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Abstract

The bacterial type IV secretion systems (T4SSs) are a highly functionally and structurally diverse 

superfamily of secretion systems found in many species of gram-negative and -positive bacteria. 

Collectively, the T4SSs can translocate DNA and monomeric and multimeric protein substrates to 

a variety of bacterial and eukaryotic cell types. Detailed phylogenomics analyses have established 

that the T4SSs evolved from ancient conjugation machines whose original functions were to 

disseminate mobile DNA elements within and between bacterial species. How members of the 

T4SS superfamily evolved to recognize and translocate specific substrate repertoires to prokaryotic 

or eukaryotic target cells is a fascinating question from evolutionary, biological, and structural 

perspectives. In this chapter, we will summarize recent findings that have shaped our current view 

of the biological diversity of the T4SSs. We focus mainly on two subtypes, designated as the types 

IVA (T4ASS) and IVB (T4BSS) systems that respectively are represented by the paradigmatic 

Agrobacterium tumefaciens VirB/VirD4 and Legionella pneumophila Dot/Icm T4SSs. We present 

current information about the composition and architectures of these representative systems. We 

also describe how these and a few related T4ASS and T4BSS members evolved as specialized 

nanomachines through acquisition of novel domains or subunits, a process that ultimately 

generated extensive genetic and structural mosaicism among this secretion superfamily. Finally, 

we present new phylogenomics information establishing that the T4BSSs are much more broadly 

distributed than initially envisioned.
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1. Introduction: The ABC’s of T4SS Classification

The T4SSs are widely distributed among gram-negative (Gram−) and gram-positive (Gram+) 

bacteria, and they mediate a broad range of functions to the benefit of their bacterial hosts 

(Grohmann et al. 2018). Various schemes have emerged to classify T4SSs, an undertaking 
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complicated by the extreme genetic and functional heterogeneity of this secretion 

superfamily. For example, T4SSs have been classified on the basis of function as: (i) 

conjugation systems, (ii) effector translocators, or (iii) contact-independent DNA/protein 

exchange systems (Cascales and Christie 2003). The conjugation systems are the largest 

subfamily, present in nearly all bacterial species and some archaeal species (Guglielmini et 

al. 2013). These systems are specifically employed for dissemination of associated mobile 

genetic elements, although they also deliver a small number of protein substrates 

independently of DNA. The “effector translocators” deliver effector proteins to prokaryotic 

or eukaryotic cells (Asrat et al. 2015; Bhatty et al. 2013; Kubori and Nagai 2015; Souza et 

al. 2015). These substrates enable the competitive outgrowth of T4SS-carrying donor cells in 

polymicrobial communities, or bacterial colonization and spread in pathogenic settings 

through the disruption of eukaryotic host cell physiological processes. The contact-

independent exchange systems, currently consisting of only a few members, function in 

release of DNA or protein substrates to the milieu or, alternatively, uptake of exogenous 

DNA (Locht et al. 2011; Ramsey et al. 2011; Stingl et al. 2010).

Alternative classification schemes are derived from phylogenetic analyses. One scheme, 

originating from studies of Escherichia coli conjugation systems, grouped the conjugative 

systems according to the conjugative pilus elaborated as F-, P-, or I-type. The F conjugation 

system was the earliest characterized T4SS; these systems are present in many species of 

Enterobacteriaceae as well as other members of gamma- and alphaproteobacteria 

(Arutyunov and Frost 2013). The F-type plasmids code for long, flexible pili that 

dynamically extend and retract, a property enabling highly efficient transfer in both solid 

surface and liquid matings (Clarke et al. 2008; Silverman and Clarke 2010). The P-type 

systems in contrast elaborate shorter, more rigid pili. These types of pili are produced by 

well-characterized conjugation systems encoded by E. coli plasmids RP4, R388, and 

pKM101, as well as the Agrobacterium tumefaciens VirB/VirD4 system (Arutyunov and 

Frost 2013; Christie et al. 2005; Backert and Meyer 2006). The I-type plasmids typically 

encode two types of pili, one similar to P-type pili and a second similar to type IV pili. Type 

IV pili are ancestrally unrelated to conjugative pili, but reminiscent of F-pili; they extend 

and retract, and this property enables efficient transfer of I-type plasmids in liquid media 

(Nagai and Kubori 2011; Sampei et al. 2010; Thanassi et al. 2012).

By far, the most detailed T4SS classifications to date are derived from phylogenetic analyses 

of the highly conserved ATPases associated with these systems. Nearly all T4SSs have two 

signature ATPases, which according to the unifying nomenclature of the A. tumefaciens 
VirB/VirD4 T4SS are homologs of the VirD4 and VirB4 subunits. By tracing the 

evolutionary history of the VirB4 ATPases, and using VirD4 to root the tree, Guglielmini et 

al. identified eight distinct clades into which all presently identified T4SSs can be assigned 

(Guglielmini et al. 2013). This work also supported a model for how the T4SSs evolved. The 

VirD4 and VirB4 ATPases are related to DNA motor proteins SpoIIIE and FtsK, which use 

the energy of ATP hydrolysis to translocate along DNA (Gomis-Ruth et al. 2004; Middleton 

et al. 2005). The VirD4 and VirB4 ATPases thus might originally have functioned as DNA 

motors, carrying out activities associated with DNA metabolism. Eventually, both ATPases 

were coupled with an envelope-spanning channel, which itself was probably an ancient 

protein translocation system. The resulting conjugation machines appear to have originated 
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in diderm species (cell envelopes with inner and outer membranes) and then diversified to 

function in monoderm species (single membrane cell envelopes). Finally, and only recently 

in the evolutionary scale, further diversification led to the extant conjugation systems and 

dedicated effector translocator and exchange systems (Guglielmini et al. 2013).

A simple classification scheme, we will use in this chapter parses T4SSs into T4ASS and 

T4BSS types; these are represented respectively by the paradigmatic A. tumefaciens VirB/

VirD4 and Legionella pneumophila Dot/Icm systems (see Fig. 1) (Christie and Vogel 2000). 

The T4ASS transporters encompass the P- and F-type systems and share a conserved set of 

approximately 12 subunits related to the 11 VirB proteins and VirD4 subunit comprising the 

A. tumefaciens VirB/VirD4 T4SS (Chandran Darbari and Waksman 2015; Christie et al. 

2005). The T4BSS transporters evolved from I-type conjugation systems. The representative 

L. pneumophila Dot/Icm system, so named because the Isberg and Shuman groups 

independently discovered it and respectively named it Dot and Icm (defective in organelle 

trafficking/intracellular multiplication system), requires over >25 proteins of which only a 

few are VirB homologs (Marra et al. 1992; Sadosky et al. 1993; Berger and Isberg 1993; 

Berger et al. 1994; Brand et al. 1994; Nagai and Kubori 2011; Voth et al. 2012). The T4ASS 

and T4BSS classification scheme does not encompass all T4SSs, but suffices here as we 

explore the evolutionary diversification of T4SSs.

2. Function, Structure, and Diversification of T4ASS and T4BSSs

There is now ample genetic, biochemical, and structural evidence that T4SSs evolved as 

supramolecular structures composed of modules of functionally distinct subassemblies (Fig. 

1). At the base of the T4SS, the highly conserved VirD4 subunit functions as a receptor to 

mediate recruitment of substrates. Because of their functions in linking substrates with the 

T4SS channel, members of the VirD4 superfamily also have been termed type IV coupling 

proteins or T4CPs (Cabezon et al. 1997). VirD4 coordinates its ATPase functions with one 

or two other ATPases represented by the A. tumefaciens VirB4 and VirB11 subunits 

(Atmakuri et al. 2004; Cascales and Christie 2004; Pena et al. 2012; Ripoll-Rozada et al. 

2013; Savvides et al. 2003). The VirD4/VirB4/VirB11 energy center localizes at the 

cytoplasmic entrance to the T4SS channel where it processes substrates for translocation and 

might also energize translocation through the channel. This energy center associates with a 

second-large subassembly that in Gram− bacterial systems is termed the inner membrane 

complex (IMC) (Low et al. 2014). The IMC directs the translocation of substrates across the 

inner membrane (IM). It physically interacts with another large subassembly termed the 

outer membrane core complex (OMCC), which is responsible for conveying the substrate 

through the periplasm and across the outer membrane (Christie et al. 2005; Low et al. 2014). 

In the Gram− bacterial systems, the T4SSs additionally elaborate extracellular structures 

such as conjugative pili that are important for establishing productive contacts with target 

cells (Lawley et al. 2003). VirB4 and VirB11, when present (see below), but not VirD4, 

coordinate with the IMC and OMCC subassemblies for pilus assembly. Conversely, the 

entire ATPase energy center plus the IMC and OMCC subassemblies, but not the extended 

pilus, are required for substrate transfer. In the following sections, we summarize 

information about the various modules comprising the T4ASS and T4BSS transporters and 
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about adaptations acquired by these modules throughout evolution that have enabled 

functional diversification.

2.1. The VirD4 Receptor and Its Role in Substrate Selection

VirD4-like ATPases are associated with nearly all T4SSs, and the presence of a VirD4-like 

gene in sequenced bacterial genomes can serve to identify new T4SS gene clusters (Bhatty 

et al. 2013). A role for VirD4 subunits in substrate reception was suggested by early genetic 

studies, which showed that VirD4 subunits can sometimes be exchanged, resulting in a 

switch in the substrate specificity of the chimeric system (Cabezon et al. 1997). VirD4 

receptor function was then firmly established using a formaldehyde (FA) crosslinking assay 

termed transfer DNA immunoprecipitation (TrIP) (Cascales and Christie 2004). In this 

assay, a DNA substrate was subjected to formaldehyde crosslinking during transit through 

the A. tumefaciens VirB/VirD4 T4SS, and crosslinking of the DNA to individual machine 

subunits was detected by immunoprecipitation and PCR amplification. DNA substrates were 

crosslinked with VirD4, even independently of other VirB machine subunits, and a virD4 
mutation abolished all detectable substrate crosslinks with the VirB subunits. These findings 

confirm VirD4’s role in initiating the docking of DNA substrates with the T4SS (Atmakuri 

et al. 2004).

VirD4 receptors typically are composed of an N-terminal transmembrane domain (NTD) and 

a cytoplasmic moiety that functions in substrate reception. The receptor moiety consists of a 

conserved nucleotide binding domain (NBD) and a sequence-variable α-helical bundle 

termed the all-alpha-domain (AAD) (Alvarez-Martinez and Christie 2009; Gomis-Ruth et al. 

2001). The AAD is located at the cytoplasmic pole of the VirD4 hexamer in an optimal 

position for recruitment of substrates from the cytoplasm (Gomis-Ruth et al. 2001). A 

combination of in vivo mutational studies evaluating effects of AAD point or deletion 

mutations or domain swaps and in vitro binding studies with purified AADs firmly support a 

role for the AAD in the engagement of cognate substrates (de Paz et al. 2010; Schroder et al. 

2002; Whitaker et al. 2015, 2016).

Many VirD4 subunits also possess sequence-variable C-terminal domains (CTDs) that are 

typically enriched in acidic residues (Alvarez-Martinez and Christie 2009; Kwak et al. 

2017). When present, these CTDs also play important roles in substrate recruitment, as 

shown by studies of the F and pKM101 conjugation systems (see Figs. 1 and 2). In the F 

transfer system, the TraD T4CP possesses a CTD that strongly enhances the efficiency of F 

plasmid transfer through the F-encoded T4SS (Sastre et al. 1998). This is achieved through 

formation of a specific contact between an acidic motif at the extreme C terminus of TraD 

with TraM, an accessory component of the relaxosome required for nicking at the F 

plasmid’s origin of transfer (oriT) (Beranek et al. 2004; Lu and Frost 2005; Lu et al. 2008). 

F-encoded T4SS also is capable of mobilizing the transfer of the non-self-transmissible 

plasmid RSF1010; however, TraDF ’s CTD inhibits RSF1010 transfer. These findings show 

that TraD’s CTD functions as a specificity checkpoint by ensuring efficient F plasmid 

transfer while blocking transfer of the parasitic RSF1010 plasmid. The E. coli pKM101-

encoded T4SS has long been considered a conjugation system dedicated to the transfer of 

the pKM101 transfer intermediate. However, recently it was shown that the pKM101 T4SS 
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could be reconfigured to translocate heterologous effector proteins to E. coli recipients. This 

was achieved by swapping the receptor domain of the TraJ T4CP with receptor domains of 

VirD4 homologs associated with effector translocator systems functioning in alpha-

proteobacterial species, including A. tumefaciens, Anaplasma phagocytophilum, and 

Wolbachia pipientis (Whitaker et al. 2016). The VirD4 homologs from these alpha-

proteobacterial species possess long acidic CTDs (Alvarez-Martinez and Christie 2009), and 

deletions of these domains from the corresponding chimeric receptors had the interesting 

phenotypes of enhancing transfer of certain effectors while diminishing transfer of other 

effectors (Whitaker et al. 2016). Based on these findings, it was proposed that the VirD4 

CTD contributes not only to substrate selection but also coordinates the presentation of 

substrates—either in abundance or temporally—to the T4SS channel.

Studies of VirD4-like DotL functioning in the L. pneumophila Dot/Icm system have 

identified several interesting structural and mechanistic features. First, DotL also has a long, 

C-terminal CTD for which there is also now strong experimental and structural evidence for 

a role in substrate recruitment. DotL was earlier shown through genetic and biochemical 

approaches to interact with several chaperones (here termed adaptors) that are required for 

translocation of effectors through the Dot/Icm channel (Buscher et al. 2005; Vincent et al. 

2012; Sutherland et al. 2012) (see Sect. 2.2). Recently, an X-ray structure showed that 

DotL’s C-terminal domain (CTD) interacts with the stabilizing subunit DotN and three 

adaptors IcmS, IcmW, and LvgA sequentially along its length (Kwak et al. 2017; Xu et al. 

2017). The findings underscore the importance of the CTDs of T4CPs for effector 

diversification and spatiotemporal control of effector presentation to the T4SS channel. 

Additionally, DotL interacts with and is stabilized by two IM-associated proteins DotM 

(IcmP) and DotN (IcmJ) (Vincent et al. 2012). Interestingly, mutations in genes for DotL, 

DotM, or DotN confer lethality when the mutant strains are grown in axenic media (Buscher 

et al. 2005). Thus, DotL assembles as a large complex with membrane-associated DotM and 

DotN and at least three cytosolic adaptors IcmS, IcmW, and LvA at the base of the Dot/Icm 

machine where it functions not only as a substrate loading platform but also to regulate 

channel activity (see Fig. 1).

2.2. The Role of Accessory Factors in Substrate Recruitment

Translocation of DNA and protein substrates through the T4SS often relies on association 

with cognate accessory factors, also termed chaperones or adaptors. These accessory factors 

can contribute to substrate processing as in the case of DNA substrates, or in maintenance of 

substrates in an unfolded, translocation-competent form as in the case of effector proteins 

(see Alvarez-Martinez and Christie 2009). In early studies of A. tumefaciens, the secretion 

chaperone VirE1 was shown to be required for translocation of the VirE2 effector through 

the VirB/VirD4 T4SS (Atmakuri et al. 2003). Several other T4ASSs are now known to rely 

on chaperones or adaptors, which typically are small, acidic cytoplasmic proteins, for 

recruitment of substrates (see Alvarez-Martinez and Christie 2009). Recent studies of the 

Dot/Icm T4BSS, however, have established the capacity of the T4BSS transporters to deploy 

multiple adaptors for recruitment of effectors (Fig. 1). Intriguingly, these adaptors act in 

pairwise fashion to promote translocation of distinct subsets of effectors. For example, IcmS 

and IcmW independently promote translocation of certain substrates, while coordinating 
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with each other or with the adaptor LvgA to mediate transfer of other effectors (Zuckman et 

al. 1999; Coers et al. 2000; Ninio et al. 2005; Luo and Isberg 2004; Vincent and Vogel 2006; 

Xu et al. 2017). The evolved ability of DotL to bind different adaptors, which in different 

combinations recruit distinct subsets of effectors, accounts at least in part for the significant

—and to date unprecedented—expansion of the Dot/Icm repertoire (see Sect. 5 and Chapter 

“ Subversion of Host Membrane Dynamics by the Legionella Dot/Icm Type IV Secretion 

System ”).

IcmR also is a small, acidic adaptor-like protein but appears to regulate the function of its 

partner subunit, IcmQ, by a distinct mechanism. IcmR interacts with IcmQ (Dumenil and 

Isberg 2001), and both IcmQ and IcmR are essential for growth of L. pneumophila in 

macrophages, a Dot/Icm-dependent salt-sensitivity phenotype, and evasion of lysosomes 

(Coers et al. 2000). Interestingly, IcmQ localizes on the surface of the bacterium shortly 

after infection and also inserts into lipid membranes to form pores by a mechanism regulated 

by IcmR (VanRheenen et al. 2004). The crystal structures of IcmR and IcmQ interacting 

domains confirmed that the interaction is mediated through the N-terminal part of IcmQ and 

the middle region of IcmR (Raychaudhury et al. 2009). Recently, the structure of full-length 

IcmQ in complex with IcmR was solved, revealing that the C-terminal domain of IcmQ 

contains an NAD+ binding module. The presence of this module suggests that the IcmR–

IcmQ complex binds to membranes, where the NAD(+)-bound form of the complex might 

promote stabilizing interactions with, or modification of, a protein in the Dot/Icm machine 

(Farelli et al. 2013).

2.3. The Inner Membrane Complex (IMC)

Once VirD4 binds a substrate, it delivers the substrate to the VirB11 and VirB4 ATPase 

presumably for further processing prior to delivery through the T4SS (Atmakuri et al. 2004; 

Cascales and Christie 2004; Li et al. 2012). The VirB4 ATPases are signatures of all T4SSs 

characterized to date. These subunits are phylogenetically related to VirD4 subunits, and 

they also assemble as homohexamers. In the only high-resolution structure of a T4SS 

generated to date, two hexamers of VirB4 are situated side-by-side at the base of the IMC 

(Fig. 1) (see Chapter “ Structural and Molecular Biology of Type IV Secretion Systems ”). 

By contrast, homologs of VirB11 are associated with only ~20% of known T4SSs (Cabezon 

et al. 2014). For example, VirB11 subunits are associated with the A. tumefaciens VirB/

VirD4 and L. pneumophila Dot/Icm T4SSs, but not with the E. coli F plasmid-encoded 

T4SSs or systems elaborated in Gram+ species (Berger and Christie 1994; Lawley et al. 

2003; Sexton et al. 2004b; Bhatty et al. 2013). VirB11 ATPases are members of the AAA+ 

ATPase superfamily, but partition predominantly with the cytosolic fraction and in contrast 

to VirB4 might interact dynamically with the T4SS in response to substrate binding or 

another signal (Sexton et al. 2004b).

The ATP energy complex interacts with integral membrane components of the IMC, and the 

importance of these interactions is evidenced by results in the A. tumefaciens system 

showing that catalytic activities of the three ATPases are required for formation of 

formaldehyde-crosslinks between DNA substrates and two IMC subunits, VirB6 and VirB8 

(Atmakuri et al. 2004). In the T4ASSs, the IMC consists minimally of the VirB-like 
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subunits: (i) VirB3, a small, two-pass membrane protein that interacts with and stabilizes the 

VirB4 ATPase, (ii) VirB6, a multi-pass subunit that forms several stabilizing contacts with 

other IMC constituents, and (iii) VirB8 and VirB10, both typically consisting of a short N-

terminal cytoplasmic domain, a TM domain, and structurally-conserved periplasmic 

domains (Low et al. 2014).

The Dot/Icm systems rely on homologs of VirD4, VirB4, and VirB11 for substrate 

recruitment and processing, but only two IMC subunits bear relatedness to VirB proteins. 

DotI is a bitopic IM protein whose periplasmic region has a VirB8-like structural fold 

despite weak primary sequence relatedness to VirB8 subunits. DotI interacts with DotJ, 

which appears to be a truncated form of DotI lacking the VirB8-fold (Nagai and Kubori 

2011). DotA is a polytopic membrane-spanning protein reminiscent of the VirB6 signature 

subunits of the T4ASS transporters and is required for intracellular growth in macrophages 

and in ameba (Roy and Isberg 1997; Berger et al. 1994). Very intriguingly, however, DotA 

also is secreted by the Dot/Icm T4SS (Nagai and Roy 2001). The secreted form of DotA is 

truncated due to a proteolytic processing event and assembles as a hollow ring. These 

findings led to a proposal that DotA forms a channel in target cell membranes as a 

prerequisite for delivery of Dot/Icm substrates into the eukaryotic cell host (Nagai and Roy 

2001). Phylogenetic analysis of different dotA segments from clinical and environmental 

strains showed that recombination and frequent non-synonymous mutations have played an 

important role in dotA evolution (Costa et al. 2010; Ko et al. 2003). Rapid evolution of DotA 

thus may have contributed to the enhancement of bacterial fitness in certain environmental 

niches. The Dot/Icm IMC consists of other IM-associated proteins including IcmF and 

DotU(IcmH). IcmF and DotU interact, and icmF and dotU mutations affect the stability of 

the DotF, DotG, and DotH OMCC subunits, suggesting that the IcmF/DotU complex 

stabilizes the Dot/Icm T4SS (Segal et al. 1998; Sexton et al. 2004a). Interestingly, the icmF/
dotU gene pair is present in a wide variety of Gram− bacteria, not in association with T4SS 

loci but rather with loci encoding type VI secretion systems (T6SSs) (Cascales 2008; Bingle 

et al. 2008). Other small IM-spanning Dot/Icm proteins including IcmT, IcmV, IcmC, DotV, 

and DotP(IcmD) contribute to Dot/Icm function and might be part of the IMC (see Fig. 4).

Perhaps one of the most intriguing mysteries surrounding type IV secretion is the route(s) by 

which substrates are conveyed across the cytoplasmic membrane (Grohmann et al. 2018). 

Based on available structure—function information summarized above for the T4ASS and 

T4BSS transporters, three possible translocation routes can be envisioned: (1) substrates 

pass directly through the lumen of the VirD4 hexamer, (2) substrates are transferred to the 

VirB4 hexamer for delivery through its central channel, or (3) after engaging with the 

ATPases for processing/unfolding, substrates pass through a channel composed of IMC 

subunits, e.g., VirB6 and VirB8 (Fig. 1). Whether the translocation route(s) is conserved 

among all T4ASSs and T4BSSs, and whether different substrates, e.g., DNA versus protein, 

are routed through the same pathway(s) remain fascinating questions for future studies.

2.4. Evolutionary Adaptations of IMC Subunits

Many T4SSs have evolved adapted forms of IMC components for novel functions. VirB6 in 

particular offers a remarkable example of an IMC subunit that has been extensively modified 
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throughout evolution. The signature feature of VirB6 subunits is their five to seven 

membrane-spanning configurations. However, many larger variants termed “extended 

VirB6” subunits carry one or more large hydrophilic domains. Such variants are widely 

distributed among conjugation and effector translocator systems and in members of both the 

T4ASS and T4BSS groups (Alvarez-Martinez and Christie 2009). These domains appear to 

play important roles in specifying donor cell interactions with other bacteria or eukaryotic 

host cells (Fig. 2). In the F-type systems, for example, TraG subunits carry an N-terminal 

polytopic motif and a large ~600 residue C-terminal domain (Arutyunov and Frost 2013; 

Lawley et al. 2003). TraGF is involved in entry exclusion, a process that blocks redundant 

DNA transfer between identical donor cells. In such donor–donor contacts, TraGF ’s C-

terminal domain of one donor cell establishes contact with TraSF, an inner membrane 

protein present in the paired donor cell (Audette et al. 2007). This contact is achieved either 

by extension of TraGF across the outer membranes of both donor cells, or by proteolytic 

cleavage of the C-terminal domain of TraGF followed by active translocation into the paired 

donor cell. The TraGF –TraSF interaction signals a nonproductive donor–donor cell junction 

and blocks DNA transfer (Anthony et al. 1999). Similar findings were reported for homologs 

of TraG and TraS encoded by the SXT ICE (integrative and conjugative element) of Vibrio 
cholerae (Marrero and Waldor 2007).

In Rickettsia spp., the T4SSs encode multiple copies of “extended-VirB6” subunits with 

sizes ranging from 600 to over 1400 residues (Gillespie et al. 2009, 2010). The large 

hydrophilic domains are positioned centrally or at one or both terminal regions, they vary 

considerably in sequence composition, and many contain multiple repeat regions. 

Interestingly, VirB6 domains were identified on the surfaces of Wolbachia, Ehrlichia, and 

Rickettsia cells, which supports the notion that these domains are somehow conveyed to the 

cell surface where they contribute to establishment of endosymbiotic or pathogenic 

relationships (Rances et al. 2008).

The T4BSS transporters also encode “extended-VirB6” subunits. E. coli plasmid R64 

encodes TraY, a 745-residue protein with an unusual hydropathy profile (Sampei et al. 

2010). The N- and C-terminal thirds of the protein each possess between four and six 

predicted TM motifs, whereas the central third is hydrophilic and predicted to reside in the 

periplasm. In the L. pneumophila Dot/Icm system, VirB6-like DotA is ~300 residues larger 

than TraY and possesses the same general hydropathy profile with multiple N- and C-

terminal TM domains flanking a central hydrophilic domain. As mentioned above, however, 

DotA localizes both in the inner membrane and is secreted to the milieu in a Dot/Icm T4SS-

dependent manner where it forms ring-like oligomers (Nagai and Roy 2001). How DotA is 

partitioned to these different locations where it contributes to effector translocation across 

the cytoplasmic membrane or into target cells remains unknown.

2.5. The Outer Membrane Core Complex (OMCC)

The IMCs are connected to OMCCs in ways that are not well structurally defined to mediate 

substrate passage across the periplasm and OM. Among well-characterized T4ASSs, the 

OMCCs are composed of homologs or orthologs of the lipoprotein VirB7, outer membrane-

associated VirB9, and the C-terminal half of VirB10. The OMCC is intrinsically stable and 
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stabilizing for most of the other VirB subunits, and structures of several OMCC’s from E. 
coli plasmids (R388, pKM101) and the A. tumefaciens VirB/VirD4 T4SSs have now been 

solved by transmission- or cryo-electron microscopy (Fronzes et al. 2009; Low et al. 2014; 

Gordon et al. 2017). These are structurally-conserved, large ~1 MDa barrel-shaped 

structures composed of 14 copies of each of the 3 VirB-like subunits. They are envisioned to 

form a structural scaffold for the translocation channel, although the architecture and 

composition of the channel remain undefined (Low et al. 2014) (see Chapter “ Structural and 

Molecular Biology of Type IV Secretion Systems ”). Very recently, a low-resolution 

structure was obtained for the OMCC of a T4ASS distantly related to the A. tumefaciens 
VirB/VirD4 system, namely the Helicobacter pylori Cag T4SS (Frick-Cheng et al. 2016). 

Interestingly, the OMCC is considerably larger (~41 nm as opposed to ~18 nm for the VirB/

VirD4-like T4SSs) and composed of at least five subunits (VirB7-like CagT, VirB9-like 

CagX, VirB10-like CagY, Cag3, CagM). Nevertheless, the Cag OMCC adopts a ring-shaped 

architecture that generally resembles OMCCs of the VirB/VirD4-like T4ASSs (see also 

Chapter “ The Helicobacter pylori Type IV Secretion System Encoded by the cag 
Pathogenicity Island: Architecture, Function and Signaling ”).

In the L. pneumophila Dot/Icm, the OMCC also is composed of five subunits, DotG(IcmE), 

DotF(IcmG), DotC, DotD, and DotH (Figs. 3 and 4). DotG is required for Dot/Icm function. 

It is configured as an IM-spanning subunit that extends into the periplasm where it 

constitutes part of the OMCC. DotG subunits are large (~1000 to 1500-kDa), sequence-

variable subunits of which only the extreme C termini bears sequence similarities to the 

VirB10 subunits of the T4ASSs. DotF similarly spans the IM and has a large periplasmic 

domain, but it is important for machine function in the ameba Acanthamoeba castellanii and 

not in human macrophages (Purcell and Shuman 1998; Segal and Shuman 1999a; Luo and 

Isberg 2004; Sutherland et al. 2013). DotC and DotD are outer membrane lipoproteins 

required for machine assembly (Yerushalmi et al. 2005). DotD possesses a disordered N-

terminal domain and a globular C-terminal domain with an N0 structural fold that might 

connect the OMCC with the IMC or play a more dynamic role in regulating substrate 

passage (Nagai and Kubori 2011; Nakano et al. 2010; Souza et al. 2011). DotH also is a 

critical OMCC subunit and is dependent on lipoproteins DotC and DotD for delivery to the 

OM protein (Andrews et al. 1998; Nakano et al. 2010). Although DotH has features similar 

to VirB9 (Watarai et al. 2001; Nakano et al. 2010), it also was reported to comprise part of a 

fibrous structure that covers the entire bacterial surface that enhances internalization of 

bacteria (Watarai et al. 2001). Finally, two subunits, DotK(IcmN) and IcmX, are localized in 

the OM or periplasm, but are not predicted to form part of the OMCC. DotK is a predicted 

lipoprotein that carries an OmpA peptidoglycan-binding domain, but is not required for 

Dot/Icm function (Segal et al. 1998; Segal and Shuman 1999a; Yerushalmi et al. 2005). 

IcmX is a 50-kDa, periplasmic protein shown to be required for pore formation in the 

membrane of the eukaryotic cell and might participate in regulating the trafficking of the 

Legionella containing vacuole (Edelstein et al. 1999; Matthews and Roy 2000; Sadosky et 

al. 1993).

The Dot/Icm OMCC also adopts a ring-shaped structure, whose assembly requires DotC, 

DotD, DotH, and DotG, but not DotF (Kubori et al. 2014; Vincent et al. 2006). These 

findings were recently extended with presentation of the first in-situ structure of a T4SS, 
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solved by cryo-electron tomography (Ghosal et al. 2017). These studies determined that the 

Dot/Icm T4SS assembles as a large cone-shaped structure predominantly at L. pneumophila 
cell poles. Indeed, secretion of effectors from the polar-localized Dot/Icm machine recently 

was shown to be essential for virulence (Jeong et al. 2017). The polar-localized OMCC 

presents as several densities that were envisioned as a “WiFi” structure that extends from the 

OM across the periplasm to the IM where it presumably interacts with an IMC subassembly 

whose structure has not yet been defined (Fig. 1).

2.6. Evolutionary Adaptations of OMCC Subunits

Like the IMC-associated VirB6 subunits, the OMCC components have undergone 

diversification during evolution through acquisition of novel domains or motifs. This is 

mainly observed with the VirB7-like lipoproteins and the VirB10 scaffold proteins. In A. 
tumefaciens, VirB7 is a small ~4.5 kDa lipoprotein tethered to the inner leaflet of the outer 

membrane and required for stabilization of other OMCC subunits (Fernandez et al. 1996). 

However, in many systems, the VirB7-like lipoproteins have acquired surface-variable 

regions as shown for H. pylori CagT (Terradot and Waksman 2011; Backert et al. 2015), or 

N0 domains as shown for Xanthomonas citri VirB7 and L. pneumophila DotD (Nakano et al. 

2010; Souza et al. 2011). Surface-variable CagT is required for CagA translocation and pilus 

biogenesis (Ding et al. 2012; Johnson et al. 2014) and might also contribute to immune 

evasion by H. pylori (Fischer 2011). The N0 domains of VirB7Xac and DotDLp are 

envisioned to form additional rings within or at the base of the OMC of possible importance 

for channel gating or communication between the IMC and the OMCC (Nakano et al. 2010; 

Souza et al. 2011) (Fig. 2).

The VirB10-like subunits are among the most sequence- and structurally-variable subunits of 

the T4SSs (Fig. 2). Only a small C-terminal region of H. pylori CagY is similar to VirB10 

and a large central region is composed of multiple repeats (Aras et al. 2003). This central 

region is surface-displayed and associates with a pilus structure (Barrozo et al. 2013; Rohde 

et al. 2003), and during infection this region undergoes extensive rearrangements that disrupt 

or activate the Cag T4SS (Aras et al. 2003; Barrozo et al. 2013). Through host immune-

driven recombination, CagY is postulated to function as a sensor of the host immune 

response and, in turn, regulate Cag T4SS function to maximize persistent infection (Barrozo 

et al. 2013). In E. coli, plasmid R64 encodes a T4BSS and TraO closely resembles VirB10 in 

size and predicted overall structure (Sampei et al. 2010). As mentioned above, however, in 

the closely related L. pneumophila Dot/Icm system, DotG is over 1000 residues and only the 

C-terminal region resembles VirB10 (Segal et al. 1998; Vogel et al. 1998). Like CagY, DotG 

possesses central variable repeats consisting in part of multiple sets of pentapeptide repeats 

between the N-terminal transmembrane domain and the C-terminal conserved region (Segal 

et al. 1998). Furthermore, N-proximal regions of DotG subunits from different L. 
pneumophila species are highly variable. At this time, however, there is no evidence that the 

sequence-variable regions of DotG are surface-displayed.
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3. T4SS-Mediated Modulation of Target Cell Attachment

T4SSs elaborate conjugative pili or other types of surface adhesins to establish contacts with 

potential recipients (Bhatty et al. 2013). T4SSs also have evolved other functions to block 

nonproductive or deleterious cell–cell contacts or to evade immune surveillance. These 

modulatory functions appear to have arisen by three mechanisms (i) expression of variant 

forms of pilin subunits that may or may not assemble as pili, (ii) acquisition of surface-

exposed domains by signature IMC or OMCC subunits, and (iii) linkage of genes specifying 

surface-associated functions with T4SS loci (Fig. 2). These adaptations either enhance 

productive or inhibit nonproductive cell–cell contacts.

3.1. T4ASS P- and F-pili

Gram− bacterial conjugation machines elaborate conjugative pili to initiate contacts with 

target cells to facilitate formation of direct cell–cell contacts termed mating junctions. There 

are two well-characterized groups of conjugative pili, P-pili produced by various E. coli 
plasmids and the A. tumefaciens VirB/VirD4 T4SS and F-pili elaborated by the E. coli F 

plasmid (Lawley et al. 2003; Schroder and Lanka 2005). The P-type pili are thick (90–110 

Å), rigid, and short although length measurements are complicated by the fact that isolated 

pili are typically broken (Bradley 1980; Bradley et al. 1980; Paranchych and Frost 1988). 

These pili do not appear to undergo cycles of extension/retraction, but instead accumulate in 

the milieu, either through breakage or an active sloughing mechanism. Donors elaborating 

these pili typically mate efficiently only on solid surfaces. By contrast, F-type pili are 

typically ~90 Å in width and flexible, and range in length up to 1 micron (see Chapter 

“ Structural and Molecular Biology of Type IV Secretion Systems ”). These pili dynamically 

extend and retract, enabling donor cells to bind and draw recipient cells into physical contact 

for establishment of the mating junction. Although genetic requirements for production of P-

pili are nearly the same as for elaboration of the mating channel, assembly of F-pili 

additionally requires several F-specific proteins (TraF, -H, -U, -W, and TrbI) that are 

required for pilus extension and retraction (Arutyunov and Frost 2013; Clarke et al. 2008).

Interestingly, F-type systems also elaborate other surface-exposed proteins or domains to 

promote or block F plasmid transfer. For example, once the F-pilus retracts, bringing donor 

and recipient cells into juxtaposition, F-systems also encode OM-associated TraN, which 

binds OmpA and possibly LPS on the recipient cell surface to stabilize the mating junction 

(Fig. 2) (Klimke et al. 2005). Additionally, as noted above, the C-terminal region of VirB6-

like TraG blocks redundant DNA transfer in donor–donor contacts through interactions with 

TraS (Audette et al. 2007). In matings with F-minus recipients, however, TraG’s C-terminal 

domain coordinates with TraN to stabilize the mating junction (Audette et al. 2007; Firth 

and Skurray 1992). Finally, the F-type and other conjugation systems employ surface or 

entry exclusion systems to block redundant DNA transfer among populations of donor cells 

(Fig. 2) (Garcillan-Barcia and de la Cruz 2008; Lawley et al. 2003). Besides the TraG/TraS 

entry exclusion system, F-systems encode a lipoprotein, TraT, that is, exported to the E. coli 
cell surface. TraT forms higher-order oligomers and appears to block initiating or stabilizing 

contacts of donor cells with each other, possibly by impeding the binding of the F-pilus or of 

TraN to OmpA in donor-donor cell contacts.
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3.2. Evolutionary Adaptations of T4ASS-Associated Surface Structures

Surprisingly, at this time only two systems functioning in the delivery of effectors to 

eukaryotic cells have been shown to produce pili, the A. tumefaciens VirB/VirD4 system and 

the H. pylori Cag system (Aly and Baron 2007; Fullner et al. 1996; Kwok et al. 2007; 

Johnson et al. 2014; Tegtmeyer et al. 2017). Assembly of pili by the latter system is more 

complex than the former in its requirement for VirB-like subunits (VirB9-like CagX, VirB7-

like CagT, VirB8-like CagV) as well as several Cag-specific proteins (Cag3, CagM). By 

contrast, VirB-like subunits such as VirB2-like CagC and VirB10-like CagY that are 

required for pilus production in the A. tumefaciens and closely related systems are not 

required for Cag pilus production (Noto et al. 2015). Furthermore, in addition to VirB5-like 

CagL, other subunits including CagI, CagH, a domain of CagY and the CagA substrate itself 

associate with the pilus tip. The surface display of CagL, CagI, CagY, and CagA appears to 

be biologically relevant in view of evidence that these subunits bind integrin receptors on 

host epithelial cell surfaces (Backert and Tegtmeyer 2017; Conradi et al. 2012). Comparative 

genomic studies also have supplied evidence for the diversification of surface-localized Cag 

subunits, presumably under evolutionary selective pressures in the human host (see Chapter 

“ The Helicobacter pylori Type IV Secretion System Encoded by the cag Pathogenicity 

Island: Architecture, Function, and Signaling ”).

Diversification of T4SS-associated pili or pilins during the evolution of pathogen–host 

relationships is potentially widespread (Fig. 2). Bartonella spp. carry two general types of 

T4SS loci, VirB/VirD4-like systems responsible for effector translocation and Trw systems 

that lack associated VirD4-like receptors (Eicher and Dehio 2012). The Trw systems have 

the coding capacity for multiple variant forms of VirB2- and VirB5-like subunits, suggestive 

of a function not in substrate transfer but rather in production of variant forms of surface-

exposed pilins or pili. The Trw system is essential for erythrocyte invasion, and it is 

postulated that the variant pili/pilins might facilitate interactions with different erythrocyte 

receptors, either within the reservoir host population (e.g., different blood group antigens) or 

among different reservoir hosts (Dehio 2008). Rickettsia spp. genomes, particularly among 

members of family Anaplasmataceae, also show a proliferation of many VirB2 variants 

(Gillespie et al. 2010). These T4SSs also might elaborate surface-variable pilins or pili to 

modulate attachment to different host cell types or for immune evasion.

Various effector translocators lack genes for VirB5 subunits, which are required for pilus 

assembly. The best-characterized example is the Bordetella pertussis Ptl system, which 

possesses a VirB2-like pilin but not a VirB5 homolog or a detectable pilus (Locht et al. 

2011). This might be attributed to the evolution of the Ptl system for export of its PT cargo 

into the milieu without a requirement for host cell binding. Rickettsia spp. T4SSs also lack 

discernible VirB5 homologs, raising the possibility that the infection cycle of these obligate 

intracellular pathogens also might not require elaboration of a pilus for binding of the 

mammalian host membrane (Gillespie et al. 2010). In fact, it is interesting to note that 

substrate transfer by the well-characterized A. tumefaciens VirB/VirD4 T4SS does not 

require production of extended pili, as shown by the isolation of “uncoupling” mutations that 

block pilus assembly without affecting substrate transfer (Jakubowski et al. 2003, 2005; 

Sagulenko et al. 2001). These observations suggest that in certain environmental or infection 
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niches, the production of adhesive pili might benefit the bacterial host by enhancing the 

efficiency of substrate transfer. In other settings, pilus production might impose a fitness cost 

or another disadvantage to cell viability, resulting in the evolution of T4SSs dependent on 

other cell surface proteins for target cell binding and mating junction formation.

3.3. T4BSS DNA Transfer and Dot/Icm Systems

T4BSS (IncI) conjugation systems have evolved to deliver their DNA substrates efficiently 

both on solid surface and in liquid matings (Komano et al. 2000). Efficient transfer on solid 

surfaces is attributed to the capacity of these systems to elaborate a thick rigid pilus, 

although this pilus has not been extensively investigated. Transfer in liquid, however, is 

mediated by an associated type IV pilus, which despite the nomenclature is phylogenetically 

unrelated to the T4SS-encoded pili (Yoshida et al. 1999). Interestingly, the type IV pilus is 

subject to sequence variation in the pilus tip protein, PilV, due to the presence of a plasmid-

encoded site-specific recombination system termed the “shufflon” (Gyohda and Komano 

2000; Yoshida et al. 1999). PilV promotes efficient binding of lipopolysaccharides on the 

surfaces of recipient bacterial cells, but the shufflon introduces variation in the C-terminal 

region of the pilus tip protein PilV, which in turn determines recipient specificity during 

liquid matings. Thus, the T4BSS conjugation systems have co-opted a type IV pilus gene 

cluster and an associated shufflon to ensure efficiency as well as specificity to the mating 

reaction.

The T4BSS Dot/Icm system evolved from an ancestral IncI conjugation system, but it did 

not retain the type IV pilus gene cluster and also apparently does not produce a thick rigid 

pilus. Rather, L. pneumophila with an intact dot/icm locus elaborate a fibrous material 

covering the surface of cells. This fibrous mesh was proposed to facilitate specific stages of 

the L. pneumophila infection cycle (Watarai et al. 2000), and might also account for the 

capacity of the Dot/Icm T4SS to conjugatively transfer a DNA substrate to recipient 

bacterial cells (Vogel and Isberg 1999).

4. Evolution of Dot/Icm Secretion System

The availability of many bacterial genome sequences has enabled detailed phylogenomics 

studies exploring the distribution of T4BSS transporters both within Legionella and among 

other species of Gammaproteobacteria (Figs. 3 and 4). The T4BSS apparatus was first 

identified in Legionella, but since was shown function in Coxiella burnetii (Segal and 

Shuman 1999b; Seshadri et al. 2003; Sexton and Vogel 2002) and Rickettsiella grylli 
(Leclerque and Kleespies 2008; Nagai and Kubori 2011). C. burnetii is an intracellular 

pathogen responsible for Q fever in humans (Larson et al. 2016), whereas bacteria of the 

genus Rickettsiella are obligate intracellular pathogens of a wide variety of arthropods. The 

genera Legionella, Coxiella, and Rickettsiella belong to the same order, Legionellales, 

within the group of Gammaproteobacteria. In accordance with their common ancestries, the 

dot/icm loci from these genera are highly similar in sequence and gene organization (Fig. 3). 

In line with predicted architectural and functional similarities between these systems, several 

C. burnetii dot/icm genes were shown to complement the corresponding dot/icm mutations 

in L. pneumophila (Zusman et al. 2003; Zamboni et al. 2003). The T4SSs from the three 
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genera, do however, exhibit a few differences: (a) lvgA and icmR are absent from Coxiella 
and Rickettsiella, although icmR functional homologs have been found in both organisms 

(b) dotJ(icmM) and dotV are apparently absent from Coxiella and Rickettsiella (c) icmF and 

icmH are not present in Rickettsiella and icmF is fragmented in Coxiella, and (d) icmL is 

duplicated in Coxiella and Rickettsiella although in the latter the duplication is shorter (Fig. 

4) (Segal et al. 2005).

More recently, evidence has been presented for the existence of T4BSSs in other species. 

For example, a Dot/Icm system was identified in the fish pathogen Piscirickettsia salmonis, 
and reminiscent of the L. pneumophila infection process, the phagosome-lysosome fusion 

event is inhibited during Piscirickettsia infection (Gomez et al. 2013). Phylogenetic studies 

place the Piscirickettsia as a member of the order Thiotrichales (Mauel et al. 1999). The 

presence of a Dot/Icm system in this order thus pushes back the origin of the T4BSSs to the 

common ancestor of the orders Legionellales and Thiotrichales. Genome sequence studies 

also have revealed the presence of T4BSS gene clusters in other proteobacteria including 

Marinobacter aquaeolei, Xanthomonas campestris, and Burkholderia vietnamiensis (Nagai 

and Kubori 2011). In these organisms, genes for core subunits of the T4SS are often present 

in several clusters around the genome, yet ancillary adaptors and other subunits, e.g., icmS, 

icmR, icmX, icmV, seem to be found only in the order Legionellales (Nagai and Kubori 

2011).

The availability of genome sequences of different Legionella species allows us now to study 

the evolution of the Dot/Icm system in greater depth. Comparison of the different Dot/Icm 

encoding genes among the more than 50 available Legionella genomes shows that this 

secretion system is highly conserved despite the large phylogenetic distance between some 

of the Legionella species. Indeed, all dot/icm genes known from L. pneumophila are also 

present in all other Legionella species sequenced so far (Fig. 4). The only exception is icmR, 

although one or two non-homologous genes appear to be functional homologs in other 

Legionella species; these genes were termed FIR for functional homologs of IcmR (Feldman 

and Segal 2004; Feldman et al. 2005). Our recent analysis comprising 80 Legionella strains 

belonging to 58 different Legionella species confirms this observation and further suggests 

that FIR proteins are extremely fast-evolving (Gomez et al., submitted). Interestingly, the 

order and orientation of the genes encoding the Dot/Icm are completely conserved among 

the different species comprising the genus Legionella (Burstein et al. 2016). The only 

differences are a few insertions between some of the dot/icm genes in some species that 

apparently are not related to the T4BSS group. These insertions are conserved between 

phylogenetically closely related species, suggesting that the subregions encoding Dot/Icm 

components are tightly regulated (Burstein et al. 2016).

5. Comparisons of Effectors Secreted Through Different Dot/Icm Secretion 

Systems

In 2002, Nagai and collaborators demonstrated that the protein RalF is secreted by the 

Dot/Icm secretion system (Nagai et al. 2002). Since these early studies, a panoply of 

experimental and bioinformatics techniques has uncovered in excess of 300 Dot/Icm-
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translocated substrates (Finsel and Hilbi 2015; Hubber and Roy 2010). These effectors, 

which represent about 10% of the L. pneumophila genome, are unprecedented in their total 

number in just one strain. Only a subset of these effectors have been characterized, and 

unfortunately in many cases mutations of candidate effectors have not yielded discernible 

phenotypes possibly as a result of functional redundancy (Luo and Isberg 2004; O’Connor et 

al. 2012; Finsel and Hilbi 2015). The evolution of multiple mechanisms to subvert the 

eukaryotic host likely can be attributed to the molecular arms race that evolved between 

individual strains of L. pneumophila and the broad spectrum of protozoan hosts encountered 

in its natural environment.

Dot/Icm substrates have been identified through distinct signatures. Most notably, they often 

carry conserved eukaryotic protein domains, e.g., serine–threonine kinases, ubiquitin ligases, 

Sel-1, Sec7, U-box, F-box, ankyrin repeats (Cazalet et al. 2004; de Felipe et al. 2005; 

Cazalet et al. 2010; Gomez-Valero et al. 2011). These domains were likely acquired by 

horizontal gene transfer and their presence reflects the long-standing co-evolution of 

Legionella spp. with their protozoan hosts (de Felipe et al. 2005; Gomez-Valero et al. 2011; 

Gomez-Valero and Buchrieser 2013; Gomez-Valero et al. 2014; Lurie-Weinberger et al. 

2010). Searches for homologs of the many L. pneumophila Dot/Icm substrates in other 

Legionella species identified only seven that are common among 40 species analyzed 

(Burstein et al. 2016; Gomez-Valero, submitted). However, when applying in-silico 

approaches, many putative effectors are identified in the newly sequenced Legionella 
genomes. This suggests that Legionella spp., typically have large substrate repertoires, 

although the effector set can be quite distinct from species to species (Gomez-Valero, 

submitted). The functions of effectors that have been revealed up to now target many cellular 

pathways and different eukaryotic organelles, including cell uptake and exit, endocytosis, 

vesicle trafficking, autophagy, mitochondria, cytoskeleton, ubiquitination/proteasome, 

ribosome, transcription factors, and the nucleus (Escoll et al. 2016; Finsel and Hilbi 2015; 

Qiu and Luo 2017; Sherwood and Roy 2016). (see Chapter “ Subversion of Host Membrane 

Dynamics by the Legionella Dot/Icm Type IV Secretion System ”).

The effectors translocated through the C. burnetii Dot/Icm system have not yet been as 

extensively studied, due to earlier limitations in genetic manipulations and axenic growth of 

this bacterium (Beare et al. 2009). Currently, 133 protein substrates have been identified in 

C. burnetii representing about 6% of the open reading frames of its genome (Chen et al. 

2010; Carey et al. 2011; Qiu and Luo 2017). These are involved in the subversion of vesicle 

trafficking, lipid metabolism of the Coxiella containing vacuole, host gene expression, 

autophagy, cell death, and immunity (Moffatt et al. 2015; Qiu and Luo 2017). Strikingly, 

only six of these effectors have homologs in L. pneumophila (Qiu and Luo 2017). 

Additionally, in contrast to the redundancy we find among Legionella effectors, most C. 
burnetii effector mutants fail to grow inside host cells (Moffatt et al. 2015; Weber et al. 

2013). The apparent lack of redundancy among effectors in this species might be due to the 

comparatively narrow host range of C. burnetii compared with L. pneumophila (Qiu and Luo 

2017) (see Chapter “ Subversion of Host Membrane Dynamics by the Legionella Dot/Icm 

Type IV Secretion System ”).
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Recently, studies have begun to identify Dot/Icm effectors in Rickettsiella and 

Piscirickettsia. Using bioinformatics approaches, 18 putative Dot/Icm substrates were 

predicted for R. grylli, of which six were homologs of effectors in L. pneumophila strain 

Philadelphia (Lifshitz et al. 2013). In Piscirickettsia, four effectors have been identified 

through genetic screening (Labra et al. 2016) that exhibit clear matches with effectors in 

either L. pneumophila or C. burnetii. These effectors all have eukaryotic-like protein 

domains, revealing a possible common function upon translocation to the eukaryotic host 

during the establishment of pathogen–host relationships.

6. Concluding Remarks

Structural, functional, and phylogenetic studies continue to shape our understanding of the 

fascinating and complex T4SSs. The structural advances are accelerating and promise in the 

near future to generate structures of several paradigmatic systems at or near atomic 

resolution. Continued work in this area also should allow for more detailed comparisons of 

systems from different ancestries, e.g., types T4ASS and T4BSS. In conjunction, in vivo 

functional tests and mutational studies are critically important lines of study for assigning 

biological relevance of structures and for defining dynamic processes relating to machine 

biogenesis, mating junction formation, and substrate transfer. In the future, the 

implementation of high-resolution imaging techniques, including single-cell analyses, will 

provide a detailed understanding of early steps in machine biogenesis and substrate 

recruitment and trafficking. These and other approaches also need to address the challenging 

questions of how the T4SSs are activated by extracellular, e.g., target cell contact, or 

intracellular, e.g., substrate docking, signals. Finally, recent studies have shed light on the 

fact that T4SSs can function as mediators of antagonistic as well as cooperative 

interbacterial interactions. Further work along this line will generate a broader picture of the 

role of type IV secretion in the shaping and maintenance of polymicrobial communities in 

different environmental and host niches.

The work of Guglielmini and colleagues (Guglielmini et al. 2013) is a compelling example 

of how the increasing number of available genome sequences provides a wider view of the 

studied paradigmatic systems. These types of phylogenomics studies will lead to further 

refinements of the T4SS classification schemes and contribute to a better understanding of 

the evolution of these systems.

To fully decipher how a conserved machinery like the T4SS is able to adapt to so many 

different bacteria, hosts, and sets of effectors will remain a fascinating challenge for many 

years to come. Importantly, the information we have and will continue to acquire remains an 

invaluable resource for the translational goals of inhibiting T4SS machine functions or 

killing bacterial hosts that deploy these machines in clinical settings. Indeed, several 

important advances along these lines have been recently reported (see Chapters 

“ Mechanisms of Conjugative Transfer and Type IV Secretion-Mediated Effector Transport 

in Gram-Positive Bacteria ” and “ Coupling Proteins in Type IV Secretion ”).
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Fig. 1. 
Gene arrangements and architectures of the A. tumefaciens VirB/VirD4 type IVA and L. 
pneumophila Dot/Icm type IVB secretion systems. Upper: gene arrangements of the two 

systems with color-coding of the genes encoding homologous subunits; unshaded genes are 

unique for the T4BSS transporters. The VirB/VirD4 subunit enzymatic functions and 

associations with inner membrane complex (IMC), outer membrane core complex (OMCC), 

or pilus are listed. PG Hydrolase, peptidoglycan hydrolase; T4CP, type IV coupling protein. 

Lower: architectures of the T4ASS and T4BSS machineries based on the R388-encoded 

VirB3–10 structure (Low et al. 20124) and the L. pneumophila Dot/Icm system (Ghosal et al. 

2017) adapted with permission from the publishers. OM, outer membrane; P, periplasm; IM, 

inner membrane; OMCC, outer membrane core complex; IMC, inner membrane complex. 

For both systems, three different routes for substrate passage across the inner membrane are 

presented: (1) through the central channel formed by the VirD4/DotL hexamer, (2) through 

the channel formed by the VirB4/DotO hexamer, or (3) through a channel formed by other 

IMC subunits, e.g., VirB6/DotA and VirB8/DotI. The IMC of the Dot/Icm system has not 

been structurally analyzed. For both systems, substrates are delivered through an OMCC 

channel to the cell surface. For the Dot/Icm system, the DotL—adaptor complex involved in 

substrate recruitment is shown (Kwak et al. 2017)

Christie et al. Page 26

Curr Top Microbiol Immunol. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Evolutionary adaptations of T4SS subunits for machine diversification. An archetypal 

T4ASS type with the VirB subunits is shown. Five different types of subunit adaptations 

with known or postulated functions are depicted: (I) VirD4 subunits with C-terminal 

extensions involved in substrate recruitment, (II) “extended-VirB6” subunits with C-terminal 

or central hydrophilic domains that extend across the outer membrane, (III) sequence-

variable VirB2 and VirB5 pilus-associated subunits, (IV) VirB7 and VirB10 subunits with 

variable repeat regions or N0 structural domains, (V) other outer membrane proteins 

(OMPs) or surface-displayed lipoproteins co-opted by T4SSs for novel functions. See text 

for details
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Fig. 3. 
Syntenic regions of the Dot/Icm system encoding genes among three bacterial species. L. 
pneumophila strain Paris, C. burnetii strain RSA493, and R. grylli strain NZ_AAQJ are 

represented. The genomic organization and Blastx comparisons of the regions encoding for 

the T4BSS machinery in these three species are depicted. The gray color code represents the 

blast matches; the darker the gray the better the blast match
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Fig. 4. 
Conservation of the type IVB Dot/Icm secretion system among Legionella pneumophila, 

Coxiella burnetii, and Rickettsiella grylli. Strains Paris, RSA493, and NZ_AAQJ, 

respectively are taken as representatives for their species. The Dot/Icm secretion complex 

proteins have been colored according to the percentage of amino acid identity among the 

three corresponding orthologous for each Dot/Icm component (red for the most conserved 

ones to clear yellow for the less conserved ones). Green and blue, proteins absent in R. grylli 
and C. burnetii, respectively; white, proteins of L. pneumophila absent in both other bacteria 

(modified from Nagai and Kubori 2011)
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