was involved in the pathogenesis of TC 
[18, 19] (Figure S3). The gene-pair signature reflected the 
expression imbalance of estrogen-related genes, which could 
make significant effects on the development of TC.

This gene-pair-based method had an important advan-
tage because the score was calculated based entirely on 
the gene expression profile of an individual sample and 
could be used in an individualized manner without the 
need for considering the batch effects [20, 21]. By this 
method, we were able to integrate small-scale studies into 
one large set, which increased the utilizing efficiency of 
public biological data. Furthermore, considering the het-
erogeneity between different gene detection technologies, 
we evaluated the robustness of our signature by a RNA-
sequencing dataset, and the signature had a stable per-
formance. We also used the same data to compare the 
signature with other molecular signatures, and the signature 
showed a higher ability in diagnosing thyroid nodules.

In clinical application, it was very promising to develop 
a diagnostic kit which could measure the expression levels 
of 26 genes in the 19 gene pairs. Then, the sample could 
be diagnosed as malignant or benign according to the 
signature score and the threshold.

The limitations should be acknowledged for our study. 
First, this study was retrospective designed, although we 
tried to include as many datasets as possible and took a 
rigorous validation for our signature. Second, the gene-
pair method was an individualized method, but not all 
batch effects could be addressed, and some might remain.

In conclusion, our study developed and validated an 
individualized diagnostic signature in thyroid cancer. Large-
scale prospective studies were needed to further validate 
its diagnostic ability.
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Supporting Information

Additional supporting information may be found in the 
online version of this article:

Figure S1. Distribution of differentially expressed genes 
in five included datasets of the training set.

Figure S2. Heatmap of enriched biological processes 
across the differentially expressed genes (colored by P 
values).

Figure S3. Heatmap of enriched biological processes across 
the 26 genes in the signature (colored by P values). 


