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Abstract

Granulocyte differentiation and immune response function is a dynamic process governed by a 

highly coordinated transcriptional program that regulates cellular fate and function, often in a 

context-dependent manner. Advances in high-throughput technologies and bioinformatics have 

allowed us to better understand complex biological processes at the genomic and proteomic levels. 

Components of the environmental milieu, along with the molecular mechanisms that drive the 

development, activation, and regulation of granulocytes, have since been elucidated. In this 

chapter, we present the intricate network in which these elements come together and influence one 

another. In particular, we describe the critical roles of transcription factors like PU.1, CCAAT/

enhancer-binding protein (C/EBPα; alpha), C/EBPε (epsilon), and growth factor independent-1 

(Gfi-1). We also review granulocyte colony-stimulating factor (G-CSF) receptor-induced signal 

transduction pathways, their influence on proliferation and differentiation, and the cooperativity of 

cytokines and chemokines in this process.
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Phagocytes constitute the primary line of host defense through the highly coordinated 

process of chemotaxis; ingestion of microbes, particles, and cells; and production and 

secretion of peptides, lipids, and reactive oxygen species (ROS). This biological function has 

been critical for the success of multicellular organisms and is found in elementary forms 

such as dichtyostelium. Phagocytes provide the cornerstone of the innate immune system. 
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Unlike the adaptive immune response that requires prior microbe exposure and time to 

develop specific antigen recognition, phagocytes are critical for the rapid, nonspecific 

targeting and elimination of infectious pathogens. These events involve complex interactions 

between the host, pathogen recognition, and phagocytic effector cells that must be tightly 

regulated. Efficient innate immune responses must be balanced against prevention of 

unabated inflammation linked to autoimmune and inflammatory disease states. For example, 

the recognition and subsequent phagocytosis of apoptotic neutrophils by macrophages is a 

key homeostatic event in the resolution of inflammation. The components and molecular 

mechanisms governing the development, activation, and regulation of these cells have been 

established, and they present the basis for this chapter and future work with a systems 

analysis.

From a common myeloid progenitor (CMP) cell, phagocytic cells develop into highly 

specialized cells. Granulocytes, also known as polymorphonuclear leukocytes (PMNs), 

consist of neutrophils, basophils, and eosinophils. Of these, the neutrophil is the most 

predominant circulating leukocyte in humans, whereas lymphocytes predominate in mice. 

Peripheral blood monocytes undergo a process of activation and differentiation to become 

resident tissue macrophages. Both cell types are descended from a common hematopoietic 

progenitor cell, the colony-forming unit granulocyte/macrophage (CFU-GM).

Granulocyte production must be sufficient and dynamic to protect the host against infection, 

but not excessive as to cause chronic inflammation and tissue damage. Production begins at 

the earliest stage when the hematopoietic stem cell (HSC) is recruited from a pool of 

dormant HSCs (Figs. 6.1 and 6.2). A granulocyte requires 12 days in the bone marrow 

before it leaves to eventually reside in tissues. In peripheral blood, neutrophil levels are 

finely controlled (2–8 × 103/mm3) and their circulating half-life is brief (~ 6h). Most of the 

bone marrow activity (~ 67% of the cells belong to the myeloid, nonerythroid lineage) is 

directed toward a continuous, prodigious degree of neutrophil production (~ 5–10 × 1010/

day) [1]. Life-threatening sepsis occurs when absolute neutrophil counts are less than 0.5 × 

103/mm3. Granulocyte production can respond quickly to severe infection with a log-fold 

increase in circulating neutrophil counts (~ 3–5 × 104/mm3) within 48–72h. When healthy 

adult volunteers received a single dose of granulocyte colony-stimulating factor (GCSF), 

neutrophil counts increased rapidly, peaking at 12 h and returning to baseline by 48–72 h 

[2]. Bone marrow reserve is critical. The neonatal neutrophil bone marrow storage pool is 

decreased compared to the adult counterpart [3, 4]. Moreover, there is delayed neutrophil 

response to infection (3–4 h in the neonate compared to 30–90 min in the adult) [5]. Thus, 

neonates are especially susceptible to neutrophil exhaustion when stressed by severe 

infection (sepsis). Understanding neutrophil production and kinetics has led to improved 

survival in stressed neonates [6, 7].

Granulopoiesis

Granulopoiesis is a complex process by which a CMP, under the stimulation of cytokines 

interleukin-3 (IL3), GCSF, and/or granulocyte macrophage colony-stimulating facto 

GMCSF, induces CFU-granulocytes erythrocytes, monocytes, and megakaryocytes (GEMM) 

to differentiate into CFU-GM, the common precursor for both neutrophils and monocytes. 
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Myelopoiesis involves stem and progenitor cells that generate also megakaryocytes (and 

platelets) and erythrocytes (Fig 6.1). This hierarchy has been challenged and a newer 

paradigm has emerged to reflect evidence that the cells of both the innate (neutrophils and 

macrophages) and adaptive (T and B cells) immune system are derived from a lymphoid/

myeloid multipotent progenitor (LMPP; Fig 6.1), which does not give rise to 

megakaryocytes or erythrocytes [8, 9]. Other cytokines involved in multipotential lineage 

progenitors include thrombopoietin and Flt3. The precise combination(s) of growth factors 

and stromal factors that lead to the production of a specific granulocyte remains poorly 

understood. The CFU-GM stem cell differentiates into either a CFU-G or CFU-M stem cell. 

The development of mature granulocytes from hematopoietic precursor cells is controlled by 

a small number of transcription factors and complex gene regulatory networks, including 

those encoding growth factors and their receptors, enzymes, adhesion molecules, and 

transcription factors. In particular, PU.1, CCAAT/enhancer-binding protein (C/EBPα; 

alpha), C/EBPε (epsilon), and growth factor independent (Gfi)-1 have emerged as critical 

players, master regulators of myeloid development [10], and constitute a gene regulatory 

networking for granulopoiesis. A systematic study of the regulatory components and their 

complex interactions will enable higher-order understanding of how granulocytes are 

produced, how they modulate other immune responses and themselves, and how aberrations 

in these pathways lead to disease states.

GCSF is the most important hematopoietic growth factor that drives the production, 

proliferation, and differentiation of myeloid progenitor and precursor cells, beginning with 

the bone marrow HSC and terminating as a mature neutrophil released into the periphery. It 

also acts to enhance the survival and function of mature neutrophils by delaying apoptosis 

[1, 2] and acting cooperatively with other cytokines (e.g., IL-8 and tumor necrosis factor 

(TNF)) to activate or “prime” the neutrophil, in a dose-dependent manner [3, 4]. The clinical 

utility of GCSF is well evidenced by its use in the treatment and survival of patients with 

congenital and chemotherapy-induced neutropenias.

GCSF acts through its cognate receptor (GCSFR) via multiple signal transduction pathways, 

including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), 

Ras/mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K)/

protein kinase B (Akt) pathways, described in detail below. Seven isoforms of GCSF 

receptor, termed class I through VII, have been identified by screening placental and 

myeloid leukemia complementary DNA (cDNA) libraries [11–14]. These isoforms result 

from the alternative spicing of the GCSFR mRNA. Although multiple isoforms of GCSFR 

were identified, only the class I and class IV isoforms appear to be important for 

granulopoiesis, as these were the only two isoforms validated to be expressed in normal and 

leukemic hematopoietic cells using quantitative PCR [15]. The class I isoform represents the 

wild type since it is the predominantly expressed GCSFR isoform. The class IV GCSFR is 

an alternatively spliced, truncated isoform lacking the distal 87 amino acids, which are 

replaced by a novel 34 amino acid sequence [13]. Quantitative analysis of class I and class 

IV isoform expression revealed very low relative levels of class IV in mature circulating 

neutrophils compared to class I [15]. However, in CD34+ cells from adult bone marrow, a 

higher ratio of class IV to I expression was observed, suggesting that class IV expression 

drops during differentiation and is therefore developmentally regulated [16]. Interestingly 
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increased class IV to class I ratio was also observed in leukemic cell lines and patient 

samples from acute myeloid leukemia (AML) patients [15]. Functional studies of the class 

IV isoform demonstrated that the class IV GCSFR as differentiation defective, but able to 

promote proliferation [17]. The class IV isoform is similar in structure to a series of 

truncated GCSFR mutants resulting from somatic nonsense mutations identified in patients 

with severe congenital neutropenia that developed acute myelogenous leukemia [18–20]. 

Similar to the class IV GCSFR, these truncated forms of GCSFR also conferred a maturation 

arrest with enhanced proliferation [19, 20].

Ligand-induced dimerization of the GCSFR rapidly triggers downstream signal transduction 

pathways including JAK/STAT, Ras/MAPK, and Lyn-PI3K/Akt signal transduction 

pathways [21–29]. The proximal cytoplasmic domain of the GCSFR contains Box 1 and 

Box 2, which are conserved in the hematopoietic cytokine receptor superfamily. The distal 

domain also contains a di-leucine receptor internalization signal and four tyrosine residues 

(Y704, Y729, Y744, and Y764 in the human receptor sequence). The tyrosine residues can 

be phosphorylated and serve as docking sites for SH2-containing proteins. The truncated 

forms of GCSFR lack three of four tyrosine residues (Y729, Y744, Y769) in the distal 

domain, which strongly implicate them in promoting differentiation signaling. The distal 

domain also contains a dileucine receptor internalization signal and is also a target of 

suppressor of cytokine signaling (SOCS) protein binding which serves to target the receptor 

for ubiquitination. Together, they contribute to signaling termination via receptor 

degradation [30]. Thus, the loss of the distal domain results in increased receptor signaling 

promoted by both reduced internalization and also increased recycling of internalized 

receptor to the surface. In the full-length class I GCSFR, cell signaling and receptor 

internalization synergize to promote granulopoiesis by coupling differentiation signaling 

with attenuation of long-term proliferation.

The GCSFR dimerization-induced JAK transautophosphorylation promotes activation of 

STAT5 and STAT3 protein phosphorylation which then translocate to the nucleus and 

promote gene expression. STAT5 is primarily implicated in promoting proliferation, whereas 

STAT3 is implicated in promoting both proliferation and differentiation. STAT3 can bind to 

multiple sites on the GCSFR, which is dependent on the GCSF dose, resulting in STAT3 

activation. Activation of STAT3 promotes differentiation indirectly by inducing growth 

arrest, but does not induce the differentiation program, demonstrating the role of GCSFR 

signaling in maintenance of granulocyte precursors and cell fate determination. STAT3 

induces cell cycle termination by inducing expression of feedback inhibitors such as SOCS3 

that inhibits the JAK/STAT pathway and promotes signal termination by ubiquitin-mediated 

receptor degradation. STAT3 also promotes expression of p27kip1, an inhibitor of cyclin-

dependent kinases, and promoting cell cycle arrest and, perhaps, differentiation. Another 

important regulator of granulocyte maturation is SHP2.A protein tyrosine phosphatase, 

SHP2 favors granulopoiesis over monopoiesis by promoting the expression of the 

transcription factor C/EBPα [31–33]. One possible target of SHP2 is runt-related 

transcription factor 1 (RUNX1), a transcription factor that induces the expression of C/

EBPα [34]. SHP2 also represents a nonconventional downstream target of JAK2 for the 

class IV isoform of GCSFR. Class IV-mediated proliferation was identified to be mediated 

by a nonclassical JAK2-SHP2 pathway as opposed to the classical JAK/STAT pathway [16].

Mehta et al. Page 4

Adv Exp Med Biol. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The transcription factors PU.1 and globin transcription factor (GATA)-1 act to inhibit each 

other and are implicated in early determination of the MPP to either LMPP or 

megakaryocyte erythrocyte progenitor (MEP) [35, 36]. Higher PU.1 levels inhibit the 

activity of GATA-1, which inhibits the erythrocyte development and by default promotes 

LMPP generation [37]. Thus, PU.1 is deterministic during the early stage of granulocyte/

monocyte formation, which depends on inactivation of GATA-1. Development along the 

LMPP lineage progresses to formation of CLP and granulocyte macrophage progenitor 

(GMP). At this stage of development, PU.1 and C/EBPα appear to act in concert to promote 

GMP formation over CLP. C/EBPα expression is observed in CMP and GMP but not in 

CLP and MEP [38] and thus its expression would direct the decision to generate GMP from 

LMPP. Along with C/EBPα expression, graded expression of PU.1 also determines 

lymphoid versus myeloid decision making in LMPP. High PU.1 expression is observed in 

macrophages and lower expression in B cells, which leads to PU.1 dose-dependent 

activation of signals that guide macrophage development whereas low PU.1 levels promote 

B cell development [39].

Determination of cell fate in GMP to form either macrophages or granulocytes is dependent 

on the interplay of C/EBPα and PU.1. High PU.1 expression promotes increased expression 

of Egr1,2 and Nab2, which collectively promote monopoiesis by both promoting expressing 

monocyte specific genes and also inhibit neutrophilspecific genes [10, 39]. An important 

determinant of neutrophil formation, Gfi-1, is inhibited by Egr2/Nab complex. However, 

Gfi-1 itself can repress Egrs in addition to repressing PU.1 expression [40]. Expression of 

Gfi-1 is promoted by C/EBPα. Thus, Gfi-1 and Egrs represent secondary regulators of late-

stage granulocyte and monocyte lineage commitment by counteractive regulation of gene 

expression. The secondary regulators along with the master regulators help make cell fate 

decisions between granulocytes and monocyte lineages [40]. Gfi-1 and C/EBPε (epsilon) 

have been identified as regulators of terminal neutrophil differentiation.

Gene Expression Analysis of Neutrophil Development

System-level studies such as microarray and proteomic analysis using mass spectrometry 

have revealed distinct patterns of gene expression, defining the phagocytic precursor cell at 

different stages of differentiation. Microarray analysis indicated that neutrophil development 

can be divided into two segments: early and terminal differentiation. Gene expression 

analysis of early differentiation revealed expected upregulation of cell cycle proteins in the 

order HSC < MPP < CLP/CMP along with selective expression of myeloid genes in CMPs 

but not CLPs supporting existence of lineage specific genes and patterning [41]. 

Additionally, genes associated with HSCs were downregulated in MPP, CMP, and CLP. 

Multiple studies have been carried out in both microarray and proteomic scales to identify 

cellular differences during terminal differentiation. The milieu of genes and proteins 

identified has been characterized under functional groups to simplify their role during 

terminal differentiation.

Granule proteins are functional components of the terminally differentiated neutrophils that 

are released either into phagosomes or to the extracellular space. Granule proteins are stored 

in azurophilic, specific, and gelatinase granules, also classified as primary, secondary, and 
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tertiary granules based on their sequential production [42]. Microarray-based analysis of 

morphologically defined stages in terminal neutrophil differentiation identified 16 new 

proteins which involved proteases, protease inhibitors, and signaling molecules [43]. 

Proteomic analysis of granule proteins was performed by subcellular fractionation of the 

three different types of granules and identified 286 proteins [44]. Additional proteomic 

studies have further identified proteins specific to granules or plasma membrane as well as 

their localization in lipid rafts [45–48].

Cell surface protein expression follows developmental patterns, which allows them to be 

used as cell surface markers for differentiation. Identification of cell surface proteins also 

provides the mechanisms by which phagocytic cells or their precursors can interact with the 

environment and define cell fate or help gauge changes in the extracellular environment. 

Microarray analysis showed low-level expression of receptors involved in inflammatory 

responses such as some IL, interferon, transforming growth factor, and chemokine receptors 

during early terminal differentiation stages. Expression of these receptors increase in 

terminally differentiated neutrophils [43]. An increase in GCSFR and GMCSFR was also 

observed along with a reduction in MCSFR expression. Thus, increased receptor expression 

profile shows priming of the cell to detect inflammatory responses.

Microarray gene expression patterns obtained from highly purified subsets of cells 

representing terminal differentiation stages of neutrophil differentiation demonstrated 

expected expression of cell cycle and apoptosis proteins [49]. A hallmark of differentiation 

is cell cycle arrest and downregulation of cell cycle proteins during an early terminal 

differentiation stage. The cell cycle promoting proteins cyclin-dependent kinases (cdk) 2, 4, 

and 6 and E2F target genes were upregulated. However, E2F expression was not 

downregulated, suggesting that other transcription factors were downregulating E2F targets. 

Inhibitor of cell cycle p27kip1 was increased, a target of GCSF-mediated STAT3 and also 

under the control of C/EBPα (alpha) and C/EBPε (epsilon). Differential expression of 

apoptosis-related genes during terminal differentiation stages shows a difference in the 

mechanism of apoptosis at early and late stages, indicative of the cellular function. Early 

stages involve upregulation of p53-mediated apoptosis pathway, which surveys DNA 

damage, thus preventing proliferation of mutations. However, gene expression profile at the 

nonproliferative stage of differentiation showed an upregulation in ligand–receptor-mediated 

apoptosis pathway genes, with a concurrent reduction in p53-induced apoptotic genes. Thus, 

the profile suggests apoptosis in neutrophils is mediated upon activation of the neutrophil 

and in response to inflammatory cytokines.

Monocytopoiesis

Monocytes and macrophages are important effectors of the innate immune response and 

inflammation. Monopoiesis proceeds from the monoblast in the bone marrow to the 

circulating monocyte in the periphery, and eventually matures without proliferation to the 

tissue macrophage. However, monocyte development may be less linear than classically 

understood, and not necessarily a mere developmental intermediate between bone marrow 

precursors and tissue macrophages. Evidence suggests the possibility of a macrophage 

dendritic cell progenitor (MDP) and additionally shows that some subsets of both dendritic 
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cells and tissue macrophages do not originate from monocytes in a steady state. 

Furthermore, monocytes may carry out specific effector functions during inflammation 

without further differentiation to macrophage or dendritic cell [50–53]. However, this 

dichotomy of thought between the classical hierarchy of monopoiesis and the novel 

existence of an MDP bone marrow progenitor has yet to be resolved.

GMCSF (or CSF2) is different from GCSF in that it acts on all granulocytes, monocytes, and 

macrophages. Because of this broad activity and the vast expression of the GMCSF receptor 

on hematopoietic cells, it was originally thought that the action of GMCSF was critical to 

the regulation and maintenance of the granulocyte and monocyte populations. However, 

deletion of neither the gene for GMCSF nor the GMCSF receptor had a significant impact 

on myelopoiesis but revealed an unexpected role for GMCSF in pulmonary homeostasis 

[54–56] 56. Additional evidence suggests GMCSF plays a vital role in stress or emergency 

myelopoiesis, with resultant increased production of granulocytes and monocytes in the 

bone marrow and stimulation of their survival and function in the tissues where they are 

recruited [57, 58].

Function of Neutrophils and Monocytes

Monocytes circulate in the bone marrow, blood, and spleen and are thought not to proliferate 

at steady state. In the setting of infection, monocytes are released from the bone marrow into 

the peripheral blood and migrate to sites of inflammation or injury where they mature to 

express distinct effector phenotypes [59]. A large portion of undifferentiated monocytes are 

also contained in the spleen, and serve as a storage reservoir for additional rapid deployment 

to sites of injury or infection [50]. Monocytes express chemokine receptors and pathogen 

associated pattern recognition receptors (e.g., toll-like receptors; TLRs) that mediate this 

process. Migration to tissues and further differentiation to inflammatory macrophages or 

dendritic cells is likely determined by the inflammatory milieu and the nature of the invading 

pathogen and TLR [59].

Macrophages are resident tissue phagocytes important for maintenance of tissue health via 

the clearance of apoptotic cells and other debris. Like their monocyte predecessors, 

macrophages also express a wide range of pattern recognition receptors that make them 

efficient effectors of the innate immune response in addition to their role in tissue 

homeostasis [60]. However, macrophages also play a vital role in initiating the adaptive 

immune response as antigen-presenting cells via MHC II. The developmental origin and 

more detailed function of tissue macrophage subsets remain poorly understood.

Neutrophils and monocytes released from the bone marrow can circulate for 24 h and 1–3 

days respectively. The process of recruitment of neutrophils and monocytes involves 

recruitment by chemoattractants, IL-8, and bacterial proteins (N-formylmethionyl-leucyl-

phenylalanine (fMLF), peptidoglycans). The delivery of neutrophils to the site starts off with 

“rolling” along the blood vessel walls and is mediated by low-affinity interactions between 

the selectin family of proteins [61, 62]. L-selectins are expressed on neutrophils which 

interact with transient and sequentially expressed P- and E-selectins on the inflammatory 

endothelial cells. Interaction between the selectins is followed by interaction of β2 (beta2)-
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integrins on neutrophils and intercellular adhesion molecule (ICAM) 1 and ICAM2 on 

endothelial cell wall (tethering). Integrin-binding affinity is increased in neutrophils upon 

activation by chemokines, which results in opening up of the integrin receptor conformation 

and of the ligand-binding pocket [63]. Increased affinity of the integrins brings the rolling of 

neutrophils to a stop, followed by transmigration across the vascular wall to the tissues. 

Microarray analysis of neutrophils exposed to fMLF showed an increase in pro-

inflammatory molecules such as IL-8, TNF, IL1B, and both CXC and CC type chemokine 

[64]. Increased expression of pro-inflammatory cytokines contributes to delaying of 

apoptosis, which is essential for neutrophil function. In support, downregulation of apoptotic 

proteins was also observed. Additionally, in agreement with other studies, an upregulation of 

cytoskeletal reorganization proteins and adhesion-mediating molecules was observed [64, 

65].

Priming of neutrophils is a process that activates the neutrophil and increases expression of 

proteins that are required for increased activity and also delay apoptosis. Priming agents 

include GCSF, GMCSF, IL-8, bacterial lipopolysaccharides (LPS) and TNF-α (alpha) [66–

69]. Priming with GCSF enhances chemotaxis and mobilization of neutrophils to the site of 

injury, whereas GMCSF is involved in promoting a more robust response that is involved in 

both delaying apoptosis and increasing the bactericidal activity of neutrophils by promoting 

expression of antiapoptotic proteins and cell surface receptors involved in recognition of 

antigens [70]. A role in antigen presentation was also evident from the increased expression 

of major histocompatibility complex II (MHC II). Priming with LPS enhances the 

bactericidal activity, with recruitment of components necessary for the assembly of 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. In addition, 

priming with LPS also induced expression of proteins required for the NF-κB pathway [64, 

71].

Phagocytosis is the penultimate step in neutrophil and macrophage function, wherein they 

ingest to get rid of the invading bacteria or apoptotic cells. The process of phagocytosis 

involves recognition of the bacteria or antigen via opsonization with antibodies or 

complement that is recognized by receptors on neutrophils. Opsonized bacteria are 

recognized by receptors against the Fc region of the antibody. Bacteria opsonized by 

complement bind are then able to bind to receptors like CD11b/CD18 on the neutrophil 

surface. Binding of opsonized bacteria to the activated neutrophil surface initiates changes in 

cytoskeleton and membrane to promote ingestion of the organism as a phagosome. Finally, 

the phagosome after sequential integration with the neutrophil granules turns into a 

phagolysosome and the invading organism is killed by exposure to products derived from 

ROS and antimicrobial granule proteins such as proteases, gelatinase, peroxidase, and other 

degradative enzymes.

Transcriptome analysis of phagocytosis identified expression of several hundred messenger 

RNAs (mRNAs) within 2 h of exposure [72, 73]. The changes in expression are divided into 

an early response and late response. Early response included cytokines and chemokines that 

act as pro-inflammatory molecules and aid in further recruitment of monocytes and 

neutrophils. Late-stage transcriptional changes involve upregulation of proapoptotic proteins 

of the receptor-mediated apoptotic pathway, such as TNFα, TNFR1, and tumor necrosis 
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factor related apoptosis inducing ligand receptor (TRAILR). Other changes include proteins 

that are involved in the signal transduction pathway that involve TLRs. The downregulation 

of proteins that are involved in antibody- and complement-opsonized microbe recognition 

parallels the apoptotic expression.

ROS play a very important role in phagocytosis-mediated killing of bacteria by neutrophils. 

The production of ROS in neutrophils is mediated by an enzyme complex NADPH oxidase, 

which is composed of several components: oxidase specific (p22phox, p47phox, p67phox, and 

gp91phox) and guanosine triphosphate (GTPase; Rac1/2) [74]. Components of NADPH 

oxidase are present either in the cytoplasm or in either the plasma membrane or secretory 

vesicle membrane. Priming with GMCSF, TNFα, and LPS triggers phosphorylation of 

oxidase components and recruitment of the cytosolic components to the phagocyte 

membrane. Assembled NADPH oxidase mediates transfer of electrons from extracellular 

NADPH to oxygen within the phagosome, resulting in formation of a superoxide anion [75]. 

The superoxide anion dismutates to form hydrogen peroxide, which then oxidizes chloride 

anion to form hypochlorous acid. The reaction is catalyzed by myeloperoxidase, which 

resides in azurophilic granules and is released into the phagosome upon degranulation. Other 

products formed by hydrogen peroxide-mediated oxidation include hydroxyl radical. 

Together they have strong microbicidal activity.

Neutrophils contain highly toxic components used to kill microbes, but these molecules do 

not differentiate between host and pathogen. Neutrophils undergo apoptosis 24 h after they 

leave the bone marrow. The transcriptome analysis of neutrophils in the bone marrow and in 

peripheral blood show an upregulation of proapoptotic genes which indicates that 

neutrophils are destined to die as soon as they differentiate [43]. Priming of neutrophils 

delays the apoptotic response by upregulating antiapoptotic genes; however, upon 

phagocytosis, the transcriptional program now directs apoptosis of the neutrophils, termed as 

delayed apoptosis. The delayed apoptosis program is mediated by death receptors and is 

accompanied by a decreased inflammatory response. The decreased inflammatory response 

and mediation of apoptosis promotes resolution of the immune response and removal of the 

infection by macrophages. A downregulation of NF-κB expression is observed which halts 

the antiapoptotic response [76].
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Figure 6.1. 
Overview of derivation of granulocytes and monocytes from hematopoietic stem cells. 

Hematopoietic stem cells (HSC) give rise to multipotent progenitors (MPP) which can 

produce three lineage-committed progenitors, which are the classical common lymphoid 

progenitors (CLP) and common myeloid progenitor (CMP) and a nonclassical lymphoid/

myeloid multipotent progenitor (LMPP). CMPs produce colony-forming units which consist 

of granulocytes erythrocytes, monocytes, and megakaryocytes (CFU-GEMM). Granulocyte 

and monocyte progenitors (GMP) and megakaryocyte and erythroid progenitors (MEP) 
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descend from CMP. However, GMP can also be derived from LMPP. CFU-GM colony 

forming unit-granulocyte and monocyte
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Figure 6.2. 
Multiscale analysis of granulopoiesis. Granulocytes are produced in the bone marrow 

through self-renewal and differentiation of hematopoietic stem cells (HSC). These 

pluripotential HSC initiate granulopoiesis by becoming granulocyte/macrophage progenitor 

cells (GMP) and colony-forming cells of granulocytes/macrophages (CFC-GM). Soon, they 

become myeloblasts, which are easily identifiable precursors in the bone marrow. This 

prodigious amount of stem cell renewal and differentiation produces approximately 10 

billion cells per day in each adult person. The number of circulating granulocytes is kept 

within a narrow range of 2000–8000 per μl. The bone marrow is able to respond quickly to 

infectious stimuli and amplify granulocyte numbers by several fold. The granulocytes leave 

the blood vessels and migrate (chemotaxis) to the tissues where they release cytokines, 

engulf microbes, and produce reactive oxygen species (ROS) through a respiratory burst 

involving the NADPH oxidase. Granulocyte colony-stimulating factor (G-CSF) is the 

primary cytokine responsible for stem cell expansion toward the granulocyte, inducer of 

differentiation of the myeloblasts, and enhancer of granulocyte function. NADPH 
nicotinamide adenine dinucleotide phosphate
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