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Abstract

Model benchmarking allows us to separate uncertainty in model predictions caused by model 

inputs from uncertainty due to model structural error. We extend this method with a “large-

sample” approach (using data from multiple field sites) to measure prediction uncertainty caused 

by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare 

the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land 

surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). 

Parameters dominated uncertainty in soil moisture estimates and forcing data dominated 

uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction 

of the information available to them. This means that there is significant potential to improve all 

three components of the NLDAS-2 system. In particular, continued work toward refining the 

parameter maps and look-up tables, the forcing data measurement and processing, and also the 

land surface models themselves, has potential to result in improved estimates of surface mass and 

energy balances.

1. Introduction

Abramowitz et al. (2008) found that statistical models out-perform physics-based models at 

estimating land surface states and fluxes, and concluded that land surface models are not 

able to fully utilize information in forcing data. Gong et al. (2013) provided a theoretical 

explanation for this result, and also showed how to measure both the underutilization of 

available information by a particular model as well as the extent to which the information 

available from forcing data was unable to resolve the total uncertainty about the predicted 

phenomena. That is, they separated uncertainty due to forcing data from uncertainty due to 

imperfect models.
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Dynamical systems models, however, are composed of three primary components (Gupta & 

Nearing, 2014): model structures are descriptions of and solvers for hypotheses about the 

governing behavior of a certain class of dynamical systems, model parameters describe 

details of individual members of that class of systems, and forcing data are measurements of 

the time-dependent boundary conditions of each prediction scenario. Gong et al.’s analysis 

did not distinguish between uncertainties that are due to a mis-parameterized model from 

those due to a misspecified model structure, and we propose that this distinction is important 

for directing model development and efforts to both quantify and reduce uncertainty.

The problem of segregating these three sources of uncertainty has been studied extensively 

(e.g., Keenan et al., 2012, Montanari & Koutsoyiannis, 2012, Schoniger et al., 2015, Liu & 

Gupta, 2007, Kavetski et al., 2006, Draper, 1995, Oberkampf et al., 2002, Wilby & Harris, 

2006, Poulin et al., 2011, Clark et al., 2011). Almost ubiquitously, the methods that have 

been applied to this problem are based on the chain rule of probability theory (Liu & Gupta, 

2007). These methods ignore model structural error completely (e.g., Keenan et al., 2012), 

require sampling a priori distributions over model structures (e.g., Clark et al., 2011), or rely 

on distributions derived from model residuals (e.g., Montanari & Koutsoyiannis, 2012). In 

all cases, results are conditional on the proposed model structure(s). Multi-model ensembles 

allow us to assess the sensitivity of predictions to a choice between different model 

structures, but they do not facilitate true uncertainty attribution or partitioning. Specifically, 

any distribution (prior or posterior) over potential model parameters and/or structures is 

necessarily degenerate (Nearing et al., 2015), and sampling from or integrating over such 

distributions does not facilitate uncertainty estimates that approach any true value.

Gong et al.’s (2013) theoretical development fundamentally solved this problem. They first 

measured the amount of information contained in the forcing data – that is, the total amount 

of information available for the model to translate into predictions1 – and then showed that 

this represents an upper bound on the performance of any model (not just the model being 

evaluated). Deviation between a given model’s actual performance and this upper bound 

represents uncertainty due to errors in that model. The upper bound can – in theory – be 

estimated using an asymptotically accurate empirical regression (e.g., Cybenko, 1989, Wand 

& Jones, 1994). That is, estimates and attributions of uncertainty produced by this method 

approach correct values as the amount of evaluation data increases – something that is not 

true for any method that relies on sampling from degenerate distributions over models.

In this paper, we extend Gong et al.’s analysis of information use efficiency to consider 

model parameters. We do this by using a “large-sample” approach (Gupta et al., 2013) that 

requires field data from a number of sites. Formally, this is an example of model 
benchmarking (Abramowitz, 2005). A benchmark consists of (i) a specific reference value 

for (ii) a particular performance metric that is computed against (iii) a specific data set. 

Benchmarks have been used extensively to test land surface models (e.g., van den Hurk et 

al., 2011; Best et al., 2011; Abramowitz, 2012; Best et al., 2015). They allow for direct and 

1Contrary to the suggestion by Beven & Young (2013), we use the term prediction to mean a model estimate before it is compared 
with observation data for some form of hypothesis testing or model evaluation. This definition is consistent with the etymology of the 
word and is meaningful in the context of the scientific method.
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consistent comparisons between different models, and although it has been argued that they 

can be developed to highlight potential model deficiencies (Luo et al., 2012), there is no 

systematic method for doing so (see discussion by Beck et al., 2009). What we propose is a 

systematic benchmarking strategy that at least lets us evaluate whether the problems with 

land surface model predictions are due primarily to forcings, parameters, or structures.

We applied the proposed strategy to benchmark the four land surface models that constitute 

the second phase of the North American Land Data Assimilation System (NLDAS-2; Xia et 

al., 2012a, Xia et al., 2012b), which is a continental-scale ensemble land modeling and data 

assimilation system. The structure of the paper is as follows. A brief and general theory of 

model performance metrics is given in the Appendix, along with an explanation of the basic 

concept of information-theoretic benchmarking. The strategy is general enough to be 

applicable to any dynamical systems model. The remainder of the main text describes the 

application of this theory to the NLDAS-2. Methods are given in Section 2 and results in 

Section 3. Section 4 offers a discussion both about the strengths and limitations of 

information-theoretic benchmarking in general, and also about how the results can be 

interpreted in context of our application to NLDAS-2.

2. Methods

2.1. NLDAS-2

The NLDAS-2 produces distributed hydrometeorological products over CONUS used 

primarily for drought assessment and NWP initialization. NLDAS-2 is the second generation 

of the NLDAS, which became operational at the National Center for Environmental 

Protection in 2014. Xia et al. (2012b) provided extensive details about the NLDAS-2 

models, forcing data, and parameters, and so we will present only a brief summary here. 

NLDAS-2 runs four land surface models over a North American domain (125° to 67° W, 25° 

to 53° N) at 1/8° resolution: (1) Noah, (2) Mosaic, (3) the Sacramento Soil Moisture 

Accounting (SAC-SMA) model, and (4) the Variable Infiltration Capacity (VIC) model. 

Noah and Mosaic run at a 15-minute timestep whereas SAC-SMA and VIC run at an hourly 

timestep; however, all produce hourly time-averaged output of soil moisture in various soil 

layers and evapotranspiration at the surface. Mosaic has three soil layers with depths of 10 

cm, 30 cm, and 160 cm. Noah uses four soil layers with depths of 10 cm, 30 cm, 60 cm, and 

100 cm. SAC-SMA uses conceptual water storage zones that are post-processed to produce 

soil moisture values at the depths of the Noah soil layers. VIC uses a 10 cm surface soil 

layer and two deeper layers with variable soil depths. Here we are concerned with estimating 

surface and root-zone (top 100 cm) soil moistures. The former is taken to be the moisture 

content of the top 10 cm (top layer of each model), and the latter as the depth-weighted 

average over the top 100 cm of the soil column.

Atmospheric data from the North American Regional Reanalysis (NARR), which is natively 

at 32 km spatial resolution and 3 h temporal resolution, is interpolated to the 15 minute and 

1/8° resolution required by NLDAS-2. NLDAS-2 forcing also includes several observational 

datasets including a daily gage-based precipitation, which is temporally disaggregated to 

hourly using a number of different data sources, as well as satellite-derived shortwave 

radiation used for bias-correction. A lapse-rate correction between the NARR grid elevation 

Nearing et al. Page 3

J Hydrometeorol. Author manuscript; available in PMC 2018 April 23.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



and the NLDAS grid elevation was also applied to several NLDAS-2 surface meteorological 

forcing variables. NLDAS forcings consist of eight variables: 2 m air temperature (K), 2 m 

specific humidity (kg kg−1), 10 m zonal and meridional wind speed (m s−1), surface pressure 

(kPa), hourly-integrated precipitation (kg m−2), and incoming longwave and shortwave 

radiation (W m−2). All models act only on the total windspeed, and in this study we also 

used only the net radiation (sum of shortwave and longwave) so that a total of six forcing 

variables were considered at each timestep.

Parameters used by each model are listed in Table 1. The vegetation and soil classes are 

categorical variables and are therefore unsuitable for using as regressors in our benchmarks. 

The vegetation classification indices were mapped onto a five-dimensional real-valued 

parameter set using the UMD classification system (Hansen et al., 2000). These real-valued 

vegetation parameters included optimum transpiration air temperature (called topt in the 

Noah model and literature), a radiation stress parameter (rgl), maximum and minimum 

stomatal resistances (rsmax and rsmin), and a parameter used in the calculation of vapor 

pressure deficit (hs). Similarly, the soil classification indices were mapped for use in 

NLDAS-2 model to soil hydraulic parameters: porosity, field capacity, wilting point, a 

Clapp-Hornberger type exponent, saturated matric potential, and saturated conductivity. 

These mappings from class indices to real-valued parameters ensured that similar parameter 

values generally indicated similar phenomenological behavior. In addition, certain models 

use one or two time-dependent parameters: monthly climatology of greenness fraction, 

quarterly albedo climatology, and monthly leaf area index (LAI). These were each 

interpolated to the model timestep and so had different values at each timestep.

2.2. Benchmarks

As mentioned in the introduction, a model benchmark consists of three components: a 

particular data set, a particular performance metric, and a particular reference value for that 

metric. The following subsections describe these three components of our benchmark 

analysis of NLDAS-2.

2.2.1. Benchmark Data Set—As was done by Kumar et al. (2014) and Xia et al. (2014a), 

we evaluated the NLDAS-2 models against quality controlled hourly soil moisture 

observations from the Soil Climate Analysis Network (SCAN). Although there are over one 

hundred operational SCAN sites, we used only those forty-nine sites with at least two years 

worth of complete hourly data during the period of 2001–2011. These sites are distributed 

throughout the NLDAS-2 domain (Figure 1). The SCAN data have measurement depths of 5 

cm, 10 cm, 20.3 cm, 51 cm, and 101.6 cm (2, 4, 8, 20, and 40 inches), and were quality 

controlled (Liu et al. 2011) and depth averaged to 10 cm and 100 cm to match the surface 

and root-zone depth-weighted model estimates.

For evapotranspiration (ET), we used level 3 station data from the AmeriFlux network 

(Baldocchi et al., 2001). We used only those fifty sites that had at least four thousand 

timesteps worth of hourly data during the period 2001–2011. The AmeriFlux network was 

also used by Mo et al. (2011) and by Xia et al. (2014b) for evaluation of the NLDAS-2 

models, and a gridded flux dataset from Jung et al. (2009), based on the same station data, 
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was used by Peters-Lidard et al. (2011) to assess the impact on ET estimates of soil moisture 

data assimilation in the NLDAS framework.

2.2.2. Benchmark Metrics and Reference Values—Nearing & Gupta (2015) provide 

a brief overview of the theory of model performance metrics, and the general formula for a 

performance metric is given in the Appendix. All performance metrics measure some aspect 

(either quantity or quality) of the information content of model predictions, and the metric 

that we propose here uses this fact explicitly.

The basic strategy for measuring uncertainty due to model errors is to first measure the 

amount of information available in model inputs (forcing data and parameters) and then to 

subtract the information that is contained in model predictions. The latter is always less than 

the former since the model is never perfect, and this difference measures uncertainty (i.e., 
lack of complete information) that is due to model error (Nearing & Gupta, 2015). This 

requires that we measure information (and uncertainty) using a metric that behaves so that 

the total quantity of information available from two independent sources is the sum of the 

information available from either source. The only type of metric that meets this requirement 

is based on Shannon’s (1948) entropy, so we use this standard definition of information and 

accordingly measure uncertainty as (conditional) entropy (the Appendix contains further 

explanation).

To segregate the three sources of uncertainty (forcings, parameters, structures), we require 

three reference values. The first is the total entropy of the benchmark observations, which is 

notated as H(z) where z represents observations. Strictly speaking, H(z) is the amount of 

uncertainty that one has when drawing randomly from the available historical record, and 

this is equivalent, at least in the context of the benchmark data set, to the amount of 

information necessary to make accurate and precise predictions of the benchmark 

observations. Note that H(z) is calculated using all benchmark observations at all sites 

simultaneously, since the total uncertainty prior to adding any information from forcing data, 

parameters, or models includes no distinction between sites.

The second reference value measures information about the benchmark observations 

contained in model forcing data. This is notated as I(z; u) where I is the Mutual Information 
Function (Cover & Thomas, 1991; Chapter 2), and u represents the forcing data. Mutual 

information is the amount of entropy of either variable that is resolvable given knowledge of 

the other variable. For example, H(z|u) is the entropy (uncertainty) in the benchmark 

observations conditional on the forcing data, and is equal to the difference between total 

prior uncertainty less the information content of the forcing data: H(z|u) = H(z) − I(z; u). 

This difference, H(z|u), measures uncertainty that is due to errors or incompleteness in the 

forcing data.

Our third reference value is the total amount of information about the benchmark 

observations that is contained in the forcing data plus model parameters. This is notated as 

I(z; u, θ) where θ represents model parameters. As discussed in the introduction, θ is what 

differentiates between applications of a particular model to different dynamical systems (in 

this case, as applied at different SCAN or AmeriFlux sites), and it is important to understand 
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that I(z; u) describes the relationship between forcing data and observations at a particular 
site, whereas I(z; u, θ) considers how the relationship between model forcings and 

benchmark observations varies between sites, and how much the model parameters can tell 

us about this inter-site variation. The following subsection (Section 2.2.3) describes how to 

deal with this subtlety when calculating these reference values, however for now the 

somewhat counterintuitive result is that it is always the case that I(z; u) is always greater 
than I(z; u, θ), since no set of model parameters can ever be expected to fully and accurately 

describe differences between field sites.

Finally, the actual benchmark performance metric is the total information available in model 

predictions yℳ, and is notated I(z; yℳ). Because of the Data Processing Inequality (see 

Appendix, as well as Gong et al., 2013), these four quantities will always obey the following 

hierarchy:

H(z) ≥ I(z; u) ≥ I(z; u, θ) ≥ I(z; yℳ) . (1)

Furthermore, since Shannon information is additive, the differences between each of these 

ordered quantities represent the contribution to total uncertainty due to each model 

component. This is illustrated in Figure 2, which is adapted from Gong et al. (2013) to 

include parameters. The total uncertainty in the model predictions is H(z) − I(z; yℳ), and the 

portions of this total uncertainty that are due to forcing data, parameters, and model structure 

are H(z) − I(z; u), I(z; u) − I(z; u, θ), and I(z; u, θ) − I(z; yℳ) respectively.

The above differences that measure uncertainty contributions can be reformulated as 

efficiency metrics. The efficiency of the forcing data is simply the fraction of resolvable 

entropy:

ℰu = I(z; u)
H(z) . (2.1)

The efficiency of the model parameters to interpret information in forcing data independent 
of any particular model structure is:

ℰθ = I(z; u, θ)
I(z; u) , (2.2)

and the efficiency of any particular model structure at interpreting all of the available 

information (in forcing data and parameters) is:

ℰℳ = I(z; yℳ)
I(z; u, θ) . (2.3)
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In summary, the benchmark performance metric that we use is Shannon’s mutual 

information function, I(z; yℳ), which measures the decrease in entropy (uncertainty) due to 

running the model. To decompose prediction uncertainty into its constituent components due 

to forcing data, parameters, and the model structure we require three benchmark reference 

values: H(z), I(z; u), and I(z; u, θ). These reference values represent a series of decreasing 

upper bounds on model performance, and appropriate differences between the performance 

metric and these reference values partition uncertainties. Similarly, appropriate ratios, given 

in equations (2), measure the efficiency of each model component at utilizing available 

information.

2.2.3. Calculating Information Metrics—Calculating the first reference value, H(z), is 

relatively straightforward. There are many ways to numerically estimate entropy and mutual 

information (Paninski, 2003), and here we used maximum likelihood estimators. A 

histogram was constructed using all N observations of a particular quantity (10 cm soil 

moisture, 100 cm soil moisture, or ET from all sites), and the first reference value was:

H(z) = − ∑
i = 1

B ni
N ln

ni
N (3.1)

where ni is the histogram count for the ith of B bins. The histogram bin-width determines the 

effective precision of the benchmark measurements, and we used a bin-width of 0.01 m3 m
−3 (1% volumetric water content) for soil moisture and 5 W m−2 for ET.

Similarly, the benchmark performance metric, I(z; yℳ), is also straightforward to calculate. 

In this case, a joint histogram was estimated using all observations and model predictions at 

all sites, and the joint entropy was calculated as:

H(z, yℳ) = ∑
i = 1

B
∑
j = 1

B ni, j
N ln

ni, j
N . (3.2)

We used square histogram bins so that the effective precision of the benchmark 

measurements and model predictions was the same, and for convenience we notate the same 

number of bins (B) in both dimensions. The entropy of the model predictions was calculated 

in a way identical to equation (3.1), and mutual information was:

I(z; yℳ) = H(z) + H(yℳ) − H(z, yℳ) . (3.3)

The other two intermediate reference values, I(z; u) and I(z; u, θ), are more complicated. 

The forcing data u was very high-dimensional because the system effectively acts on all past 

forcing data, therefore it is impossible to estimate mutual information using a histogram as 

above. To reduce the dimensionality of the problem we trained a separate regression of the 

form ℛi
u: u1: t, i zt, i  for each individual site where the site is indexed by i. That is, we 
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used the benchmark observations from a particular site to train an empirical regression that 

mapped a (necessarily truncated) time-history of forcing data onto predictions 

yt, i
u = ℛi

u(ut − s: t, i). The reference value was then estimated as I(z; u) ≈ I(z; yu) where I(z; 

yu) was calculated according to equations (3) using all yu data from all sites simultaneously. 

Even though a separate ℛi
u regression was trained at each site, we did not calculate site-

specific reference values.

As described in the Appendix, the ℛi
u regressions are actually kernel density estimators of 

the conditional probability density P(zt,i|u1:t,i), and to the extent that these estimators are 

asymptotically complete (i.e., they approach the true functional relationships between u and 

z at individual sites in the limit of infinite training data), I(z; yu) approaches the true 

benchmark reference value.

I(z; u, θ) was estimated in a similar way; however, to account for the role of parameters in 

representing differences between sites, a single regression ℛu,θ: {u1:t, θ} → {zt} was 

trained using data from all sites simultaneously. This regression was used to produce 

estimates yt
u, θ = ℛu, θ(ut − s: t, θ) at all sites, and these data were then used to estimate I(z; 

yu,θ) according to equation (3).

It is important to point out that we did not use a split-record training/prediction for either the 

ℛi
u regressions at each site, nor for the ℛu,θ regressions trained with data from all sites 

simultaneously. This is because our goal was to measure the amount of information in the 

regressors (forcing data, parameters), rather than to develop a model that could be used to 

make future predictions. The amount of information in each set of regressors is determined 

completely by the injectivity of the regression mapping. That is, if the functional mapping 

from a particular set of regressors onto benchmark observations preserves distinctness, then 

those regressors provide complete information about the diagnostics – they are able to 

completely resolve H(z). If there is error or incompleteness in the forcing data or parameters 

data, or if these data are otherwise insufficient to distinguish between distinct system 

behavior (i.e., the system is truly stochastic or it is random up to the limit of the information 

in regressors), then the regressors lack complete information and therefore contribute to 

prediction uncertainty. For this method to work we must have sufficient data to identify this 

type of redundancy, and like all model evaluation exercises, the results are only as 

representative as the evaluation data.

2.2.4. Training the Regressions—A separate ℛi
u regression was trained at each site, so 

that in the soil moisture case there were ninety-eight (49 × 2) separate ℛi
u regressions, and in 

the ET case there were fifty separate ℛi
u regressions. In contrast, a single ℛu,θ regression 

was trained separately for each observation type and for each LSM (because the LSMs used 

different parameter sets) on data from all sites so that there were a total of twelve separate 

ℛu,θ regressions (10 cm soil moisture, 100 cm soil moisture, and ET for each of Noah, 

Mosaic, SAC-SMA, and VIC).
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We used sparse Gaussian processes (SPGPs; Snelson & Ghahramani, 2006), which are 

kernel density emulators of differentiable functions. SPGPs are computationally efficient 

and very general in the class of functions that they can emulate. SPGPs use a stationary 

anisotropic squared exponential kernel (see Rasmussen & Williams, 2006 chapter 4) that we 

call an Automatic Relevance Determination kernel (ARD) for reasons that are described 

presently. Because the land surface responds differently during rain events than it does 

during dry-down, we trained two separate SPGPs for each observation variable to act on 

timesteps (1) during and (2) between rain events. Thus each ℛi
u and ℛu,θ regression 

consisted of two separate SPGPs.

Because the NLDAS-2 models effectively act on all past forcing data, it was necessary for 

the regressions to act on lagged forcings. We used hourly-lagged forcings from the fifteen 

hours previous to time t plus daily averaged (or aggregated in the case of precipitation) 

forcings for the twenty-five days prior to that. These lag periods were chosen based on an 

analysis of the sensitivity of the SPGPs. The anisotropic ARD kernel assigns a separate 

correlation length to each input dimension in the set of regressors (Neil, 1993), and the 

correlation lengths of the ARD kernel were chosen as the maximum likelihood estimates 

conditional on the training data. Higher a posteriori correlation lengths (lower inverse 

correlation lengths) correspond to input dimensions to which the SPGP is less sensitive, 

which is why this type of kernel is sometimes called an Automatic Relevance Determination 

kernel – because it provides native estimates of the relative (nonlinear and nonparameteric) 

sensitivity to each regressor. We chose lag-periods for the forcing data that reflect the 

memory of the soil moisture at these sites. To do this, we trained rainy and dry SPGPs at all 

sites using only precipitation data over a lag period of twenty-four hours plus one hundred 

and twenty days. We then truncated the lag hourly and daily lag periods where the mean a 

posteriori correlation lengths stabilized at a constant value: fifteen hourly lags and twenty-

five daily lags. This is illustrated in Figure 3. Since soil moisture is the unique long-term 

control on ET, we used the same lag period for ET as for soil moisture.

Because of the time lagged regressors, each SPGP for rainy timesteps in the ℛi
u regressions 

acted on two hundred and forty forcing inputs, and each SPGP for dry timesteps acted on 

two hundred and thirty-nine forcing data inputs (the latter did not consider the zero rain 

condition at the current time t). Similarly, the wet and dry SPGPs that constituted the ℛu,θ 

regressions acted on the same forcing data, plus the number parameter inputs necessary for 

each model (a separate ℛu,θ regression was trained for each of the four NLDAS-2 land 

surface models). Each ℛi
u regression for SCAN soil moisture was trained using two years 

worth of data (17,520 data points), and each ℛu,θ SCAN regression was trained on one 

hundred thousand data points selected randomly from the 49 × 17,520 = 858,480 available. 

The ℛi
u ET regressions were trained on four thousand data points and the ℛu,θ ET 

regressions were trained on one hundred thousand of the 50 × 4,000 = 200,000 available. All 

ℛi
u SPGPs used one thousand pseudo-inputs (see Snelson and Ghahramani, 2006 for an 

explanation of pseudo-inputs), and all ℛu,θ SPGPs used two thousand pseudo-inputs.
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3. Results

3.1. Soil Moisture

Figure 4 compares the model and benchmark estimates of soil moisture with SCAN 

observations, and also provides anomaly correlations for the model estimates, which for 

Noah were very similar to those presented by Kumar et al. (2014). The spread of the 

benchmark estimates around the 1:1 line represents uncertainty that was unresolvable given 

the input data – this occurred when we were unable to construct an injective mapping from 

inputs to observations. This happened, for example, near the high range of the soil moisture 

observations, which indicates that the forcing data was not representative of the largest 

rainfall events at these measurements sites. This might be due to localized precipitation 

events that are not always captured by the 1/8° forcing data, and is an example of the type of 

lack of representativeness that is captured by this information analysis – the forcing data 

simply lacks this type of information.

It is clear from these scatterplots that the models did not use all available information in the 

forcing data. In concordance with Abramowitz et al.’s (2008) empirical results and Gong et 

al.’s (2013) theory, the statistical models here outperformed the physics-based models. This 

is not at all surprising considering that the regressions were trained on the benchmark data 

set, which – to re-emphasize – is necessary for this particular type of analysis. Figure 5 

reproduces the conceptual diagram from Figure 2 using the data from this study, and directly 

compares the three benchmark reference values with the values of benchmark performance 

metric. Table 2 lists the fractions of total uncertainty, i.e., H(z) − I(z; yℳ), that were due to 

each model component, and Table 3 lists the efficiency metrics calculated according to 

equations (2).

The total uncertainty in each set of model predictions was generally about 90% of the total 

entropy of the benchmark observations (this was similar for all four land surface models and 

can be inferred from Figure 5). Forcing data accounted for about a quarter of this total 

uncertainty related to soil moisture near the surface (10 cm), and about one sixth of total 

uncertainty in the 100 cm observations (Table 2). The difference is expected since the 

surface soil moisture responds more dynamically to the system boundary conditions, and so 

errors in measurements of those boundary conditions will have a larger effect in predicting 

the near-surface response.

In all cases except SAC-SMA, parameters accounted for about half of total uncertainty in 

both soil layers, however for SAC-SMA this percentage was higher, at sixty and seventy 

percent for the two soil depths respectively (Table 2). Similarly, the efficiencies of the 

different parameter sets were relatively low – below forty-five percent in all cases and below 

thirty percent for SAC-SMA (Table 3). SAC-SMA parameters are a strict subset of the 

others, so it is not surprising that this set contained less information. In general, these results 

indicate that the greatest potential for improvement to NLDAS-2 simulations of soil 

moisture would come from improving the parameter sets.

Although the total uncertainty in all model predictions was similar, the model structures 

themselves performed very differently. Overall, VIC performed the worst and was able to 
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use less than a quarter of the information available to it, while SAC-SMA was able to use 

almost half (Table 3). SAC-SMA had less information to work with (from parameters; 

Figure 5), but it was better at using what it had. The obvious extension of this analysis would 

measure which of the parameters that were not used by SAC-SMA are the most important, 

and then determine how SAC-SMA might consider the processes represented by these 

missing parameters. It is interesting to notice that the model structure that performed the 

best, SAC-SMA, was an uncalibrated conceptual model, whereas Noah, Mosaic, and VIC 

are ostensibly physics-based (and VIC parameters were calibrated).

The primary takeaway from these results is that there is significant room to improve both the 

NLDAS-2 models and parameter sets, but that the highest return on investment, in terms of 

predicting soil moisture, will likely come from looking at the parameters. This type of 

information-based analysis could easily be extended to look at the relative value of 

individual parameters.

3.2. Evapotranspiration

Figure 6 compares the model and benchmark estimates of ET with AmeriFlux observations. 

Again, the spread in the benchmark estimates is indicative of substantial unresolvable 

uncertainty given the various input data. Figure 5 again plots the ET reference values and 

values of the ET performance metrics. Related to ET, forcing data accounted for about two 

thirds of total uncertainty in the predictions from all four models (Table 2). Parameters 

accounted for about one fifth of total uncertainty, and model structures only accounted for 

about ten percent. In all three cases, the fractions of ET uncertainty due to different 

components were essentially the same between the four models. Related to efficiency, the 

forcing data was able to resolve less than half of total uncertainty in the benchmark 

observations, and the parameters and structures generally had efficiencies between fifty and 

sixty percent, with the efficiencies of the models being slightly higher (Table 3). Again, the 

ET efficiencies were similar among all four models and their respective parameter sets.

4. Discussion

The purpose of this paper is two-fold. First, we want to demonstrate (and expand) 

information-theoretic benchmarking as a way to quantify contributions to uncertainty in 

dynamical model predictions without relying on degenerate priors or on specific model 

structures. Second, we used this strategy to measure the potential for improving various 

aspects of the continental-scale hydrologic modeling system, NLDAS-2.

Related to NLDAS-2 specifically, we found significant potential to improve all parts of the 

modeling system. Parameters contributed the most uncertainty to soil moisture estimates, 

and forcing data contributed the majority of uncertainty to evapotranspiration estimates, 

however the models themselves used only a fraction of the information that was available to 

them. Differences between the soil moisture and ET results and those from the soil moisture 

experiments highlight that model adequacy (Gupta et al., 2012) depends very much on the 

specific purpose of the model (in this case, the “purpose” indicates what variable we are 

particularly interested in predicting with the model). As mentioned above, an information 

use efficiency analysis like this one could easily be extended not only to look at the 
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information content of individual parameters, but also of individual process components of a 

model by using a modular modeling system (e.g., Clark et al., 2011). We therefore expect 

that this study will serve as a foundation for a diagnostic approach to both assessing and 

improving model performance – again in a way that does not rely on simply comparing a 

priori models. The ideas presented here also will guide the development and evaluation of 

the next phase of NLDAS, which will be at a finer spatial scale, and include updated physics 

in the land-surface models, data assimilation of remotely-sensed water states, improved 

model parameters, and higher-quality forcings through improved model forcings.

Related to benchmarking theory in general, there have recently been a number of large-scale 

initiatives to compare, benchmark, and evaluate the land surface models used for 

hydrological, ecological, and weather and climate prediction (e.g., van den Hurk et al., 2011, 

Best et al., 2015), however we argue that those efforts have not exploited the full power of 

model benchmarking. The most exciting aspect of the benchmarking concept seems to be its 

ability to help us understand and measure factors that limit model performance. Specifically, 

benchmarking’s ability to assign (approximating) upper bounds on the potential to improve 

various components of the modeling system. As we mentioned earlier, essentially all 

existing methods for quantifying uncertainty rely on a priori distributions over model 

structures, and because such distributions are necessarily incomplete, there is no way for 

such analyses to give approximating estimates of uncertainty. What we outline here can 

provide such estimates. It is often at least theoretically possible to use regressions that 

asymptotically approximate the true relationship between model inputs and outputs 

(Cybenko, 1989).

The caveat here is that although this type of benchmarking-based uncertainty analysis solves 

the problem of degenerate priors, the problem of finite evaluation data remains. We can 

argue that information-theoretic benchmarking allows us to produce asymptotic estimates of 

uncertainty, but since we will only ever have access to a finite number of benchmark 

observations, the best we can ever hope to do in terms of uncertainty partitioning (using any 

available method) is to estimate uncertainty in the context of whatever data we have 

available. We can certainly extrapolate any uncertainty estimates into the future (e.g., 
Montanari & Koutsoyiannis, 2012), but there is no guarantee that such extrapolations will be 

correct. Information-theoretic benchmarking does not solve this problem. All model 

evaluation exercises necessarily ask the question “what information does the model provide 

about the available observations?” Such is the nature of inductive reasoning.

Similarly, although it is possible to explicitly consider error in the benchmark observations 

during uncertainty partitioning (Nearing & Gupta, 2015), any estimate of this observation 

error ultimately and necessarily constitutes part of the model that we are evaluating (Nearing 

et al, 2015). The only thing that we can ever assess during any type of model evaluation (in 

fact, during any application of the scientific method) is whether a given model (including all 

probabilistic components) is able to reproduce various instrument readings with certain 

accuracy and precision. Like any other type of uncertainty analysis, benchmarking is fully 

capable of testing models that do include models of instrument error and representativeness.
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The obvious open question is about how to use this to fix our models. It seems that the 

method proposed here might, at least theoretically, help to address the question in certain 

respects. To better understand the relationship between individual model parameters and 

model structures, we could use an ℛu,θ type regression that acts only on a single model 

parameter to measure the amount of information contained in that parameter, and then 

measure the ability of a given model structure to extract information from that parameter by 

running the model many times at all sites using random samples of the other parameters and 

calculating something like ℰℳ(θi) = I (z; yℳ(u, θi)) / I(z; u, θi). This would tell us whether a 

model is making efficient use of a single parameter, but not whether that parameter itself is a 

good representation of differences between any real dynamical systems. It would also be 

interesting to know whether the model is most sensitive (in a traditional sense) to the same 

parameters that contain the most information. Additionally, if we had sufficient and 

appropriate evaluation data we could use a deconstructed model or set of models, like what 

was proposed by Clark et al. (2015), to measure the ability of any individual model process 
representation to use the information made available to it via other model processes, 

parameter, and boundary conditions.

To summarize, Earth scientists are collecting ever-increasing amounts of data from a 

growing number of field sites and remote sensing platforms. This data is typically not cheap, 

and we expect that it will be valuable to understand the extent to which we are able to fully 

utilize this investment – i.e., by using it to characterize and model biogeophysical 

relationships. Hydrologic prediction in particular seems to be a data limited endeavor. Our 

ability to apply our knowledge of watershed physics is limited by unresolved heterogeneity 

in the systems at different scales (Blöschl & Sivapalan, 1995), and we see here that this 

difficulty manifests in our data and parameters. Our ability to resolve prediction problems 

will, to a large extent, be dependent on our ability to collect and make use of observational 

data, and one part of this puzzle involves understanding the extents to which (1) our current 

data is insufficient, and (2) our current data is underutilized. Model benchmarking has the 

potential to help distinguish these two issues.
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Appendix

A General Description of Model Performance Metrics

We begin with five things: (1) a (probabilistic) model ℳ with (2) parameter values θ ∈ ℝdθ, 

acts on (3) measurements of time-dependent boundary conditions ut ∈ ℝdu to produce (4) 

time-dependent estimates or predictions yt
ℳ ∈ ℝdz

 of phenomena that are observed by (5) zt 

∈ ℝdz. A deterministic model is simply a delta distribution, however even when we use a 

deterministic model we always treat the answer as a statistic of some distribution that is 
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typically implied by some performance metric (Weijs et al., 2010). Invariably, during model 

evaluation, the model implies a distribution over the observation zt that we notate P(z|yℳ).

Further, we use the word information to refer to the change in a probability distribution due 

to conditioning on a model or data (see discussion by Jaynes, 2003, and also, but somewhat 

less importantly, by Edwards, 1984). Since probabilities are multiplicative, the effect that 

new information has on our current state of knowledge about what we expect to observe is 

given by the ratio:

P(z |yℳ)
P(z) (A.1)

where P(z) is our prior knowledge about the observations before running the model. In most 

cases, P(z) will be an empirical distribution derived from past observations of the same 

phenomenon (see Nearing & Gupta, 2015 for a discussion).

Information is defined by equation (A.1), measuring this information (i.e., collapsing the 

ratio to a scalar) requires integrating. The information contributed by a model to any set of 

predictions is measured by integrating this ratio, so that the most general expression for any 

measure of the information contained in model predictions yℳ about observations z is:

Ez f P(z |yℳ)
P(z) . (A.2.1)

The integration in the expected value operator is over the range of possibilities for the value 

of the observation. Most standard performance metrics (e.g., bias, MS, and ρ) take this form 

(see Appendix of Nearing & Gupta, 2015). The f function is essentially a utility function, 

and can be thought of, in a very informal way, as defining the question that we want to 

answer about the observations.

Since yℳ is a transformation of u1:t and θ (via model ℳ), any information measure where f 
is monotone and convex, is bounded by (Ziv and Zakai, 1973):

Ez f P(z |yℳ)
P(z) ≤ Ez f P(z |u, θ)

P(z) . (A.3)

Equation (A.3) is called the Data Processing Inequality, and represents the reference value 

for our benchmark.

Shannon (1948) showed that the only function f that results in an additive measure of 

information that takes the form of equation (A.2.1) is f(․) = − logb(․), where b is any base. As 

described presently, we require an additive measure, so the performance metric for our 

benchmark takes the form of equation (A.2.1) and uses the natural log as the integrating 
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function. We therefore measure entropy H and mutual information I in units nats in the usual 

way, as:

H(z) = Ez[ − ln(P(z))] and (A.2.2)

I(z; ξ) = Ez |ξ − ln P(z |ξ)
P(z) , (A.2.3)

respectively, where ξ is a placeholder for any variable that informs us about the observations 

(e.g., u, θ, yℳ).

Because it is necessary to have a model to translate the information contained in u and θ into 

information about the observations z, the challenge in applying this benchmark is to estimate 

P(zt|u1:t, θ). This conditional probability distribution can be estimated using some form of 

kernel density function (Cybenko, 1989, Rasmussen & Williams, 2006, Wand & Jones, 

1994), which creates a mapping function ℛu,θ: {u1:t, θ} → {zt}, where the "ℛ" stands for 

regression to indicate that this is fundamentally a generative approach to estimating 

probability distributions (see Nearing et al, 2013 for a discussion). The regression estimates 

are yt
u, θ ∈ ℝ

dz. To the extent that this regression is asymptotically complete (i.e., it 

approaches the true functional relationship between {u, θ} and z), an approximation of the 

right-hand side of equation (A.3) approaches the benchmark reference value.
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Figure 1. 
Location of the SCAN and AmeriFlux stations used in this study. Each SCAN station 

contributed two year’s worth of hourly measurements (17,520) and each AmeriFlux station 

contributed four thousand hourly measurements to the training of the model regressions.
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Figure 2. 
A conceptual diagram of uncertainty decomposition using Shannon information. H(z) 

represents the total uncertainty (entropy) in the benchmark observations. I(z; u) represents 

the amount of information about the benchmark observations that is available from the 

forcing data. Uncertainty due to forcing data is the difference between the total entropy and 

the information available in the forcing data. The information in the parameters plus forcing 

data is I(z; u, θ), and I(z; u, θ) < I(z; u) due to errors in the parameters. I(z; yℳ) is the total 

information available from the model and I(z; yℳ) < I(z; u, θ) due to model structural error. 

This figure is adapted from (Gong et al., 2013).
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Figure 3. 
Median ARD inverse correlation lengths from soil moisture SPGPs trained at each site using 

only lagged precipitation data. Inverse correlation lengths indicate a posteriori sensitivity to 

each dimension of the input data. The hourly inputs approach a minimum value around 

fifteen lag periods at the 100 cm depth and the daily inputs approach a minimum at around 

twenty-five lag periods at the 10 cm depth. This indicates that these lag periods are generally 

sufficient to capture the information from forcing data that is available to the SPGPs. All 

benchmark SPGPs were trained with these lag periods.
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Figure 4. 
Scatterplots of soil moisture observations and estimates made by the NLDAS-2 models 

(black) and by the benchmarks (gray) in both soil layers (top two rows for surface soil 

moisture; bottom two rows for top 100 cm soil moisture). The ℛi
u regressions (first and third 

rows) act on the forcing data only and the ℛu,θ regressions (second and fourth rows) act on 

forcing data plus parameters. The mean anomaly correlations over all sites are listed on each 

subplot.
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Figure 5. 
The fraction of total uncertainty in soil moisture estimates contributed by each model 

component. These plots are conceptually identical to Figure 2 except that these use real data.
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Figure 6. 
Scatterplots of ET observations and estimates made by the NLDAS-2 models (black) and by 

the benchmark estimates (grey). The ℛi
u regressions (first row) act on the forcing data only 

and the ℛu,θ regressions (second row) act on forcing data plus parameters. The mean 

anomaly correlations over all sites are listed on each subplot.
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Table 1

Parameters used by the NLDAS-2 LSMs

Parameter Mosaic Noah SAC-
SMA

VIC

Monthly GVF(a) X X

Snow-Free Albedo(a) X

Monthly LAI(a) X X

Vegetation Class X X X X

Soil Class(b) X X X X

Maximum Snow Albedo X

Max/Min GVF X

Average Soil Temperature X

3-Layer Porosity(c) X X

3-Layer Soil Depths X

3-Layer Bulk Density X

3-Layer Soil Density X

3-Layer Residual Moisture X

3-Layer Wilting Point(c) X X

3-layer Saturated Conductivity X

Slope Type X

Deep Soil Temperature(d) X X

a
Linearly interpolated to the timestep.

b
Mapped to soil hydraulic parameters.

c
Mosaic uses a different 3-layer porosity and wilting point than VIC.

d
Noah and VIC use different deep soil temperature values.
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Table 2

Fractions of total uncertainty due to forcings, parameters, and structures.

Soil Moisture
ET

10 cm 100 cm

Forcings

Noah 0.26 0.17 0.69

Mosaic 0.26 0.17 0.69

SAC-SMA 0.26 0.17 0.68

VIC 0.25 0.17 0.68

Parameters

Noah 0.53 0.52 0.20

Mosaic 0.54 0.54 0.21

SAC-SMA 0.62 0.70 0.22

VIC 0.51 0.51 0.20

Structures

Noah 0.21 0.31 0.10

Mosaic 0.20 0.29 0.11

SAC-SMA 0.12 0.14 0.10

VIC 0.24 0.32 0.11
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Table 3

Efficiency of forcings, parameters and structures according to equations (2).

Soil Moisture
ET

10 cm 100 cm

Forcings 0.77 0.85 0.40

Parameters

Noah 0.37 0.45 0.57

Mosaic 0.38 0.45 0.56

SAC-SMA 0.28 0.26 0.53

VIC 0.38 0.45 0.56

Structures

Noah 0.33 0.28 0.62

Mosaic 0.40 0.34 0.60

SAC-SMA 0.49 0.44 0.60

VIC 0.22 0.24 0.57
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