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Abstract

Advances in cognitive and affective neuroscience come largely from within-subjects comparisons, 

in which the functional significance of neural activity is determined by contrasting two or more 

experimental conditions. Clinical and social neuroscience studies have attempted to leverage 

between-subject variability in such condition differences to better understand psychopathology 

and other individual differences. Shifting from within- to between-subjects comparisons requires 

that measures have adequate internal consistency to function as individual difference variables. 

This is particularly relevant for difference scores—which have lower reliability. The field has 

assumed reasonable internal consistency of neural measures based on consistent findings across 

studies (i.e., if a within-subject difference in neural activity is robust, then it must be reliable). 

Using one of the most common fMRI paradigms in the clinical neuroscience literature (i.e., a face- 

and shape-matching task), in a large sample of adolescents (N=139) we replicate a robust finding: 

amygdala activation is greater for faces than shapes. Moreover, we demonstrate that the internal 

consistency of the amygdala in face and shape blocks was excellent (Spearman-Brown corrected 
reliability [SB] > .94). However, the internal consistency of the activation difference between faces 

and shapes was nearly zero (SB = −.06). This reflected the fact that the amygdala response to faces 

and shapes was highly correlated (r = .97) across individuals. Increased neural activation to faces 

versus shapes could not possibly function as an individual difference measure in these data—

illustrating how neural activation can be robust within subjects, but unreliable as an individual 

difference measure. Strong and reproducible condition differences in neural activity are not 

necessarily well-suited for individual differences research—and neuroimaging studies should 
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always report the internal consistency of, and correlations between, activations used in individual 

differences research.
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Introduction

The incredible progress in human affective and cognitive neuroscience has come largely 

from within-subjects contrasts. In a typical study, neural activation is compared between two 

conditions, and the resulting neural activity is interpreted in terms of psychological functions 

that differ between conditions. These within-subjects comparisons have had a major impact 

on the localization of function. For instance, researchers may parametrically manipulate 

working memory load to isolate neural activity implicated as memory demands range from 

low to high (e.g., Rypma, Berger, & D’Esposito, 2002). As an additional example germane 

to the current study, researchers have consistently found that the amygdala is more activated 

by stimuli that induce fear and other emotions, relative to affectively benign stimuli—

amygdala activation seems to be a hallmark of manipulations that increase fear (LeDoux, 

2003; Sergerie, Chochol, & Armony, 2008).

Clinical neuroscientists have attempted to leverage results from these within-subjects studies 

to better understand psychopathology—an effort to elucidate the neuroscience of individual 

differences. It certainly stands to reason that if amygdala activation is a hallmark of within-

subject manipulations that increases fear, then between-subject variability in amygdala 

activation may relate to individual differences in the experience of fear and anxiety. Clinical 

neuroscience studies have, for instance, used an individual’s amygdala activation as an 

individual difference variable—correlating it with other individual difference measures, such 

as trait anxiety (Stein, Simmons, Feinstein, & Paulus, 2007).

In this way, clinical neuroscience studies shift seamlessly from within- to between- subjects 

comparisons: from interpreting increased amygdala activation in one condition, to 

interpreting an individual’s amygdala activation. Unfortunately, there are key psychometric 

issues surrounding individual difference measures that neuroscientific studies of individual 

differences have, by and large, failed to consider. An individual’s score on any measure 

comprises some combination of true score and error. Thus, an individual’s amygdala 

activation is based on both reliable variance common across trials or blocks and noise. The 

amount of reliable variance in a measure can be estimated by assessing internal consistency, 

using split-half reliability, and reflects the degree to which neural measures from half of the 

task relate to neural measures from the other half of the task.

Clinical neuroscience studies have generally assumed reliability. A task that has 

demonstrated robust within-subjects differences (i.e., contrast differences or effects) is 

chosen to study individual differences, with the assumption that the task reflects reliable 
neural activation because the activation is consistently demonstrated across multiple studies. 

However, these are two distinct properties: robust neural activation is reflected in means and 
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standard deviations that differ across within-subject conditions whereas reliable neural 

activation implies score consistency across individuals. Importantly, according to classical 

test theory, internal consistency places an upper limit on how well a measure can correlate 

with other individual difference variables such that the maximum correlation between two 

measures is defined as the square root of the product of the reliability of the measures. We 

recently demonstrated how internal consistency of a neural measure limits between-subjects 

effect sizes (Hajcak, Meyer, & Kotov, 2017). Thus, failure to ensure that measures are 

reliable can lead to low relationships between those measures, which discourages future 

studies examining the relationship between the constructs those measures are purported to 

assess, simply because an unreliable measure was selected.

The issue of internal consistency is especially relevant in the case of difference scores, when 

within-subjects contrasts are being used as individual difference measures. The variance of a 

difference score reflects the sum of both scores unique variance and their error. In other 

words, any true score variance that is shared between conditions is actually eliminated 

through subtraction, while condition-related error summates. Thus, difference scores tend to 

have lower internal consistency than constituent condition scores because, in practice, the 

constituent scores are often correlated, resulting in considerable shared true score variance 

(Chiou & Spreng, 1996; Willett, 1988; Zumbo, 1999). When the shared true score variance 

is removed through subtraction, the difference score contains a lower proportion of true 

score variance to error than the constituent scores and thus has a lower internal consistency. 

Issues associated with utilizing difference scores as individual difference measures have 

been discussed previously (e.g., Cronbach & Furby, 1970; Lord, 1956) and are a concern 

across fields and measurement methods (e.g., Hedge, Powell, & Sumner, 2017; Meyer, 

Lerner, De Los Reyes, Laird, & Hajcak, 2017; Ross, Richler, & Gauthier, 2015). However, 

until recently, these concerns have rarely been discussed in social, cognitive, and clinical 

neuroscience (Luking, Nelson, Infantolino, Sauder, & Hajcak, 2017; Meyer et al., 2017).

The present study sought to examine the internal consistency of amygdala activation elicited 

using a modified version of an emotional face-matching task that has been used extensively 

to study individual differences (Hariri et al., 2002). This task produces robust amygdala 

activation when participants match emotional faces compared to shapes. Moreover, the 

increased amygdala activation to faces compared to shapes (i.e., difference score) has been 

examined in relation to individual differences in psychopathology (Kleinhans et al., 2010; 

Rasetti et al., 2009), genetics (Bertolino et al., 2005; Hariri et al., 2005), Parkinson’s 

disorder (Tessitore et al., 2002), and other self-report individual difference measures 

(Drabant, McRae, Manuck, Hariri, & Gross, 2009). The main effect of the task (faces 

matching vs. shape matching) was examined to confirm that the task elicited a pattern of 

results in the amygdala that is similar to what has been reported in the literature. We then 

examined the internal consistency of amygdala activation to faces, shapes, as well as the 

difference score.
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Material and Method

Participants

Participants in the present study were females aged 8-14 years who participated in a larger 

longitudinal study investigating relationships between neural reward response, emotion 

processing, pubertal development, and emerging risk for psychopathology. The sample was 

recruited from the Long Island, NY community using online classified advertisements, 

community postings, local referral sources, and a commercial mailing list targeting homes 

with an 8-14 year-old girl. Inclusion criteria were English fluency, ability to read and 

comprehend questionnaires, absence of an intellectual disability, and a biological parent 

consenting to participate in the study.

Of the 317 adolescent girls that participated in the parent study, 145 completed the 

emotional face matching task in the MRI scanner, and 139 provided sufficient quality data 

(exclusions for excessive motion n = 5, scores at least three standard deviations from the 

mean n = 1). Girls were aged 8-14 years (M = 12.65; SD = 1.74) and were 85.6% Caucasian, 

5.0% African American, 2.9% Hispanic, 6.5% identified as “Other” or did not answer. The 

research protocol was approved by the Stony Brook University Institution Review Board.

Faces-Matching Task

Participants completed an emotional face-matching task adapted from Hariri et al. (2002) 

that used 16 male and 16 female neutral, fearful, sad, and happy faces selected from the 

NIMH Child Emotional Faces Picture Set (Egger et al., 2011). Selected facial stimuli had a 

direct gaze and were from subjects aged 10-16 years (M = 13.42). Shape matching was used 

as a control condition. The task was divided into two runs for data acquisition.

During each trial, a target face or shape was presented at the top of the screen and two faces 

or shapes were presented at the bottom of the screen. Participants were instructed to select 

the face or shape at the bottom of the screen that matched the target facial expression or 

shape at the top of the screen. Participants selected the left or right face or shape using their 

index or middle finger. Faces and shapes remained onscreen for five seconds, after which a 

new trial immediately began. Each facial expression was presented in two 20-second blocks 

for each run, with each block consisting of four trials. Thus, each facial expression was 

presented a total of 16 times across both runs. Blocks alternated between face- and shape-

matching conditions and were counterbalanced. Throughout emotional face-matching 

blocks, the nonmatching facial expression was always neutral. During neutral face-matching 

blocks, the nonmatching facial expression was either fearful or happy with equal probability. 

Once the first run of the task was completed, data collection stopped and the experimenter 

checked in on the participant. When the participant was ready to continue, the second run of 

the task and data collection began.

fMRI Data Acquisition and Analysis

MR data were acquired with a 12-channel head coil using a whole-body 3 Tesla Siemens 

Tim-Trio scanner (Siemens AG, Erlangen, Germany). Gradient fieldmaps were collected to 

correct for geometric distortions in the functional data caused by magnetic field 
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inhomogeneity (Jezzard & Balaban, 1995). Three hundred and twenty-four T2*-weighted 

whole-brain volumes were acquired using an echo-planar imaging sequence (TR = 2000 ms, 

TE = 23 ms, flip angle = 83, slice thickness = 3.5 mm, and 0 mm gap).

Data analysis was performed using Statistical Parametric Mapping (SPM8; Wellcome 

Department of Cognitive Neurology, Institute of Neurology, London, United Kingdom). 

Standard preprocessing procedures with default parameters, including image realignment 

corrections for head movements, slice timing corrections for acquisition order, normalization 

to the Cincinnati Children’s Hospital Medical Center pediatric template (Wilke, 

Schmithorst, & Holland, 2002), and spatial smoothing with a Gaussian full-width-at-half-

maximum 8 mm filter. ArtRepair version 4 (Mazaika, Hoeft, Glover, & Reiss, 2009) was 

used to identify and repair (interpolate) volumes where volume-to-volume motion exceeded 

2 mm (1 voxel). Participants were excluded from analyses if greater than 20% of volumes 

were interpolated (n = 5).

Fixed-effects general linear models (GLMs) were created for each participant. The task was 

designed so that each emotional expression was presented in one block of trials using male 

faces and one block of trials using female faces during each run. If blocks were selected for 

split-half reliability analyses based on block order (i.e., odd/even), which is common, 

internal consistency would have been confounded with gender because the task was 

designed such that for a given emotional expression, the same gender appeared first in both 

runs. To avoid this, split-half reliability analyses relied on splitting the data into A and B 

blocks that randomized gender across A and B blocks. The gender for A blocks in the first 

run was randomly selected for each emotional expression for each participant; the other 

gender was then selected for A blocks in the second run. For example, if female was selected 

as the gender in A blocks for happy faces in the first run, then male happy faces would be 

included in A blocks in the second run; in this example, B blocks would then include male 

happy faces from the first run and female happy faces from the second run. This ensured that 

A and B blocks each contained both male and female stimuli. Two regressors were created 

for facial expressions for A and B blocks. Consistent with the random selection of emotional 

expression blocks to A and B regressors, shape blocks were randomly assigned to A and B 

regressors for each participant.

Contrasts were created to examine the main effect of faces vs. shapes for A and B blocks, 

the main effect of faces compared to implicit baseline for A and B blocks, shapes compared 

to implicit baseline for A and B blocks, the main effect of faces compared to implicit 

baseline for the entire task, and shapes compared to implicit baseline for the entire task. The 

latter two contrasts, which collapsed across A and B blocks, were created to examine the 

relationship between the response to faces compared to implicit baseline and shapes 

compared to implicit baseline. Because preliminary results suggested that the reliability of 

amygdala activation to faces was similar across different emotional expressions, the present 

study combined all emotional expressions. A mask was created for right and left amygdala 

based on the Harvard-Oxford probabilistic subcortical structural atlas. All voxels within the 

mask reached significance for the faces vs. shapes contrast after correcting for multiple 

comparisons across the entire brain using false-discovery rate correction (Genovese, Lazar, 

& Nichols, 2002). The mean activation from all voxels within the right and left amygdala 
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masks were extracted for each contrast using the MarsBar toolbox (Brett, Anton, 

Valabregue, & Poline, 2002). Values were imported into IBM SPSS Statistics, version 22.0 

(IBM, Armonk, N.Y.) for split-half analyses. The present study focuses on the right 

amygdala, although results were qualitatively identical for the left.

To calculate the split-half reliability of each contrast, the extracted activations were 

compared on A and B blocks using Pearson correlation coefficients. Given that splitting the 

data into A and B blocks artificially reduces the number of trials by half, which reduces the 

internal consistency of a measure, Pearson correlation coefficients were adjusted using the 

Spearman-Brown prediction formula (SB = 2r/(1+r)) to predict the split-half reliability of 

each contrast if all trials had been included. The response to faces and shapes, collapsed 

across A and B blocks, were compared to one another using a Pearson correlation 

coefficient.

To further visualize the unique and overlapping variance attributable to faces and shapes, the 

observed score variance of each measure was divided into multiple components. According 

to classical test theory, the observed score variance is comprised of the true score variance 

and error variance.

SFaces
2 = STFaces

2 + SEFaces
2

SShapes
2 = STShapes

2 + SEShapes
2

Where SFaces
2  and SShapes

2  are the total observed score variances for the response to faces 

compared to implicit baseline and the response to shapes compared to implicit baseline, 

respectively; STFaces
2  and STShapes

2  are the true score variances for the response to faces 

compared to implicit baseline and the response to shapes compared to implicit baseline, 

respectively; and SEFaces
2  and SEShapes

2  are the error variances for the response to faces 

compared to implicit baseline and the response to shapes compared to implicit baseline, 

respectively. The true score variance can be further decomposed into the unique variance 

associated with each measure and the variance shared between the two measures.

STFaces
2 = SUFaces

2 + SFaces,Shapes

STShapes
2 = SUShapes

2 + SFaces,Shapes

Where SUFaces
2  and SUShapes

2  are the unique variances for the response to faces compared to 

implicit baseline and the response to shapes compared to implicit baseline, respectively, and 
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SFaces,Shapes is the shared variance between the response to faces compared to implicit 

baseline and the response to shapes compared to implicit baseline. The variances in the 

equations above can be calculated using the following formulas (more details can be found 

in the Supplemental Materials).

SEFaces
2 = SFaces

2 ∗ 1 − rFace

SEShapes
2 = SShapes

2 ∗ 1 − rShapes

SFaces,Shapes = SFaces ∗ SShapes ∗ rFaces,Shapes

SUFaces
2 = SFaces

2 ∗ rFaces − SFaces,Shapes

SUShapes
2 = SShapes

2 ∗ rShapes − SFaces,Shapes

Where rFaces and rShapes are the split-half reliabilities of the response to faces compared to 

implicit baseline and the response to shapes compared to implicit baseline, respectively; 

SFaces and SShapes are the standard deviations of the response to faces compared to implicit 

baseline and the response to shapes compared to implicit baseline, respectively, and 

rFaces,Shapes is the correlation between the response to faces compared to implicit baseline 

and the response to shapes compared to implicit baseline.

According to classical test theory, the total observed variance of a difference score is defined 

as the following:

SFaces−Shapes
2 = SFaces

2 + SShapes
2 − 2 ∗ SFaces,Shapes

Substituting in the three total observed variance components, unique, shared, and noise, for 

each measure, the formula for the total observed variance of the faces compared to shapes 

simplifies to the following:

SFaces−Shapes
2 = SUFaces

2 + SEFaces
2 + SFaces,Shapes + SUFaces

2 + SEShapes
2 + SFaces,Shapes − 2

∗ SFaces,Shapes
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SFaces−Shapes
2 = SUFaces

2 + SEFaces
2 + SUFaces

2 + SEShapes
2

The total variance of the response to faces compared to implicit baseline and shapes 

compared to implicit baseline were compared to the total variance of the response to faces 

vs. shapes using a Morgan-Pittman test of equal variance in dependent samples (Morgan, 

1939; Pittman, 1939).

Results

fMRI Activation

Both A and B blocks in the right amygdala exhibited a robust difference in the response to 

faces vs. shapes, ts > 12.75, ps < .001, and this difference was similar between A and B 

blocks, t(137) = −.28 (Table 1; Figure 1). Thus, the task performed similarly to previously 

published papers insofar as matching faces elicited greater amygdala activation than 

matching shapes. Additionally, this effect was consistent across A and B blocks.

Both A and B blocks demonstrated a robust response to faces relative to the implicit 

baseline, ts > 3.74, ps < .001, whereas the response to shapes did not differ from the implicit 

baseline, ts < 1.11 (Table 1 ; Figure 1). Similar to the faces vs. shapes contrast, the response 

to faces relative to the implicit baseline and the response to shapes relative to implicit 

baseline did not differ between A and B blocks, absolute ts < .97. Thus, the difference 

between the response to faces and shapes appears to be driven by an increase in activation to 

faces, and this response is consistent across A and B blocks.

Split-Half Reliability

The split-half reliability of the faces vs. shapes contrast was poor, SB = −.06, whereas the 

split-half reliability of both the response to faces and shapes relative to baseline were high, 

SBs > .94 (Table 2; Figure 2). Thus, each individual main effect appears to have excellent 

internal consistency, whereas the faces vs. shapes contrast has poor internal consistency. 

This was due to a strong, positive correlation between the response to faces relative to 

implicit baseline and the response to shapes relative to implicit baseline across all blocks, r 
= .97, p < .001 (Figure 3).

Variance Distribution

A list of variance components are visualized in Figure 4. The majority of reliable variance in 

the response to faces relative to the implicit baseline and the response to shapes relative to 

implicit baseline were shared with one another (over 90% for each). This reliable shared 

variance is removed when amygdala activity to shapes is subtracted from amygdala activity 

to faces; thus, the total amount of variance in the response to faces vs. shapes is smaller than 

the variance in the response to faces relative to implicit baseline and the response to shapes 

relative to implicit baseline (t(137)s > 97.45, ps < .001). This difference in variance is 

reflected in the size of the error bars in Figure 1. Noise variance from the response to faces 

relative to implicit baseline summates with the noise variance from the response to shapes 
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relative to implicit baseline and accounts for nearly 50% of the variance in the faces vs. 

shapes difference score. Indeed, the only other contribution to the faces vs. shapes contrast 

was the small amount of unique variance from the faces vs implicit baseline contrast.

Discussion

In the present study, the amygdala showed greater activation in emotional face-matching 

blocks than in shape-matching blocks, thus replicating within-subject effects that have been 

reported in numerous studies (Drabant et al., 2009; Hariri et al., 2002; Kleinhams et al., 

2010; Marusak, Carré, & Thomason, 2013). Moreover, the amygdala response to both face- 

and shape-matching, relative to implicit baseline, was characterized by extremely high 

internal consistency. That is, the amygdala response derived from A blocks was highly 

correlated with the amygdala response to B blocks, across individuals—and this was true for 

both faces and shapes relative to baseline. However, the internal consistency for the response 

to faces vs. shapes was nearly zero—the difference score derived from A blocks was 

unrelated to the difference score derived from B blocks. The low internal consistency 

resulted from the fact that the amygdala response to faces was highly correlated with the 

amygdala response to shapes—indeed, this correlation approached the level of the internal 

consistencies. That is, the correlation between the amygdala response to faces and shapes 

was approximately the same as the correlation between amygdala response to faces on A and 

B blocks. As evidenced by the division of variance, the vast majority of reliable variance 

was shared between the face and shape conditions, which was removed in the difference 

score.

Insofar as internal consistency places a limit on validity, these data suggest that the 

difference score measure (i.e., amygdala response to faces vs shapes) could not possibly 

function as a valid individual difference measure. We would emphasize that the current 

results may or may not generalize to other studies that have leveraged this task and used the 

faces vs shapes contrast as an individual difference measure. Indeed, it would be informative 

to examine psychometric properties of the amygdala in existing data sets that have found 

relationships between the faces vs. shapes contrast and other individual difference variables. 

One possibility is that the response to faces and shapes would be less correlated in older 

participants, or participants with psychopathology—which, assuming the internal 

consistencies of the constituent measures remain constant, would increase the reliable 

variance in the difference score for these populations.

In a sample largely overlapping with the present study, striatal activation to feedback 

indicating monetary gain and loss in a guessing task were much more modestly correlated (.

40 and .55 for left striatum even and odd trials, respectively, and .36 and .49 for right 

striatum even and odd trials, respectively)—and the internal consistency for the gain minus 

loss difference score was quite a bit better (.35 and .33 for left and right ventral striatum, 

respectively) (Luking et al., 2017). Thus, it is possible to have difference scores with more 

true score variance—provided the constituent scores are themselves internally consistent and 

only modestly correlated.
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For difference scores that have low internal consistency, one alternative is to use just one of 

the constituent measures as an individual difference measure, assuming it has adequate 

reliability. In the current study, either the faces compared to implicit baseline or the shapes 

compared to implicit baseline contrast could function well as an individual measure. Indeed, 

the current study suggests that these measures may be nearly redundant (i.e., over 90% of 

the observed variance in each measure was shared). In other words, the current study 

suggests that even though the amygdala is more activated by matching faces than shapes, 

individual differences in amygdala activity could be indexed well by having subjects only 

match shapes. Of course, this calls into question the very construct typically being measured 

using amygdala activation difference scores (e.g., individual differences in emotional 

reactivity).

The current study demonstrates the importance of distinguishing between a robust within-

subject difference (i.e., increased amygdala activation to emotional face-matching versus 

shape-matching), and a reliable individual difference measure. As we have argued 

elsewhere, an important step for improving the reproducibility and rigor of clinical and 

social neuroscience is to more thoroughly examine the psychometric properties of neural 

measures (Hajcak, Meyer, & Kotov, 2017; Patrick & Hajcak, 2016). Furthermore, given 

changes in the direction of clinical neuroscience research in the past several years, namely 

the National Institute of Mental Health’s Research Domain Criteria (RDoC) initiative, 

examining the psychometric properties of neural measures is increasingly important. The 

RDoC initiative seeks to better integrate information across multiple units of analysis (e.g., 

neural circuits, physiology, behavior, and self-reports) and domains (e.g., positive valence 

systems, cognitive systems, arousal and regulatory systems). The cells that populate units of 

analyses across domains are intended to be measures of individual differences. However, 

nearly all of the psychophysiological and neural measures that are highlighted were 

originally studied as within-subjects variables. Thus, this new framework for 

psychopathology research provides an excellent opportunity to emphasize the importance of 

psychometrically sound clinical neuroscience research.

Moreover, these issues apply more broadly to any neuroscience research that attempts to 

employ a robust within-subject difference as an individual difference variable (i.e., any time 

a difference score is correlated with another between-subject variable). We suggest that all 

studies should examine and report on the internal consistency of neural activations, as well 

as the correlation between activations, in individual differences research. Indeed, knowing 

the internal consistency of different psychophysiological measures can help guide task 

design. For example, Luking and colleagues (2017) found that internal consistency was just 

as high in the first half of a monetary guessing task as in the whole task, suggesting that the 

task could be shortened in order to reduce costs without reductions in internal consistency.

The present study benefits from a large sample size, and an analytic approach (i.e., split-half 

reliability) that although uncommon in fMRI research (c.f. Luking et al., 2017), is easily 

calculated using existing data sets and task designs. However, there are several limitations. 

First, by taking steps to avoid confounding internal consistency and effects of gender 

(ensuring that A and B blocks did not contain only one gender), internal consistency was 

confounded with the interaction between face gender and run number. Given the high 
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internal consistency for both face and shape contrasts, this does not appear to have been a 

problem—though future studies might better optimize task design to assess internal 

consistency. Second, although this task was modeled after the task developed by Hariri and 

colleagues (2002), there are a few key differences: adolescent faces were used in the task, 

additional facial expressions were included, and data were collected across two runs. 

Though these differences did not appear to negatively impact the reliability of the amygdala 

response to faces and shapes in isolation, the low internal consistency of the faces vs. shapes 

contrast in the present study may not generalize to other versions of this task. Finally, the 

present study examined internal consistency using a sample of adolescent girls aged 8 to 14 

and the results may not generalize to males, or females of different ages.

Overall, the present study highlights potential pitfalls of assuming reliability from consistent 

findings across studies: despite robust within-subjects effects on the amygdala for faces vs 

shape matching, this difference score itself was unreliable. This was true despite the fact that 

amygdala response to both faces and shapes was characterized by high internal consistency. 

The poor internal consistency of the difference score was attributable to the fact that both 

scores were highly correlated with one another. The authors suggest that future research 

include internal consistency, and correlations between neural measures used in difference 

scores, to aid in task design and selection, and in the interpretation of findings related to 

individual differences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bar graphs depicting the response to each contrast for A and B blocks. Error bars represent ± 

standard error of the mean.

Infantolino et al. Page 14

Neuroimage. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
a) Scatter plot depicting the relationship between A and B blocks for the faces vs. shapes 

contrast. b) Scatter plot depicting the relationship between the A and B blocks for the faces 

vs. implicit baseline and shapes vs. implicit baseline contrasts.
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Figure 3. 
Scatter plot depicting the relationship between the faces vs. implicit baseline and shapes vs. 

implicit baseline contrasts across all trials.
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Figure 4. 
Stacked bar graphs depicting the variance distribution for each contrast.
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Table 1

One-sample T-tests

Contrast t p

 Faces vs. Shapes A 12.76 <.001

 Faces vs. Shapes B 16.53 <.001

 Faces A 3.75 <.001

 Faces B 4.21 <.001

 Shapes A −1.10 .28

 Shapes B −.95 .35

Paired-sample T-test

Contrast

 Faces vs. Shapes: A vs. B −.28 .78

 Faces: A vs. B −.96 .34

 Shapes: A vs. B −.40 .69
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Table 2

Spearman-Brown Predicted Internal Consistency Coefficients

Contrast SB

 Faces vs. Shapes −.06

 Faces .97

 Shapes .95
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