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Abstract

Multi-system metabolic disorders caused by defects in oxidative phosphorylation (OXPHOS) are 

progressive and severely crippling, often lethal, conditions. Inborn errors of OXPHOS function are 

termed Primary Mitochondrial Disorders (PMDs), and the use of nutritional interventions is 

routine in PMD supportive management. However, detailed mechanistic understanding and 

evidence for efficacy and safety is limited. Preclinical cellular and animal models systems are 

important tools to investigate PMD metabolic mechanisms and therapeutic strategies. This review 

assesses the mechanistic rationale and experimental evidence for nutritional interventions 

commonly used in PMDs, including micronutrients, metabolic agents, signaling modifiers, and 

dietary patterns, while highlighting important gaps in knowledge gaps and impediments for 

randomized controlled trials. The state-of-the-science for cellular and animal model systems that 

recapitulate mutations and clinical manifestations of specific PMDs are evaluated for their 

potential in determining pathological mechanisms, elucidating therapeutic health outcomes, and 

investigating the value of nutritional interventions for multiple mitochondrial disease conditions.
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Introduction

The classical view of mitochondria as simply cellular “powerhouses” has given way to an 

appreciation of a dynamic organelle network at the nexus of energy production, metabolic 

signaling, and cellular homeostasis. Multi-system metabolic disorders are caused by discrete 

genetic mutations that disrupt oxidative phosphorylation (OXPHOS). These Primary 

Mitochondrial Disorders (PMDs), sometimes referred to as mitochondrial encephalopathies 

or myopathies, are progressive, severely crippling, and often lethal diseases that affect 1 in 

4,300 people (1). First identified in the late 20th century, research on PMD mechanisms and 

treatments has proven challenging due to their rarity, difficulties diagnoses, and genetic and 

phenotypic heterogeneity (2). For example, mutations in either nuclear genes or 

mitochondrial (mt)DNA encoding distinct proteins involved in OXPHOS can result in 

similar clinical manifestations. Conversely, the same genetic mutation can result in different 

clinical phenotypes, where the severity of PMDs may increase with the percentage of mutant 

mtDNA (heteroplasmy) in an age and cell type specific manner. Consequently, preclinical 

identification of therapeutic targets and clinical evaluation of interventions for PMD patients 

represent significant challenges, and no cures exist.

The use of nutritional interventions, including dietary supplements, in the supportive 

management of PMDs is an established approach intended to alleviate symptoms and/or 

delay disease progression (3, 4). However, the efficacy of supplements for specific biological 

endpoints or health outcomes is usually not known (4). Marketed dosages of nutritional 

supplements vary greatly, and the bioavailability and metabolism of various formulations are 

not always known. Nutritional interventions for PMD are empirically individualized to each 

patient, with the literature mostly comprising observational reports of non-standardized 

dosing regimens and limited evidence of broad efficacy (5). The ubiquity of supplements can 

present challenges for compliance in use of placebo controls and randomization in clinical 

trials for PMDs.

An understanding of the mechanistic rationale for using nutritional interventions in PMD 

patients is critical for investigating efficacy and safety. While some nutritional interventions 

for PMDs such as nicotinic acid and L-carnitine can be prescribed in FDA-approved drug 

formulations, most cannot, prompting patients and caregivers to seek out dietary supplement 

versions for reasons related to personal preference, cost, or convenience (4, 6). To this end, 

the development and use of robust preclinical model systems to investigate the pathogenic 

mechanisms of PMDs and strategically study the impact of nutritional interventions is 

tantamount (4). Herein, we survey nutritional interventions utilized in clinical settings for 

PMDs and describe key cellular and animal model systems of OXPHOS dysfunction that 

can be used to further elucidate the mechanisms and health outcomes of PMDs, and point to 

important areas in need of additional study.
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Clinical Investigations of Nutritional Interventions

Nutritional interventions can be categorized as micronutrients, metabolic-modifying agents, 

or signaling-pathway modulators. Those currently used for PMDs, and their mechanistic 

rationale, are described (Figure 1; Supplemental Table S1).

Micronutrients

Thiamine and biotin—Thiamine (vitamin B1) is a cofactor of α-ketoacid dehydrogenase 

complexes, which include pyruvate dehydrogenase complex (PDHc), α-ketoglutarate 

dehydrogenase, and branched-chain α-keto acid dehydrogenase; as well for transketolase, an 

enzyme of the pentose phosphate pathway, and 2-hydroxyacyl CoA lyase. While the 

thiamine requirement for healthy individuals is a daily intake of 1–2 mg, there is no 

evidence of adverse effects in patients receiving higher doses (7).

Thiamine is transported into cells by thiamine transporter 1 (THTR1) and THTR2. 

Mutations in the SLC19A3 gene (encoding THTR2) results in biotin-thiamine responsive 

basal ganglia disease and is recognized as a treatable cause of early-onset progressive 

neurodegenerative Leigh syndrome. A combination of biotin (2–10 mg/day) and thiamine 

(100–400 mg/day) has been found to be effective in THTR2 deficiency (8, 9). In current 

clinical practice, empiric supplementation of thiamine and biotin in the form of a B vitamin 

complex is commonly used (10), based on the premise it will enhance PDHc and/or 

OXPHOS flux, and thiamine-responsive PDHc deficiency has been reported (7). However, 

these thiamine and biotin combinations have not been studied in randomized control trials 

(RCTs), or in mitochondrial disease models.

Riboflavin—Riboflavin (vitamin B2) is the precursor of flavin adenine dinucleotide (FAD) 

and flavin mononucleotide (FMN), which serve as essential cofactors for numerous 

mitochondrial dehydrogenases (Figure 1) (11). Riboflavin (50–400 mg daily) is a common 

intervention intended to enhance electron transport chain (ETC) efficiency in PMDs. 

However, these doses are not based on evidence from RCTs (12). Beneficial responses to 

riboflavin supplementation have been reported in patients with primary genetic defects of 

riboflavin transport (13, 14). Multiple acyl CoA dehydrogenase deficiency (MADD) is an 

autosomal recessive disorder of fatty acid and amino acid metabolism involving a defect of 

electron transport from FAD-containing CoA dehydrogenases to CoQ10 in the mitochondrial 

ETC, caused by mutations in flavoprotein dehydrogenase or flavoprotein genes ETFDH, 

ETFA or ETFB (15). Oral riboflavin supplementation (100–400 mg daily) often yields 

muscle strength improvement in patients with MADD. Mutations in ACAD9 (encoding acyl-

CoA dehydrogenase 9) have been reported in some patients with mitochondrial ETC 

complex I deficiency and myopathy, and riboflavin supplementation (150–300 mg daily) 

yields improved exercise intolerance (16, 17). Neurological exam and muscle strength 

improvements, and muscle Complex I and skin fibroblast Complex II activity responses to 

riboflavin have been reported in some small, open label studies of patients with ETC 

complex I and II deficiencies (18–20). However, open-label studies in patients with a variety 

of PMDs (21, 22) did not show a significant response to riboflavin treatment in combination 
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with other vitamins, and riboflavin supplementation in PMDs has not been reported in RCTs 

(23).

Nicotinic acid and nicotinamide riboside—Niacin (vitamin B3) refers to both 

nicotinic acid (NA) and its amide form nicotinamide (NAM), which are precursors to the 

essential cofactor nicotinamide adenine dinucleotide (NAD+) and NAD+ phosphate (NADP
+) (24). In addition to crucial metabolic roles, these cofactors also play a central role in 

sirtuin activity and peroxisome proliferator activator receptor (PPAR) activation (25). NA is 

an FDA-approved drug for hypertriglyceridemia, while NAM is available as a dietary 

supplement in the United States.

Mitochondrial Complex I converts NADH to NAD+, and an increased cytosolic 

NADH:NAD+ ratio can shift the lactate dehydrogenase equilibrium and cause the lactic 

acidosis commonly seen in PMDs (26). Exercise and fasting are known to decrease the 

NADH/NAD+ ratio, resulting in activation of SIRT1 that induces a metabolic-fasting 

response and boosts mitochondrial biogenesis, fatty acid oxidation, and ATP production 

(27). However, disrupted NAD+ metabolism remains a relatively under-appreciated 

pathogenic factor in PMDs. NA and NR supplementation has not been reported in RCTs 

(28), though several studies in cellular and animal model systems indicate that niacin and its 

derivatives warrant further preclinical evaluation (see Sidebar).

Sidebar

Niacin and nicotinamide riboside studies in PMD model systems

Model system studies have investigated the role of NADH/NAD+ ratio in PMDs. Leigh 

syndrome patient fibroblasts harboring mutations in ND4 and ND6 Complex I subunit 

genes revealed an increased relative NADH:NAD+ ratio but decreased absolute NADH 

and NAD+ concentrations. NA treatment normalized nutrient-sensing signaling network 

components (mTORC1 and AMPK), restored NADH/NAD+ redox balance, and 

improved cellular respiratory capacity (240). NR supplementation in patient fibroblasts 

harboring a NDUFS1 mutation increased cellular NAD+ content (241). C. elegans 
research suggests NAD+ deficiency contributors to global disruption of the nutrient-

sensing network; NA treatment improved survival, decreased mitochondrial oxidant 

burden, normalized branched chain amino acid concentrations, and restored NADH (but 

not NAD+) levels (129). Complex I-deficient patients have elevated NADPH (242), and 

Ndufs4−/− mice revealed NADP+ levels also increase such that NADP+/NADPH ratio is 

unchanged (243). NR supplementation in Ndufs4−/− mice partially normalized the 

NADH/NAD+ ratio (244). NR induced mitochondrial biogenesis in Deletor mouse 

skeletal muscle and brown adipose tissue, preserved mitochondrial ultrastructure, and 

prevented mtDNA deletion accumulation (245). Collectively, these studies suggest that 

NADH deficiency can contribute to the phenotype of some PMDs, and that niacin 

supplementation might improve overall cellular function.

Folinic acid—Folinic acid (vitamin B9; 5-formyltetrahydrofolate) is a CNS-penetrant form 

of folic acid that functions as a B vitamin cofactor necessary for cellular one-carbon-transfer 
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reactions (Figure 1). Cerebral folate deficiency (CFD) is characterized by 5-

methyltetrahydrofolate (5-MTHF) deficiency in the cerebral spinal fluid (CSF) with normal 

peripheral total folate levels (29). Kearns–Sayre syndrome patients have CFD and beneficial 

responses to folinic acid have been reported (30, 31). However, CFD does not occur 

consistently in other PMDs. Empiric supplementation is relatively common in PMD patients 

with neurologic symptoms, especially in those documented to have CSF 5-MTHF 

deficiency. Folinic acid doses range from 0.5–2.5mg/kg daily in children or 2.5–25 mg daily 

in adults (12), and are typically well-tolerated. To date no results of RCTs for folinic acid for 

PMDs have been reported.

Metabolic-modifying agents

L-arginine—Although L-arginine is synthesized endogenously, metabolic demand may 

exceed biosynthetic capacity under certain stress or disease conditions. L-arginine is a 

precursor of proteins, polyamines, and creatine, can be converted to α-ketoglutarate (32), 

and can be decarboxylated to form agmatine, which possess antioxidant, anti-inflammatory, 

and neuromodulatory properties (33). By virtue of conversion to nitric oxide, L-arginine also 

has widespread impacts on gene expression and metabolic profiles via activation of PPAR-α 
and PGC-1α (34).

Beneficial effects of L-arginine supplementation have been reported in mitochondrial 

encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) (35), including 

improved serum arginine deficiency and prevention of stroke-like episodes (36). 

Consequently, L-arginine is considered a front-line treatment for stroke-like episodes in 

MELAS (10). While the initial rationale for testing L-arginine therapy in MELAS was to 

improve vasodilation (37), oral L-arginine (10 g/m2 body surface area/day) in MELAS 

patients increased de novo arginine synthesis rate, increased arginine and citrulline flux (36), 

and decreased plasma lactate levels (38). L-arginine therapy in three MELAS siblings 

yielded increased trends in mean percent maximum work at anaerobic threshold and a small 

increase in their VO2peak. L-arginine supplementation also slowed acidification, increased 

phosphorous to phosphocreatine (Pi/PCr) ratio, and decreased half-time of PCr recovery 

following moderate intensity exercise (39). While arginine supplementation has been 

investigated in open-label studies of MELAS patients, its efficacy in other PMDs has not 

been studied in model systems or RCTs.

L-carnitine—Carnitine is a hydrophilic quaternary amine with a major function in 

transporting long-chain fatty acids from the cytosol to the mitochondrial matrix for β-

oxidation (Figure 1). Other functions include modulation of the acyl-CoA/CoA ratio, muscle 

storage of energy as acetyl-carnitine, and urinary excretion toxic acyl groups (40). L-

carnitine contains a β-hydroxy moiety that can directly scavenge free radicals (41, 42).

Although carnitine is endogenously synthesized, the majority is obtained from the diet. 

PMD patients may have decreased free carnitine (43), which supplementation is aimed at 

restoring. However, circulating carnitine does not reflect tissue carnitine levels (44), and the 

evidence for clinical administration of L-carnitine is based only on case reports. Despite the 

lack of proven efficacy, L-carnitine supplementation (50–100 mg/kg/day) in PMD is 
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common. Recently, concerns emerged of increased risks for cardiovascular disease and 

adverse cardiac events in subjects with high fasting plasma carnitine and its metabolite, 

trimethylamine-N-oxide (TMAO) (45). In addition, chronic dietary L-carnitine 

supplementation in mice markedly enhanced synthesis of trimethylamine and TMAO and 

increased atherosclerosis (45). These findings highlight the need to carefully consider the 

risk:benefit ratio with regard to nutritional supplements in PMD patients, especially when 

the evidence for efficacy and safety from rigorous studies is limited.

Creatine—Creatine transiently stores metabolic energy via the exchange of a high-energy 

phosphate bond with adenosine triphosphate (ATP) by creatine kinase (CK) (46). The bulk 

of creatine is stored in skeletal muscle, but it is also found in other high-energy demand 

tissues.

Creatine monohydrate supplementation can increase intracellular phosphocreatine levels in 

healthy individuals (47), and since PMD patients have low phosphocreatine levels (48, 49), 

supplementation may help buffer energy levels. In a Cochrane review of 12 mitochondrial 

disease patient RCTs, three trials studied creatine monohydrate alone, and one trial studied it 

in combination with coenzyme Q10 (CoQ10) and lipoic acid (23). Creatine monohydrate 

treatment significantly increased handgrip strength and decreased post-exercise lactate 

compared to placebo in a study of six MELAS and one mitochondrial myopathy patient 

(23). Creatine supplementation in combination with alpha-lipoic acid and CoQ10 in 16 

patients with confirmed PMD had no clinically significant effect, despite a significant 

decrease in plasma lactate and urine 8-isoprostane levels (50).

Coenzyme Q10—CoQ10 is a lipid-soluble benzoquinone that transfers electrons in the 

ETC from Complexes I or II to Complex III and helps maintains mitochondrial inner 

membrane and OXPHOS complexes stability (51). In the ubiquinol form, CoQ10 inhibits 

lipid peroxidation and can protect mitochondrial inner membrane proteins and mtDNA from 

oxidative damage (52). Both endogenous synthesis and dietary sources contribute to CoQ10 

levels in plasma, but leukocyte levels may better approximate tissue levels (53).

Mitochondrial OXPHOS dysfunction commonly causes increased reactive oxygen species 

(ROS) which can damage mitochondrial and cellular components. Therefore, a common 

empiric therapy is to use antioxidants in an attempt to protect from ROS-induced oxidative 

damage. Indeed, as a ROS scavenger with documented safety data, CoQ10 and its synthetic 

analogs are the most commonly recommended supplement option for PMDs (54). CoQ10 

supplementation appears to be particularly effective in primary disorders of CoQ10 

biosynthesis, which result in severe phenotypes including encephalomyopathy, ataxia, renal 

diseases, cerebellar atrophy, and hyperlactatemia (11).

Despite PMD clinical trials with CoQ10 supplementation, its therapeutic benefit has not been 

definitively established (23, 55, 56). Bioavailability of different CoQ10 formulations is an 

important consideration, and several animal studies investigating absorption and distribution 

of CoQ10 supplements have been performed in rodents (57, 58). CoQ10 enterally 

administered to rodents was shown to increase CoQ10 levels in blood and liver, but not in 

other tissues (56). While there have been few studies of CoQ10 distribution in human tissues 
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following supplementation, studies in patients with neurodegenerative disorders provide 

evidence that uptake into brain occurs at high doses (up to 2400 mg/day) (56).

α-lipoic acid—Lipoic acid (α-LA) an essential redox cofactor of pyruvate dehydrogenase 

(59). It is synthesized de novo by mitochondrial lipoyl synthase (60), acts in both the cytosol 

and plasma membrane, readily crosses the blood–brain barrier (61), and is rapidly absorbed 

and reduced to dihydrolipoic acid (DHLA) in various tissues (62). The reduced form is an 

antioxidant (63) and also recycles other antioxidants, such as glutathione (GSH) and 

vitamins C and E (62). LA in combination with creatine and CoQ10 supplementation in a 16 

patient RCT revealed no clinically significant effects (64). Given its reported potential 

benefits in disorders that involve mitochondrial dysfunction, such as diabetes (65) and 

dyslipidemia (66), further clinical and preclinical studies of α-LA in PMDs are warranted.

Signaling-pathway modulators

Resveratrol—Resveratrol is a bioactive polyphenol with reported antioxidant, anti-

inflammatory, and anti-apoptotic activities (67), and the capacity to promote mitochondrial 

biogenesis in model organisms (68). This is thought to occur via SIRT1-dependent 

deacetylation of PGC-1α, (68, 69) a major regulator of mitochondrial biogenesis, although 

this mechanism remains controversial (70, 71). Resveratrol can correct ETC Complex I and 

IV defects in human fibroblasts via SIRT1 and AMPK-independent mechanisms that involve 

estrogen receptors (72). Additionally, the combination of resveratrol supplementation and 

metformin treatment stabilized OXPHOS super-complexes in HeLa cells (73). More studies 

into the mechanism by which resveratrol protects mitochondrial function, and might benefit 

PMD pathology, are clearly justified.

Ketogenic diet—A ketogenic diet (KD) modulates the amount of carbohydrates, protein, 

calories, and/or fats to shift metabolism towards β-oxidation and ketone body production, 

which in turn increase transcription of OXPHOS, TCA cycle, and glycolysis genes (74). 

Four KDs have been developed: the ‘classic’ KD (~90% of calories from fat); the medium-

chain triglyceride diet; a low glycemic index (<50) diet; and a modified Atkins diet (≤20 

g/day carbohydrates for adults) (75). A 20% fat KD was effective in reducing seizure 

frequency in PMD patients with OXPHOS defects (76), although no connection was found 

between the efficacy of the KD and changes in specific OXPHOS enzyme activities. An 

induction of brain mitochondrial uncoupling protein isoforms and a decrease in 

mitochondrial ROS was observed in mice following a classic KD, suggesting it might reduce 

mitochondria-mediated oxidative stress (77). However, KD remains controversial and 

exploratory in PMDs, with concerns of intolerance or disease exacerbation due to promoting 

secondary fatty acid oxidation defects and NAD+ deficiency.

Experimental models for PMDs

In this section, we describe salient examples of cellular and animal models used to 

investigate OXPHOS deficiencies, focusing on their use for testing nutritional interventions 

for PMDs. Key features of these model systems, along with some of their strengths and 

limitations are also highlighted (Figure 2; Supplemental Table S2).
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Cellular models

Cell culture models have been extensively used to investigate mitochondria functions and 

pathologic phenotypes due to OXPHOS defects. More recently, induced pluripotent stem 

cell (iPSC) technology has allowed the production of patient-derived replicating cells, with 

specific genetic OXPHOS defects, which can be differentiated into disease-relevant cell 

types.

Primary cells with OXPHOS defects—Primary cells from PMD patients (e.g. platelets, 

lymphocytes, fibroblasts, and myoblasts) provide a useful platform to characterize 

pathogenic mechanisms of OXPHOS deficiencies (78) and to test metabolic interventions 

(79). However, given that mitochondria are tailored for the specialized functions of different 

cell types, results from one cell type are not necessarily universal. Platelets and lymphocytes 

are easy to collect from peripheral blood and amenable to short-term in vitro experiments. 

Long-term propagation of lymphocytes in culture requires their transformation into 

lymphoblastoid cell lines (e.g. via Epstein-Barr virus). Lymphocytes and lymphoblasts are 

not ideal for certain biochemical OXPHOS studies due to their relatively low mitochondrial 

content. Skin fibroblasts are accessible by biopsy and can be propagated easily, and their 

abundant mitochondria with tubular morphology makes them well-suited for biochemical 

studies and investigations of mitochondrial network dynamics. Myoblasts are theoretically 

an optimal cell type to study mitochondrial defects because they are highly reliant on 

mitochondrial bioenergetics. However, myoblasts are typically procured via invasive muscle 

biopsy and pure cultures are not easily obtained. Myoblasts and myocytes can also be 

derived by transformation of primary skin fibroblasts (80).

Patient-derived skin fibroblasts have proven extremely useful to model biochemical 

deficiencies associated with PMDs and nutritional interventions (81). For example, patient 

fibroblasts with primary CoQ defects and Complex I deficiency have been used to study 

disease-related biochemical defects and to assess rescue by CoQ10 analogs (82, 83) and 

riboflavin (84). Other examples of successful use of primary skin fibroblasts for testing 

metabolic therapies for PMDs include using mitochondrial-targeted versions of vitamin E 

and CoQ10 to alleviate oxidative stress in cells from Friedreich Ataxia patients (85). Human 

fibroblasts from PMD patients have also been used as a screening platform for potential 

therapeutics. For example, mitochonic acid 5, a derivative of the plant hormone indole-3-

acetic acid, was found to improve the survival of MELAS patient fibroblasts under 

metabolic stress (86). The utility of fibroblast and other primary cell lines is limited by their 

availability and replicative capacity in culture, which leads to senescence and metabolic 

remodeling. Genetic heterogeneity between patients can also affect analyses if the sample 

size of patient-derived cells with similar mutations is too small to achieve statistical 

significance.

Cybrid models—Cytoplasmic hybrids, or “cybrids,” are widely employed to study 

pathogenic mtDNA mutations in a relatively homogeneous nuclear genetic background. 

Virtually any cell type can be used as the source of cytoplasts, but fibroblasts, white blood 

cells, and platelets are most frequently employed due to their relative ease of access. Human 

cancer cell lines are most often used as the recipient cell lines (e.g. osteosarcoma). Cybrid 
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technology has been used to generate immortalized human lines harboring specific 

pathogenic mtDNA mutations derived from PMD patients, including mt-tRNA mutations 

associated with MELAS (87), MERRF (myoclonic epilepsy with ragged red fibers) (88) and 

LHON (Leber’s hereditary optic neuropathy) (89). Since many mtDNA mutations are 

heteroplasmic, stochastic distribution or manipulation via short-term treatment with 

mtDNA-depleting agents (90) allows for the analysis of cybrids with a range of mtDNA 

mutation loads. Cybrids have been used to screen nutrients and metabolic intermediates that 

improve disease phenotypes under a variety of growth or stress conditions. One common 

paradigm is the substitution of glucose with galactose as the main carbon source, which 

forces cells to rely more heavily on ATP produced by OXPHOS than aerobic glycolysis (91, 

92). In heteroplasmic cybrids with a high pathogenic mutation load, a ketogenic intervention 

induced a shift toward accumulation of more wild-type molecules (93), presumably by 

selective elimination of dysfunctional mitochondria containing high levels of mutant 

mtDNA (94). A similar heteroplasmy shift was also produced in MELAS neuroblastoma 

cybrids by a treatment with low-glucose medium supplemented with 1 mM L-arginine, 

which putatively functions by enhancing nitric oxide synthesis to induce mitochondrial 

biogenesis (95). Combined glutamate and aspartate supplementation improved the survival 

of NARP (neuropathy, ataxia and retinitis pigmentosa) cybrids in galactose medium (96), 

possibly by enhancing citrate synthesis (97). Riboflavin (0.06–0.08 μM) improved 

proliferation, ATP levels, and complex I+III activity, as well as decreased superoxide 

production in MELAS cybrids (98). Finally, antioxidants, including CoQ10, have also been 

successfully employed to improve survival and OXPHOS function in NARP and LHON 

cybrids (99).

Cybrid studies are useful for eliminating variation in nuclear genetic backgrounds between 

patient cells, but the interpretation of results can be limited if cancer cell backgrounds are 

employed that preferentially utilize anaerobic glycolysis over OXPHOS in culture. Thus, it 

is important to validate results from therapeutic intervention studies in cybrids and primary 

cells derived from PMD patients.

Induced pluripotent cells with OXPHOS defects—Stem cell technologies have 

allowed development of patient-derived iPSC lines of mitochondrial diseases (100–103) that 

allow for genetic manipulation and nutritional intervention studies. Importantly, iPSCs can 

be differentiated into disease-relevant cell types such as neurons and muscle cells. 

Generation and differentiation of iPSCs harboring pathogenic mtDNA mutations has 

allowed the study of mtDNA segregation and the effects of different mutation loads on 

relevant cells, such as cardiomyocytes (104). By exploiting natural mtDNA drift, combined 

with a contraction of mtDNA copy number upon induction of pluripotency and expansion 

upon differentiation, heteroplasmic iPSC lines with different proportions of mutant mtDNA 

can be obtained that model the variation observed in PMD patients. While these cells 

contain naturally occurring pathogenic mutations, they also allow for derivation of isogenic 

control lines via genetic correction of nuclear mutations, or by spontaneous segregation of 

heteroplasmic mtDNA in the parental proliferating fibroblasts. iPSCs derived from MELAS 

and Leigh syndrome patients have been characterized (105), and somatic cell nuclear 

transfer was used to replace mutant mtDNA from NARP fibroblasts to generate corrected 
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isogenic control iPSCs, which showed normalization of the bioenergetic defects and 

associated gene expression profiles. Potential limitations of iPSCs include the high costs 

associated with generation and maintenance, complexity of the differentiation protocols, and 

paucity of stem cell metabolism knowledge.

Saccharomyces cerevisiae—Fundamental knowledge about mitochondria and their role 

in human disease has arisen from studies in the budding yeast Saccharomyces cerevisiae. In 

fact, evidence for cytoplasmic inheritance (mtDNA genes) and some of the first direct 

evidence of mtDNA itself was discovered in yeast (106). Many core nuclear-encoded 

mitochondrial proteins are homologous between yeast and mammals, including those 

involved in mitochondrial protein import, metabolite transport, fission and fusion, and 

mtDNA maintenance (107–110).

As a facultative anaerobe S. cerevisiae is can survive severe OXPHOS defects when grown 

on a fermentable fuel source, and thus provides an invaluable model to study mitochondrial 

defects (111). Mutant and regulated open reading frame collections are available that allow 

for systematic screening for genes involved with mitochondrial function, and many yeast 

mutants can be functionally corrected through complementation with human homologues 

(112, 113). It is also possible to generate mtDNA mutations by homologous recombination-

based approaches in yeast (114), a capability which is limited or non-existent in other 

species. Studies in S. cerevisiae have been instrumental in uncovering pathologic 

mechanisms in mitochondrial diseases, including tafazzin interactions important in Barth 

Syndrome (115), cytochrome oxidase assembly disruption in Leigh syndrome (116, 117), 

and candidate genes responsible for a form of hereditary spastic paraplegia (118). Important 

limitations of the study of PMDs in yeast include the lack of Complex I and a full repertoire 

of cell death mechanisms, which can be a detriment to understanding all functional 

consequences of OXPHOS dysfunction (108, 119–122). Lastly, yeast mtDNA is larger (~80-

kb) than mammalian mtDNA, contains introns, encodes only seven OXPHOS proteins and a 

non-conserved ribosomal protein (VAR1), and is unstable when mitochondrial translation is 

inhibited (123–125).

Invertebrate models

Caenorhabditis elegans—The nematode C. elegans is a powerful genetic model system 

that has been used to study mitochondrial biology (126–128). Its 3-day developmental cycle, 

2-week lifespan, and isogenic offspring permit the rapid, economical study of large 

quantities of genetically identical animals (129). The expressed C. elegans proteome shares 

greater than 83% homology with human genes (130) and includes ~80% of genes for human 

inborn errors of metabolism (131, 132). Their mtDNA encodes 12 of the 13 proteins found 

in mammalian mtDNA, lacking only ATP8 (126). Limitations of C. elegans for PMD 

research include a simple nervous system that does not model the complex network of 

connections and cell interactions of mammals and lack of respiratory and vascular systems, 

eyes and liver that are often involved in PMD pathology. Finally, all somatic tissues in adults 

are post-mitotic.
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Despite the aforementioned limitations, C. elegans has proven useful as a model organism to 

characterize global sequelae of primary mitochondrial ETC dysfunction (26, 133), as well as 

to evaluate the efficacy of nutritional interventions in PMD. In a C. elegans model of 

Complex I deficiency (NDUFV1), riboflavin supplementation yielded enhanced assembly 

and improved catalytic activities of complexes I and IV (134). In another model of 

mitochondrial Complex I deficiency (NDUFS2), resveratrol treatment significantly 

improved shortened gas-1(fc21) mutant lifespan regardless of the developmental stage at 

initiation. These worms display compensatory up-regulation of amino acid, fat, and other 

nutrient pathways in response to chronic Complex I dysfunction. Resveratrol reversed this 

metabolic response, and restore NADH and NAD+ levels (129) despite increasing the 

already elevated mitochondrial oxidant burden in this model.

Drosophila melanogaster—Drosophila melanogaster shares a high degree of genetic 

conservation with mammals, and has been effectively used to study mitochondrial disease 

states caused by mtDNA and nuclear gene mutations. Issues unique to multi-copy mtDNA 

have also been studied in Drosophila, including transmission, heteroplasmy, and mutant 

mtDNA threshold effects (135). Mitochondrial-targeted restriction enzymes that cleave wild-

type mtDNA molecules have allowed selection of resistant molecules and generation of flies 

with mutations in cytochrome c oxidase I and ND2 (135, 136). However, the ability to 

generate mtDNA mutations in this manner is limited to naturally occurring restriction sites. 

Other mtDNA-based models of mitochondrial dysfunction in flies include a mutation in the 

ATP6 gene that models mitochondrial encephalomyopathies and tRNA mutations that 

characterized how the pathogenicity of mtDNA mutations can be altered by the nuclear 

genetic background (135, 137, 138). Finally, there are Drosophila models for Friedreich 

ataxia (139), mitochondrial deafness (135), Autosomal Spastic Ataxia with 

Leukoencephalophathy (140), and Leigh syndrome (141). These models have been 

informative in elucidating complexities of mitochondrial pathology (e.g. tissue-specificity, 

oxidative stress) (142–144), however their ability to model human pathological states varies 

(139, 142, 145). The unique lifecycle of Drosophila is well-suited for controlled feeding 

regimens to examine the effects of supplementation and specific diets on mitochondrial 

pathology over time in both adults and during development.

Vertebrate models

Danio rerio—The zebrafish, Danio rerio, is a powerful vertebrate model system of human 

diseases due to its rapid development, regular production of large numbers of offspring, and 

relatively inexpensive maintenance (146). Zebrafish have high genetic homology to 

mammals, and sequence conservation of mtDNA and nucleus-encoded mitochondrial 

proteins make it a valid model of human mitochondrial pathology (147). Zebrafish genetic 

investigations have traditionally been driven by forward genetic screens, however an 

increasing range of reverse-genetic techniques are becoming available. Transient knockdown 

of gene expression is possible with morpholino oligonucleotides, which allow for rapid and 

effective study of gene function (148). The use of transcription activator-like effector 

nucleases (149), and the CRISPR-Cas system (150) can be utilized to precisely modify the 

sequence at a particular locus in order to generate specific models of human disease.
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The zebrafish possesses key organ systems including the brain, eyes, and hematologic 

system (151), which makes it a good model in which to study organ-specific mitochondrial 

pathology. Many characteristics of the zebrafish central nervous system are also conserved 

with humans and they develop tactile responses throughout the first few days of life (152), 

allowing the modeling of motor neuron diseases, myopathy, neuropathy and behavioral and 

cognitive endpoints. Due to their translucency, direct in vivo visualization of organ systems 

and mitochondria is possible, making zebrafish an attractive model for microscopy and 

testing of interventions. Limitations of zebrafish for PMD research include aquatic dietary 

formulations and feeding strategies that differ from other model organisms and less 

developed techniques to assess food intake (153) and energy expenditure (154).

Mouse models of OXPHOS deficiencies—Many mouse models of OXPHOS 

deficiencies (155, 156) or mtDNA dysfunction (157) have been developed (Supplemental 

Table S2), and insights into PMD mechanisms and nutritional interventions are discussed 

below. Although the pathogenesis of these mouse models is well-characterized in several 

cases, the number of studies conducted to investigate potential therapies are limited, opening 

a door for future intervention studies.

Mouse models of defects in mtDNA—Like humans, mice contain a double-stranded, 

circular mtDNA of ~16-kb that encodes thirteen core OXPHOS components, as well as two 

rRNAs and twenty-two tRNAs needed for mitochondrial ribosome biogenesis and 

translation (158). Since all other mitochondrial proteins are encoded in the nucleus (159), a 

common strategy in mouse models of PMD is to alter mtDNA by knock-out or 

overexpression of nuclear genes encoding mtDNA regulatory factors. However, transfer of 

specific mutant mtDNA species from tissues or cell lines into the mouse germline has also 

been accomplished.

Tfam mice—Mitochondrial transcription factor A, encoded by the Tfam gene, is an 

abundant mtDNA-binding protein, originally discovered as a transcriptional activator of 

mtDNA promoters (160). Tfam has additional roles in mtDNA metabolism, including 

packaging into nucleoids, mtDNA copy number regulation, segregation, and transcriptional 

priming of mtDNA replication (159). Global knock-out of the TFAM gene in mice results in 

severe mtDNA depletion, loss of mitochondrial respiration, and embryonic lethality (161). 

Surprisingly, heterozygous knock-outs (Tfam+/−) are viable despite having 30–70% mtDNA 

depletion in tissues. Tfam+/− mice are primed for antiviral innate immune activation due to 

enhanced level of cytoplasmic mtDNA (162). Thus, the Tfam+/− model may serve as a 

“sensitized” background for studying mtDNA instability in disease and the role of mtDNA 

in immune system activation.

To avoid embryonic lethality of global Tfam gene deletion, multiple tissue-specific Tfam 
KO models have been generated, and these have provided significant insight into the 

requirements of OXPHOS in tissues and model mitochondrial disease pathology to varying 

degrees (163, 164). For example, muscle-specific deletion of Tfam results in features that are 

common in human PMD including cytochrome c oxidase-negative and ragged-red fibers, 

myopathy, and hypertrophy of the heart (165, 166). The heart also displays a common 

metabolic switch towards glycolysis when OXPHOS is attenuated, as well as biochemical 
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and physiological features of dilated cardiomyopathy present in Kearns-Sayre syndrome 

(167). Tfam-knock-out models have proven valuable in mechanistic studies that show the 

differential requirements for mtDNA and OXPHOS, variability in mitochondrial function 

between different tissues, and potential therapies (163, 164, 168).

TFB1M mice—Mitochondrial transcription factor B1 (TFB1M or mtTFB1) was originally 

identified as a homolog of the yeast mitochondrial transcription factor Mtf1p (or sc-mtTFB) 

(169). The two mammalian orthologs (TFB1M and TFB2M) are homologous to a class of 

site-specific, rRNA N6-adenine dimethyltransferases (170, 171). Knock-out of TFB1M in 

mice results in severely reduced 12S rRNA methylation, destabilization of the small 

mitochondrial ribosome subunit, and impaired mitochondrial translation (172). Transgenic 

mice that overexpress TFB1M have enhanced progressive hearing loss due to tissue-specific 

pathology in the inner ear, which can be rescued by reducing AMP kinase activity, 

suggesting a potential therapeutic route for deafness involving the A1555G mtDNA 

mutation (173, 174).

mtDNA mutator mice—DNA polymerase gamma (POLG) functions exclusively in 

mitochondria to replicate and repair mtDNA. The consequences of enhanced mtDNA 

mutagenesis can be modeled in mice that express a proofreading-deficient allele of its 

catalytic subunit (175, 176). These POLG mutants (a.k.a. mtDNA mutator mice) display 

systemic mitochondrial dysfunction, increased apoptosis, disrupted stem cell function, and 

progeroid phenotypes (175, 177). Mutator mice undergo a metabolic shift toward reliance on 

glycolysis to compensate for mitochondrial dysfunction in some tissues (178). There is some 

disagreement regarding whether point mutations or deletions (and other rearrangements) in 

mtDNA drive the aging-like phenotypes observed in these mice (179) and the precise cause 

of the progeroid phenotypes remains under investigation. Interventions that improve cell and 

tissue phenotypes in mtDNA mutator mice include targeting catalase to mitochondria, 

antioxidants, and endurance exercise (180–183).

Mouse model of MNGIE—Mitochondrial neurogastrointestinal encephalomyopathy 

(MNGIE) is caused by a deficiency in thymidine phosphorylase (TP) resulting in cellular 

imbalance of dNTPs and accumulation of thymidine and deoxyuridine. This imbalance in 

turn results in secondary reduction of mitochondrial deoxycytidine and mtDNA depletion, 

deletions, and point mutations (184). A mouse model has been generated by knocking out 

both thymidine phosphorylase (TP) and uridine phosphorylase (UP) (185). These TP−/−UP
−/− mice display the same nucleoside accumulation as human patients and develop 

leukoencephalopathy, brain lesions, and in some cases OXPHOS deficiencies and brain 

mtDNA alterations (185, 186). Loss of motor control and gastrointestinal pathology 

observed in patients were not present in the disease-model mice.

Mouse models of pathogenic mtDNA mutations—Using cytoplasmic transfer of 

mtDNA into embryonic stem (ES) cells, chimeric mice have been generated that contain 

point mutations in the 16S rRNA (187, 188), OXPHOS genes (e.g., cytochrome c oxidase 

and ND6) (189, 190), and tRNAs (191), as well as, large-scale deletions (192, 193). These 

models have allowed mtDNA heteroplasmy, inheritance and pathology to be studied in vivo. 
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Variable percentages of mutant mtDNA are found in mice generated in this fashion (194), 

and the severity of pathology observed correlates with higher loads of the mutant mtDNA 

(192, 193). Additionally, severe mutations appear to be selected against in the germline, 

while milder mutations persist for several generations (189). Because the genetic 

background is homogeneous, these mouse models allow the pathogenic consequences of 

specific mtDNA mutations to be studied without confounding effects of nuclear 

polymorphisms. These mice recapitulate many pathologies observed in human 

mitochondrial diseases including OXPHOS defects, lactic acidosis, anemia, muscle 

weakness, and renal failure (195, 196). Some of the mutations generated contribute to 

characterized diseases including MERRF (191), chronic progressive external 

ophthalmoplegia (CPEO) (192), LHON (190), and early-onset Pearson syndrome caused by 

heteroplasmic mtDNA deletions (197). Some of these models have been used to test gene 

therapy (198), and the antioxidant N-acetylcysteine was tested in ND6 mutant mice, 

resulting in increased longevity and decreased incidence of lymphoma (199). The 

development of new approaches to generate mice with mtDNA mutations should expand the 

number of these invaluable models for specific mitochondrial disorders (200, 201).

The Deletor Mouse—Adult-onset autosomal progressive external ophthalmoplegia (PEO) 

can be caused by mutations in adenine nucleotide translocator 1 (202), POLG (203), 

Twinkle mtDNA helicase (204), or ribonucleotide reductase subunit p53R2 (205). Common 

mtDNA mutations in Twinkle (13-bp duplication and a point mutation) have been 

recapitulated in the mutant Twinkledup mouse (206), which accumulates mitochondrial DNA 

deletions in all tissues (most prominently in heart and muscle), prompting the name 

“Deletor” mouse.

Biochemical and histological analyses of Deletor mice demonstrated OXPHOS dysfunction, 

cytochrome c oxidase (COX)-negative muscle fibers, abnormalities in mitochondrial 

ultrastructure, and increased autophagy. The number of abnormal, COX-deficient muscle 

fibers is similar to that of human PEO patients, and the delayed development recapitulates 

the late-onset PEO phenotype (206). However, unlike PEO pathology in humans, Deletor 
mice have a normal lifespan and no significant compromise of physical performance. Gene 

expression profiling of Deletor mice revealed induction of folate metabolism 

(methylenetetrahydrofolate dehydrogenase 2, Mthfd2), fasting-related lipid metabolism 

(fibroblast growth factor 21, Fgf21) (207), and phosphorylation of AKT1, all reflective of 

modulations in nutrient-sensing signaling networks and suggesting OXPHOS dysfunction in 

muscle tissue results in starvation-like response. The induction of Fgf21 suggests it may be 

secreted by skeletal muscle cells with mitochondrial myopathy and act as a systemic 

mediator of metabolism. Elevated serum Fgf21 has been demonstrated in adults with 

mitochondrial disease (208), and studies in patients and mouse models have implicated 

mtDNA instability or translational defects as prerequisites for Fgf21 secretion (209, 210). 

Current investigations are studying the potential for Fgf21 serum level as a biomarker for 

muscle myopathies caused by mtDNA defects. While nucleotide pool measurements in 

Deletor mice revealed imbalanced purine metabolism and tissue-specific induction of the 

folate cycle, folinic acid supplementation did not reverse the pathology (211). Significant 

increases in mitochondrial biogenesis and improved mitochondrial ultrastructure resulted 
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after a two month KD in Deletor mice, although no alteration in the amount of mtDNA 

deletions nor skeletal muscle Complex I activity was observed (212). These reports 

prompted a pilot KD study in five mitochondrial myopathy patients and ten healthy subjects 

(213). While the trial was small and follow-up analyses are being performed, all of the KD 

subjects unexpectedly manifested muscle fiber damage after about 1.5 weeks of intervention 

(A. Suomalainen-Wartiovaara, personal correspondence). Therefore, while the KD may hold 

promise for some PMD patients, more preclinical research is needed to delineate appropriate 

applications.

Ndusf4−/− mice—Complex I dysfunction is one of the most common OXPHOS defects in 

PMD patients, with point mutations in NDUFS4 (NADH dehydrogenase-ubiquinone-Fe-S 

Protein 4) observed in patients with LHON, Leigh syndrome, and MELAS (214–216). A 

global knock-out mouse model for Complex I dysfunction (Ndufs4−/−) (217) displays a 

phenotypic progression that resembles Leigh syndrome encephalopathy and dies 

prematurely by day 50, (218). Rapamycin treatment has beneficial effects in this model of 

Leigh syndrome (219), suggesting that nutritional interventions that inhibit the mTORC1 

pathway, such as indicated for the KD (220), may be beneficial for PMDs. Ndufs4+/− mice 

are another Leigh syndrome model with a less severe reduction Complex I activity and 

milder phenotypes (221).

Pdss2kd/kd Mice—CoQ10 deficiency is associated with at least five heterogeneous PMDs, 

but for most patients the genetic basis of the deficiency is unknown (222). Primary 

deficiencies in CoQ10 levels result from mutations in various genes required for ubiquinone 

biosynthesis, including PDSS1 or PDSS2 genes, which encode prenyl diphosphate dynthase 

subunits (223), the COQ2 gene, or the CoQ8/CABC1 gene. Although utilization of a 

ubiquinone as an electron carrier in the ETC is conserved across species, utilization of 

CoQ10 is not universal. Mice, for example, predominantly produce CoQ9 with small 

amounts of CoQ10.

Pdss2kd/kd mice, first identified by a kidney disease phenotype, harbor a homozygous 

mutation in PDSS2. Young Pdsskd/kd mice have normal ubiquinone levels, but adults have 

~15–20% of normal CoQ9 and CoQ10 levels in brain, kidney, and muscle (224). Kidney 

Complex I+III activity is significantly reduced, although individual OXHPOS activities vary 

by tissue and age. Increased ROS production and oxidative stress are variably reported in 

kidney, but not observed in brain (224, 225). Metabolomic analyses of conditional CoQ 

deficiency in Pdss2kd/kd mouse liver revealed upregulation of multiple pathways including 

OXPHOS, the TCA cycle, and pathways that provide substrates for fatty acid and amino 

acid metabolism (225, 226). Despite significant CoQ9 deficiency and impaired Complex I 

and Complex II capacity, compensatory increases in Complex IV respiration was observed, 

and no overt symptomology was noted in liver-specific Pdss2 knockout mice.

Pilot studies of liposomal CoQ10 supplementation (~200 mg/kg/d) in Pdsskd/kd mice 

demonstrated a delayed onset of renal disease when administered from birth or weaning, and 

a partial rescue of proteinuria and interstitial nephritis (225, 227). However, kidney CoQ9 

and CoQ10 content was not significantly altered, suggesting that CoQ10 might exerted its 

effect via antioxidant activity rather than enhanced OXPHOS, although oxidative stress was 
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not measured. A subsequent study found limited therapeutic response to lifelong CoQ10 

supplementation in a Pdss2 mouse model of fatal renal disease (226). However, significant 

responses were seen when the endogenous synthesis of CoQ9 and hydroquinone were 

increased with Probucol drug treatment, suggesting that targeting de novo supply of CoQ10 

may be more effective than exogenous supplementation. Overall, these results suggest that 

understanding the mechanisms of CoQ10 supplementation benefits, including tissue-specific 

effects and the basis of responders versus non-responders, is a PMD research priority.

Barth Syndrome Mouse Model—Barth Syndrome is an X-linked disorder caused by 

pathogenic variants in the TAZ gene encoding Tafazzin (228), a transacylase that participates 

in acyl chain remodeling of cardiolipin, a major phospholipid of the mitochondrial inner 

membrane (229). Individuals with Barth Syndrome have clinical features that include early 

onset cardiomyopathy, neutropenia, skeletal myopathy, and growth abnormalities (228).

An inducible short hairpin RNA-induced (shRNA) mouse knockdown model of tafazzin 

deficiency was developed in 2011 (230, 231) with pathogenic features similar to Barth 

Syndrome patients, including left ventricular dilation and abnormal mass, decreased ejection 

fraction, stereotypical mitochondrial ultrastructural abnormalities, and abnormal cardiolipin 

species (230–232). However, the mice exhibit a late onset (7–8 months of age) cardiac 

functional abnormality, as opposed to the early onset cardiac phenotype observed in humans 

(233). Modifications of the shRNA induction protocol produced mice with a cardiac 

phenotype in utero and proved particularly useful in pinpointing the developmental stage in 

which cardiac non-compaction occurs in tafazzin deficiency (234). The tafazzin mouse 

model has proven useful in investigating other clinical phenotypes of Barth Syndrome, 

including exercise intolerance, OXPHOS defects, and abnormal in amino acid, folate, and 

lipid metabolism (232, 235–237). However the model has important limitations for studying 

cardiac arrhythmias (238), a major cause of morbidity and mortality in Barth Syndrome 

(233), and has not been used to address other cardinal features of Barth Syndrome like 

immune deficiency. Lastly, since this model is induced with doxycycline, potential effects of 

this agent on mitochondrial translation could complicate some findings (239).

Enhancing translatability of PMD model system studies

Regardless of the model system employed, rigor and reproducibility of preclinical nutritional 

interventions studies must be optimized such that the knowledge gained best informs 

approaches in PMD patients. While model systems for PMDs cannot completely recapitulate 

disease states observed in humans, they have the advantage of permitting detailed 

mechanistic experimentation in a genetically controlled population with nutritional 

interventions that are difficult to control for in a human PMD cohort. Preclinical nutritional 

intervention approaches can be reductionist, with systematic testing of single agents or 

combinations over time. Orthogonal testing of hypotheses in multiple models can be very 

powerful, as demonstrated by studies of NA and NR in patient-derived fibroblasts, C. 
elegans, Deletor, and Ndufs4−/− mice which help to elucidate the importance of 

NADH:NAD+ balance in PMDs (Sidebar).
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To best inform clinical approaches, model system investigations must carefully consider the 

intervention formulation, dosing, and bioavailability. Rigorous characterization of identity, 

purity, and composition is especially important for dietary approaches, where patients have 

ready access to a large variety of nutritional supplements that are often far different than 

formulations used in biomedical research.

Bioavailability is a major area in need of further experimental evidence to support clinical 

use of nutritional interventions in PMDs, in particular as it relates to understanding 

mechanisms of action and efficacy in humans (Table 1) and in cases where it is unclear if 

intake beyond recommended dietary amounts confers any added health benefit. Animal 

models can serve as a bridge between cellular and human investigations, and their ability to 

do so is strengthened when an understanding of pharmacodynamics and pharmacokinetics in 

the animal system inform dosing regimens in patients. Without careful consideration of the 

relevance of intervention concentrations and human bioavailability wherever possible, 

preclinical research in model systems is unlikely to inform clinical practice. Additionally, 

model system investigations of bioavailability should consider several experimental 

measurement parameters such as the specific analyte (e.g., parent compound, metabolite, 

biomarker), physiological compartment (e.g., plasma, serum, tissue), and quantitative 

analytical method used.

Conclusions

The use of nutritional interventions by the PMD community is pervasive and is often based 

on empirical evidence. Although the potential for metabolic cofactors as therapies is gaining 

emphasis, increased preclinical research on nutritional interventions is needed for the PMD 

patients. Cellular and animal model systems can recapitulate specific aspects of 

mitochondrial dysfunction and provide the means to thoroughly examine mechanistic 

interactions between interventions and underlying PMD biology (Figure 1). Advances in 

genetically engineered probes for redox imaging and multiple-omics provide new toolkits 

for objective measures of PMD progression at discrete sites in a controlled experimental 

setting. Through rigorous preclinical mechanistic studies, the potential exists to 

systematically evaluate specific nutrients, test dosing ranges, and query intervention efficacy 

and safety with enhanced confidence before initiating observational studies in patients. In 

some instances intervention outcomes have been unexpectedly negative, and an opportunity 

exists for cross-validation of both positive and negative nutritional intervention results 

between orthogonal PMD model systems. Moreover, indications of positive nutritional 

intervention effects in ‘healthy’ animals, such as resveratrol’s promotion of mitochondrial 

biogenesis, need to be tested in specific models of PMD to truly support their use 

invulnerable patient populations. Focused research in these areas will ultimately help to 

better inform cohort selection and outcome measurement criteria which are crucial for 

larger-scale RCT design for PMD interventions. Furthermore, insights gained from an 

enhanced emphasis on basic and preclinical research in model systems for PMDs could help 

build a foundation for significant advancements in our understanding of the mitochondria 

role in homeostasis and preventive healthcare.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acronyms/Terms

AMPK AMP-activated protein kinase

α-LA α-lipoic acid

CoQ10 coenzyme Q10

ETC electron transport chain

iPSCs induced pluripotent stem cells

LHON Leber’s hereditary optic neuropathy

MADD multiple acyl CoA dehydrogenase deficiency

MELAS mitochondrial encephalomyopathy with lactic acidosis and stroke-like 

episodes

MERRF myoclonic epilepsy with ragged red fibers

MNGIE mitochondrial neurogastrointestinal encephalomyopathy

mtDNA mitochondrial DNA

NA nicotinic acid

NR nicotinamide riboside

OXPHOS oxidative phosphorylation

PEO progressive external ophthalmoplegia

PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-α

PMD primary mitochondrial disorder

POLG DNA polymerase gamma

PPAR peroxisome proliferator-activated receptor

ROS reactive oxygen species
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Figure 1. Mechanisms of nutritional interventions in PMDs
At the organ level, arginine and creatine are used to improve vasodilation and energy 

storage. At the cellular level nutrients and metabolic modifiers and signaling activators are 

employed to support OXPHOS (vitamins B3 and B2, CoQ10) and metabolic pathways 

(vitamin B1, B7, and B9, L-carnitine, and α-lipoic acid), enhance antioxidant defenses 

(CoQ10 and α-lipoic acid), and promote mitochondrial biogenesis (vitamin B3, resveratrol, 

and arginine). Cardiolipin, dispersed throughout the mitochondrial inner membrane, is 

essential for optimal function of multiple metabolic enzymes. Abbreviations: CI-CV, 

OXPHOS complexes I-V; Q, ubiquinone; CoQ10, coenzyme Q10; CPT, carnitine palmitoyl 

transferase; cyt c, cytochrome c; MPC, mitochondrial pyruvate carrier; mtDNA, 

mitochondrial DNA; PDH, pyruvate dehydrogenase; ROS, reactive oxygen species, 

(superoxide, hydrogen peroxide and hydroxyl radical; vit, vitamin.
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Figure 2. Key experimental strengths of model systems for PMD intervention studies
Shared among the indicated model organisms and cellular systems is an ability to investigate 

genetic and biochemical characteristics of specific PMDs, nutrient sensing networks, and the 

efficacy, safety, and mechanism(s) of action for nutritional interventions. Individual model 

systems also have distinct experimental advantages, described in each quadrant. For 

example, primary cells allow for the study of patient-specific phenotypes and 

straightforward analysis of mitochondrial morphology and dynamics, invertebrates are well-

suited for survival and lifespan investigations, and rodents permit assessments of nutritional 

intervention bioavailability and toxicology more directly relevant to human PMDs.
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Table 1

Considerations to advance mechanistic and clinically translatable research in model systems.

Analytical and measurement considerations Administration considerations and biological 
variables

Research rigor and reproducibility is enhanced through analytical confirmation of 
intervention purity, composition, and stability

• Has the intervention been independently tested and verified for 
batch-to-batch consistency?

• Has the intervention stability over the experimental time frame been 
analytically demonstrated?

Dosing

• Is the dosage delivery relevant to 
nutritional interventions?

• Is the dosage amount relevant to 
nutritional interventions?

Adsorption

• Nutrient adsorption can vary whether 
from food or as isolated compounds

• Adsorption can be linear or dose-
dependent (e.g., bi-phasic, saturable)

Research comparability is enhanced with thorough reporting of intervention 
identity

• Multiple supplement formulations can be available to patients (e.g., 
malate/citrate/pyruvate/α-ketoglutarate conjugates of creatine; 
ubiquinone/ubiquinol forms of CoQ10)

Distribution

• Does the intervention reach the target 
tissue?

• What concentrations of the intervention 
are specific tissues exposed to?

Experimental bioavailability quantification is dependent upon analytical 
methodology

• Were measurements in plasma, serum, lipid compartments, or 
tissues?

• Were measurements of a parent compound, metabolite, or 
biomarker?

• Quantification via isotope labeling, chromatography, or another 
approach?

Metabolism

• Is the intervention compound the true 
bioactive, or is a metabolite responsible 
for activity?

Excretion

• How much of the intervention is excreted 
without being circulated to tissues?

Genetic variations

• Can influence amount absorbed and/or 
metabolism

• Certain interventions will only address 
nutrient deficiencies due to specific 
mutations
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