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Zinc is an essential metal in bacteria. One important bacterial
zinc transporter is AdcA, and most bacteria possess AdcA ho-
mologs that are single-domain small proteins due to better effi-
ciency of protein biogenesis. However, a double-domain AdcA
with two zinc-binding sites is significantly overrepresented in
Streptococcus species, many of which are major human patho-
gens. Using molecular simulation and experimental validations
of AdcA from Streptococcus pyogenes, we found here that the
two AdcA domains sequentially stabilize the structure upon
zinc binding, indicating an organization required for both
increased zinc affinity and transfer speed. This structural orga-
nization appears to endow Streptococcus species with distinct
advantages in zinc-depleted environments, which would not be
achieved by each single AdcA domain alone. This enhanced zinc
transport mechanism sheds light on the significance of the evo-
lution of the AdcA domain fusion, provides new insights into
double-domain transporter proteins with two binding sites for
the same ion, and indicates a potential target of antimicrobial
drugs against pathogenic Streptococcus species.

Zinc is an essential trace element for all pathogenic bacteria
because many crucial enzymes and transcription factors
require zinc to maintain their native structure and biological
functionality. It has been shown that zinc homeostasis is essen-
tial to invasion and infection by pathogenic bacteria (1, 2). Zinc
directly binds to metalloenzymes or zinc finger proteins and
functions as a structural or catalytic element to regulate cellular
metabolism and gene expression. It also has an immune func-
tion as an anti-inflammatory agent (3, 4). To colonize in differ-

ent organs, pathogenic bacteria must adapt to changing metal
concentrations in various host microenvironments (5). In gen-
eral and at high concentrations, zinc has been shown to be toxic
(6). However, the free zinc concentration in host tissues is usu-
ally very low, �1 �M in lung alveolar lavages for example (7, 8).
Therefore, pathogenic bacteria require an efficient zinc import
system for survival, especially in hosts.

Most bacteria have evolved several zinc uptake systems to
strictly control zinc concentration within cells, such as Znu-
ABC in Escherichia coli, the Zur family (YcdH/YceA/YcdI) in
Bacillus subtilis, and AdcABC in Streptococcus pyogenes and
Streptococcus pneumoniae (9 –11). The ABC system in bacteria
is usually composed of a zinc-binding lipoprotein, a membrane
permease, and an ATPase. In Gram-positive bacteria, the lipo-
protein (e.g. AdcA from S. pyogenes) attached to the cell surface
acquires zinc from the environment and interacts with the
membrane permease to deliver the zinc ions into the cell via
ATPase, which provides energy (12).

S. pyogenes is one of the most pathogenic bacteria, causing
infectious diseases that can be lethal (13, 14). It must adapt to a
wide range of metal concentrations in host microenvironments
during the colonization process (1, 15). Two membrane-asso-
ciated lipoproteins, AdcA and Lbp, have been identified as
essential zinc uptake systems as the deletion of these two genes
resulted in a requirement for zinc and decreased infectivity in a
mouse model. Both proteins belong to the metal-binding recep-
tor family as ABC transporters. Most bacterial zinc-uptake pro-
teins contain only one zinc-binding domain. Indeed, the pro-
tein Lbp in S. pyogenes and its homologous protein AdcAII in
S. pneumoniae are single-domain, zinc-binding proteins whose
structures and functions have been intensively investigated
(16 –18).

In contrast, AdcA in S. pyogenes is yet not crystallized and
characterized. AdcA proteins in S. pneumoniae and S. pyogenes
share 61% homology, and both are predicted to have two zinc-
binding domains. In vitro studies indicated higher zinc affinity
for the N-terminal domain. The S. pyogenes AdcA double-do-
main organization is rare among other bacterial genera. Due to
the distinct translation and mRNA degradation mechanisms,
bacteria synthesize large proteins in a much less efficient man-
ner than do eukaryotes (19). Therefore, bacteria tend to main-
tain proteins as small as possible. Thus, there should be a dis-
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tinct functional and beneficial role for the double-domain
AdcA for zinc uptake in Streptococcus species.

In this study, we applied molecular modeling and molecular
dynamics simulation to assess the dynamic structure and func-
tional features of the two domains of Streptococcus AdcA.
Based on the computational results, we propose a sequential
structural stabilization model for the two fused domains that
can conduct an interdomain conformational change when
bound to zinc, an exceptional feature that enhances zinc uptake
efficiency in zinc-deficient environments as compared with sin-
gle-domains proteins. We further experimentally validated the
predicted features and the double-domain organization that
endows Streptococcus with unique survival advantages in zinc-
depleted environments.

Results

Double-domain AdcA homologs are conserved and
overrepresented in Streptococcus

We first constructed the S. pyogenes AdcA structure using
homology modeling, taking as templates the most homologous
crystal structures of B. subtilis Bsu-YcdH (43.9% sequence
identity to the N-terminal domain; Protein Data Bank code
2O1E) and E. coli San-YodA (47.3% sequence identity to the
C-terminal domain, Protein Data Bank code 1TXL) (Fig. S1B).
The constructed AdcA structure contains the amino acid resi-
dues 31–515 (Fig. 1A), which is almost full-length except for the
predicted signal peptide (amino acids 1–30; Fig. S1A). The

modeled structure gained a discrete optimized potential energy
score of �49,727.9, indicating that this structure was approx-
imately at the optimal low-energy state (20). A Ramachan-
dran plot indicated that the modeled three-dimensional
structure was reasonable (Fig. S1C). Virtual docking analysis
suggested a zinc-binding center in the N-terminal domain
(His-36, His-122, His-186, and Glu-261) and a zinc-binding
center in the C-terminal domain (His-436, His-445, and His-
447) (Fig. 1B). The two predicted zinc-binding sites, located
in the highly conserved area, were in conformity with the
principle of ConSurf evolutionary conservation patterns
(21–23).

To determine the universality of the double-domain organi-
zation of AdcA homologs in bacteria, we compared S. pyogenes
AdcA against 3,449 completely sequenced bacterial genome
sequences in the NCBI database using the Blastx tool. We found
649 proteins with more than 30% homology to AdcA. Among
these, 31 proteins were single-domain zinc-binding proteins
homologous to the C-terminal domain, 408 proteins con-
tained a single zinc-binding domain homologous to the
N-terminal domain, and 210 were double-domain proteins
(Fig. 1C). These 210 double-domain proteins belonged to 22
species, 14 of which belonged to Streptococcus, showing a
significant overrepresentation of this genus (p � 4.3608 �
10�159 by Fisher exact test). A phylogenic tree constructed
based on these species showed that the 14 Streptococcus spe-
cies evolved in two branches and that the evolutionary dis-

Figure 1. Structure and phylogeny of AdcA. A, the three-dimensional structure of S. pyogenes AdcA, constructed using homology modeling. Two zinc ions
are indicated as yellow balls. B, the zinc-binding residues in the N- and C-terminal domains of AdcA. C, homology search with AdcA of 3,449 bacterial genomes
using Blastx. Each dot represents the best match within each bacterial genome. Black dots, �30% homology; red dots, single-domain proteins homologous to
the C-terminal domain of AdcA; blue dots, single-domain proteins homologous to the N-terminal domain of AdcA; gray dots, double-domain proteins homo-
logous to the entire AdcA. D, phylogenetic tree of the bacterial species with double-domain AdcA homologs.
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tances were maintained below 0.22, indicating that these
double-domain zinc-binding proteins were highly conserved
in Streptococcus during evolution from the common ances-
tor as compared with the other species (Fig. 1D). These
structural results implied that Streptococcus AdcA possesses
a unique ability for zinc uptake.

The N-terminal domain stabilizes the protein structure more
strongly than does the C-terminal domain upon zinc binding

To predict the properties of S. pyogenes AdcA, we performed
molecular dynamics (MD)5 simulations on the homology
model. Independent replications of the MD simulation using
random initial atomic velocities resulted in similar trajectories.
All trajectories reached equilibrated conformation within 5 ns.
These timescales are 1–2 orders of magnitude shorter than the
timescale for forming any secondary structure. To exclude the
formation of new secondary structures, we further performed
300-ns MD simulations for apo-AdcA and Zn2-AdcA, a times-
cale that is sufficient to represent the conformational change of
complex proteins (24, 25). Compared with the initial state,
there was no obvious change in conformation or hydrogen
bonds in the equilibrium state (Fig. S5, A–C). Moreover, the
trend of change in secondary structures, caused by binding of
the two zinc ions, in MD simulations was consistent with CD
spectrum experimental results (Fig. 2C and Table S2). The
merged results from the initial structure and the average struc-
ture of the equilibrium state are shown in Fig. S5D. These show
that the simulated structure is close to its native state in physi-
ological solutions.

Next, we simulated AdcA structures without zinc atoms
(apo-AdcA), with zinc in the N-terminal binding center (Zn-N-
AdcA) alone, with zinc in the C-terminal binding center (Zn-
C-AdcA) alone, and with zinc in both binding centers (Zn2-
AdcA) (Fig. 2A). Trajectories of 40-ns MD simulations revealed
the highest root mean square displacement (RMSD) for apo-
AdcA, indicating that zinc binding stabilizes the protein struc-
ture (Fig. 2B). Indeed, Zn2-AdcA had the lowest RMSD, indi-
cating that it has the highest rigidity among all four forms.
This was confirmed by CD spectra (Fig. 2C): the unordered
fraction of AdcA was reduced from 19.1 � 0.14 (apo-AdcA)
to 11.2 � 0.56% (Zn2-AdcA) when saturated by zinc, and the
helix fraction slightly increased from 53.2 � 0.62 to 58.8 �
0.14% (Table S2).

However, the structural rigidity of the two zinc-binding cen-
ters deviated remarkably. We calculated the root mean square
fluctuation (RMSF) of the zinc-binding residues; a lower RMSF
indicates higher rigidity. The four residues of the N-terminal
domain (His-36, His-122, His-186, and Glu-261) showed
reduced RMSF values after binding zinc, whereas two of the
three residues in the C-terminal domain (His-436, His-445, and
His-447) showed increased RMSF values (Fig. 2D) (24). These
results indicated that zinc stabilizes only the N-terminal

domain and that flexibility of the C-terminal domain is not
affected by zinc. This was echoed by the RMSF of all C-� atoms
of the two domains (Fig. 2E): 132 of 291 residues (45.5%) in the
N-terminal domain showed reduced RMSF after binding zinc,
whereas 45 of 194 residues (23.9%) in the C-terminal domain
showed reduced RMSF after binding zinc.

Moreover, the radius of gyration (Rg) within the period of
equilibrium also suggested a more flexible structure of Zn-C-
AdcA, Zn-N-AdcA, and Zn2-AdcA compared with apo-AdcA
(Fig. 2, F and G). To further analyze the Rg values between these
three curves, we used symbolic aggregate approximation to
evaluate the statistical differences in detail (Fig. S6). The major
goal of the symbolic aggregate approximation algorithm is to
convert time-series data to a symbolic representation, e.g. a �
b � c � d. Then, the mean value of each section is calculated
(26). This method can be used to accurately distinguish differ-
ences in the data (27, 28). The strings, converted from the Rg
values of Zn-C-AdcA, Zn-N-AdcA, and Zn2-AdcA, were
shown as dcbbcbcb, cbacbabc, and cbaabaab, respectively (Fig.
S6). Thus, the Rg of Zn-C-AdcA was considerably greater than
that of Zn-N-AdcA, and Zn-N-AdcA had a similar Rg compared
with Zn2-AdcA (Fig. 2, F and G, and Fig. S6). Therefore, we
posit that the N-terminal domain stabilizes the protein struc-
ture more than does the C-terminal domain and possesses a
higher affinity for zinc. Interestingly, zinc binding in one
domain influenced rigidity in the other domain. Zinc binding to
the N-terminal domain (Zn-N-AdcA) reduced the RMSF of
18.7% of the residues in the C-terminal domain, and Zn-C-
AdcA reduced the RMSF of 12.4% of the residues in the N-ter-
minal domain (Fig. 2E). This suggested that the two domains,
each with distinct zinc-binding properties, may synergize upon
zinc binding, creating new conformational features that do not
exist in the single domains.

Affinity and speed: New features emerge by synergy of the two
domains

To validate the above mentioned postulations, we mutated
key binding residues to alanine to abolish the N-terminal
(H36A/H122A/H186A/E261A) or C-terminal (H436A/H445A/
H447A) zinc-binding sites while maintaining the full lengths of
N-AdcA and C-AdcA. To completely remove the interactions
between the two domains, we created an N-lobe (residues
31–321) and a C-lobe (residues 322–515) to mimic the single-
domain AdcA that exists in most bacterial species (Fig. 3A).
These mutants and the WT AdcA were expressed and purified
(Fig. S3, A and B). The inductively coupled plasma MS measure-
ment showed that all the purified proteins did not contain any
metal ions.

To detect the strength differences of the two binding
domains of AdcA, a 4-(2-pyridylazo)resorcinol (PAR) competi-
tion test with Zn2-AdcA was performed. As shown in Fig. 3B,
PAR could only capture one zinc from Zn2-AdcA under normal
conditions, whereas it could capture other zinc atoms only
under harsh denaturation conditions, e.g. 6 M guanidine hydro-
chloride. These results of the competition test showed that the
differences in zinc binding strength of the N- and C-terminal
domains are significant.

5 The abbreviations used are: MD, molecular dynamics; PAR, 4-(2-pyridyla-
zo)resorcinol; TPEN, N,N,N�,N�-tetrakis(2-pyridylmethyl)ethylenediamine;
RMSF, root mean square fluctuation; RMSD, root mean square displace-
ment; Rg, radius of gyration; ITC, isothermal titration calorimetry; SASA,
solvent-accessible surface area.
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We further experimentally determined the zinc-binding
affinities of WT and mutant AdcA using isothermal titration
calorimetry (ITC), and the calculated values of N, KD, 	H, and
	S are shown in Fig. 3, C–G. The KD of the WT AdcA for Zn2


was measured as 27 � 7.3 nM, much lower than that of any
mutant (Fig. 3C). The independently expressed N-lobe and
C-lobe had KD values of 93 � 8.2 nM and 2.6 � 0.3 �M, respec-
tively (Fig. 3, F and G), confirming that the N-lobe has higher

Figure 2. Protein flexibility. A, the four protein model constructs used in the molecular dynamic simulations. B, the time evolution of the average RMSD of the
C-� atoms in the apo-AdcA (gray), Zn-C-AdcA (red), Zn-N-AdcA (bright blue), and Zn2-AdcA (black) simulations. Each sample was repetitively analyzed three
times (40-ns duration). C, secondary structures of AdcAs with or without zinc ions determined by CD spectrometry. D, the RMSF of the C-� profile of residues
in the two active binding sites of apo- and zinc-bound AdcA MD trajectories. E, the RMSF of C-� for all residues calculated over the 40-ns trajectory in the
absence and presence of zinc. Orange and blue bars denote �-helices and �-strands, respectively. F, time evolution of the C-� average of the Rg values. G,
corresponding p value statistics of Rg shown in F, and error bars represent S.D.
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zinc-binding affinity than does the C-lobe. Moreover, the full-
length expressed mutants N-AdcA and C-AdcA had dissocia-
tion constants of 390 � 10.5 nM and 1.1 � 0.2 �M (Fig. 3, D and
E). Notably, the independently expressed N-lobe had a stronger
binding affinity for Zn2
 than did full-length N-AdcA, implying
that the two domains interact with each other, influence each

other’s conformation, and thus regulate zinc affinity. Thermo-
dynamic data on enthalpy changes (	H) and entropy changes
(T	S) of AdcAs were detected by ITC. For zinc binding, WT
AdcA, C-AdcA, N-AdcA, the N-lobe, and the C-lobe were,
respectively, found to have 	H values of �17.6 � 5.1, �10.2 �
1.04, �11.4 � 4.4, �9.9 � 0.5, and �12.2 � 1.1 kcal/mol and

Figure 3. Zinc-binding affinity of AdcAs and PAR competition for zinc ions. A, the five protein constructs used to determine the biophysical properties. The
constructs were overexpressed in E. coli BL21 (DE3) strain and purified. B, UV-visible spectra of PAR, which competes for zinc, for Zn-C-AdcA, Zn-N-AdcA, and
Zn2-AdcA in the presence or absence of guanidine hydrochloride (Gdn.HCl). C–G, isothermal titration calorimetry binding curves of WT AdcA (C), C-AdcA (D),
N-AdcA (E), the N-lobe (F), and the C-lobe (G) at 25 °C. The parameters N, KD, 	H, and 	S are shown in the diagrams.
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T	S values of �7.3 � 0.7, �2.0 � 0.3, �2.7 � 0.4, �0.3 � 0.07,
and �4.5 � 1.5 kcal/mol. The values of 	H and T	S indicated
that zinc binding to the five models of AdcA is both enthalpi-
cally and entropically favorable with 	H being the main driving
factor.

Next, we measured the zinc binding kinetics of AdcA. As
expected, N-AdcA, with higher affinity-bound zinc, had very
fast kinetics and a two-component reaction (k1 � 45.45 � 0.07
s�1 and k2 � 0.93 � 0.02 s�1, A1 � 0.099 � 0.000 and A2 �
0.161 � 0.002). In contrast, C-AdcA, with a less rigid structure,
bound zinc at a much lower rate and had a second-order reac-
tion. The fast reaction was a minor reaction with an amplitude
of A1 � 0.154 � 0.026 and k1 � 5.02 � 0.03 s�1, whereas the
major reaction had the kinetic parameters A2 � 0.271 � 0.036
and k2 � 0.15 � 0.01 s�1 (Fig. 4A). WT AdcA, with two binding
centers, revealed a similarly fast process (k1 � 41.05 � 0.01 s�1)
as compared with N-AdcA and a much-accelerated slow pro-
cess (k2 � 0.75 � 0.02 s�1) as compared with C-AdcA (Fig.
4A). This indicated that, in the presence of a low concentra-
tion of zinc, the N-terminal domain rapidly bound a zinc
atom and stabilized the entire protein structure. The C-ter-
minal domain was then stabilized to obtain a faster binding
speed. Both the zinc binding velocity and affinity constant of
the C-terminal domain are 1 order of magnitude slower and
weaker, respectively, than that of the N-terminal domain.

To validate the structural stability of the zinc-bound N-ter-
minal domain, we performed proteinase K digestion assays.
Zinc-saturated AdcA was almost intact after 30 min of protein-
ase K digestion, whereas the apo form of AdcA was mostly
digested (Fig. 4B). In contrast, C-AdcA was vulnerable to pro-
teinase K attack in both the apo and zinc-bound forms (Fig. 4C)
due to the lack of stabilization by the zinc-bound N-terminal
domain. This was echoed by the melting temperature of these
two proteins. The melting temperature of Zn-C-AdcA was
similar to that of WT AdcA and much lower than that of
Zn2-AdcA (Fig. 4D). These results suggested that the zinc in

the N-terminal domain was crucial for enhancing the zinc
binding rate in the C-terminal domain. As the C-terminal
domain binds zinc with less affinity, it can pass zinc down-
stream to other zinc-binding proteins that finally transport
zinc into the cell.

Structural alteration upon zinc binding

To investigate in detail the structural alterations after zinc
binding, we compared the MD simulation trajectories of apo-
AdcA, Zn-N-AdcA, and Zn2-AdcA. The mean distance matrix
showed remarkably decreased interdomain distances when the
N-terminal domain bound a zinc atom (29) (Fig. 5A), which can
be visualized in the steady-state three-dimensional conforma-
tions (Fig. 5B and Fig. S4). This can be explained by N-terminal
domain stabilization of the C-terminal domain via interatomic
interactions of the peptide chains. The mean distance matrix of
Zn-N-AdcA showed adjacency of the residue pairs Asn-237
and Lys-460, Glu-235 and Lys-457, Ser-258 and Asp-453, Lys-
280 and Asp-453, Lys-280 and Tyr-430, and Asp-273 and Lys-
421. All these interactions are interdomain interactions (30, 31)
spanning the entire interaction surface between the two
domains (Fig. 5C).

Moreover, the interdomain surface is linked by at least 10
hydrogen bonds (Fig. 5C, red dashed lines). This multianchored
stabilization mechanism explains the stability of the induced
conformational change. The induced conformation dramati-
cally decreased the distance among the residues around the
zinc-binding pocket of the C-terminal domain (32), specifically
Lys-300 and Glu-481, Glu-299 and Tyr-360, and Lys-354 and
Lys-409 (Fig. 5, D and E), facilitating the binding to zinc. This
explained the increased affinity of the C-terminal domain when
the N-terminal domain was zinc-bound. In summary, these
analyses demonstrated the structural basis of the synergy
between the two domains for both metal-binding affinity and
rate.

Figure 4. Biochemical, thermodynamic, and kinetic characterization to verify protein stability. A, kinetics of AdcA binding to zinc. Time-dependent
reactions were created using 10 �M apo-form proteins mixed with 40 �M Zn(PAR)2. B, proteinase K sensitivity of WT AdcA. Proteins (15 �g) were subjected to
proteinase K (30 �g/liter) for 0, 1, 3, 5, 7, 10, and 30 min. C, proteinase K sensitivity of C-AdcA. D, thermal stabilities of WT AdcA, Zn2-AdcA, and Zn-C-AdcA.
Thermal unfolding transitions were monitored using far-UV CD spectra at 223 nm. deg, degrees.
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Verification of the interaction surface of the N-terminal and
C-terminal domains using MD simulations

We showed that the interface interactions rely on 10 hydro-
gen bonds between the N-terminal and C-terminal domains,
involving the 12 amino acid residues depicted in Fig. 5C. To
evaluate the contributions of the 12 residues to the interface
interaction, we successively established 12 single-site mutants
of Zn-N-AdcA. However, we found that none of the single-site
mutants caused any reduction of the surface formation (Fig.
S7). Subsequently, we established four Zn-N-AdcA mutants,

mutating groups of the abovementioned residues according
to their vicinity: D273A, T276A, and K421A; K280A, S258A,
Y430A, D453A, and G452A; E235A, N237A, K460A, and
K457A; and a variant mutated for all 12 residues. In the fully
mutated protein, only one zinc ion was located in the N-termi-
nal domain of AdcA.

The trajectory analyses of the 100-ns MD simulations
showed that these mutant proteins took a much longer time
(�20 ns; Fig. 6A) to reach the equilibrium state than did the WT
Zn-N-AdcA (�5 ns; Fig. 2B). Especially the fully mutated pro-

Figure 5. Zinc binding in the N-terminal domain of AdcA stabilizes the C-terminal domain conformation for C-terminal zinc binding. A, mean distance
matrices for the different states of the proteins are shown for apo-AdcA, Zn-N-AdcA, and Zn2-AdcA. Lighter colors represent closer distances between two
amino acid residues. An orange box denotes the N-terminal domain, and the bright blue boxes denote the interdomain distances. B, representative structures
of apo-AdcA and Zn-N-AdcA. C, hydrogen bonds (red dashes) on the N- and C-terminal interaction surfaces. D and E, the differences in the C-terminal domain
conformations were compared between apo-AdcA and Zn-N-AdcA, and the distances between the selected residues were measured.
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tein did not even reach the equilibrium state in 100 ns (Fig. 6A).
The result revealed that the 12 residues of the interaction sur-
face are crucial to stabilizing the skeleton of the whole protein.
Among the 12 residues, the six residues at positions 273, 276,
280, 430, 452, and 453 showed increased RMSF values after
mutation to alanine (Fig. 6B).

We next assessed whether the hydrogen bonds stabilized the
interaction surface, measuring the solvent-accessible surface
area (SASA) where a smaller SASA value represents tighter
structures. The mutant structures showed that abolishing any
group of hydrogen bonds reduced the interaction surface (Fig.
6, C–E). Abolishing all hydrogen bonds completely destroyed
the interaction surface. These results were also reflected in the
SASA values (Fig. 6G).

To further investigate the role of these hydrogen bonds in the
allosteric cross-talk between the two domains, we calculated
the average separation distance between representative residue
pairs around the zinc-binding pocket of the C-terminal domain
(Fig. 6, C–F), specifically Lys-300 and Glu-481, Glu-299 and
Tyr-360, and Lys-354 and Lys-409. The three corresponding
average separation distances for each of the above mentioned
mutants were 15.8, 28.8, and 10.6 Å (Fig. 6C, D273A, T276A,
and K421A); 12.5, 20.4, and 22.1 Å (Fig. 6D, K280A, S258A,
Y430A, D453A, and G452A); 8.7, 20.9, and 10.9 Å (Fig. 6E,
E235A, N237A, K460A, and K457A); 21.5 Å, 22.3 Å, and 24.6 Å
(Fig. 6F, fully mutated variant). Significantly, conformational
changes in the C-terminal domain induced by the N-terminal
domain of these four mutant proteins were reduced to varying
extents when compared with WT Zn-N-AdcA (11.0, 13.1, and
8.1 Å; Fig. 5E). Among these, the fully mutated variant had the
greatest impact on the conformation of the C-terminal domain.
Based on these results, we propose a possible mechanism: the
N-terminal domain firmly and rapidly binds a zinc ion and
draws the C-terminal domain closer, relying on hydrogen
bonds. Subsequently, this stabilizes the C-terminal domain and
tightens the zinc-binding pocket, which facilitates zinc binding,
especially in zinc-depleted environments.

A synergistic double-domain AdcA endows growth
advantages at low zinc concentrations

The double-domain AdcA increased both affinity and rate of
zinc binding. Therefore, we postulate that bacteria use the syn-
ergistic organization of the double-domain AdcA to more effi-
ciently take up zinc, even under conditions of extremely low
environmental zinc concentrations, to maintain growth. Due to
the lack of genetic manipulation tools in S. pyogenes, we per-
formed experiments in S. pneumoniae. We used N,N,N�,N�-tet-
rakis(2-pyridylmethyl)ethylenediamine (TPEN) to chelate zinc
ions in the media and to create a zinc-deficient environment.
With increasing TPEN concentrations, significant growth hin-
drance was observed from 20 �M TPEN (Fig. 7A) where the free
zinc concentration was estimated to be �150 –300 nM. Then we
used this concentration to test zinc uptake ability. The deletion
strain 	adcA 	adcAII of S. pneumoniae, with a deleted zinc
transporter AdcA system, grew significantly slower than the
WT strain and stopped growing at an A600 of 0.22. Expression
of either N-AdcA or C-AdcA in the deletion strain did not
rescue growth, whereas expression of the double-domain AdcA

almost completely rescued the growth to a rate similar to that of
the WT strain (Fig. 7B). This result validated that the double-
domain organization facilitated bacterial growth in a zinc-defi-
cient environment.

Discussion

Generally, bacterial genomes tend to encode smaller proteins
(267 amino acids long on average) than do eukaryotes (33).
Major reasons include that mRNA is degraded by endonu-
cleases in bacteria, making it difficult to translate full-length
long proteins (19), and multidomain large proteins need proper
translational pausing sites for correct folding, which may be
disturbed by environmental and molecular factors (34 –36).
Indeed, in most bacterial species, the homologs of Streptococcus
AdcA are single-domain small proteins. Therefore, the evolu-
tion of the double-domain AdcA in Streptococcus (515 amino
acids) should be unlikely unless an emergent feature benefits
the adaptive survival of Streptococcus in host environments,
such as lung tissue (1–2 �M zinc) (7). A previous study sug-
gested that N-terminal domains in two-domain proteins are
biased to be shorter and are predicted to fold faster than their
C-terminal counterparts (37). However, AdcA is a special case
of an overall trend in two-domain proteins as its N-terminal
domain is longer than its C-terminal domain.

In this study, we found that double-domain AdcA with two
zinc-binding sites is significantly overrepresented in Strepto-
coccus species by homology comparison between AdcA and the
library of known genomes of bacteria. We have shown evidence
that fusion of the two domains creates a new, emergent, struc-
ture-based functional advantage that is greater than the sum of
the advantages provided by two independent domains. In the
presence of zinc, the N-terminal domain firmly and quickly
binds a zinc ion and changes its conformation. This conforma-
tion change in the N-terminal domain subsequently stabilizes
the C-terminal domain and tightens its zinc-binding pocket,
facilitating zinc binding, especially in zinc-depleted environ-
ments. The relatively less stable conformation and weak bind-
ing of the C-terminal domain ensure a rapid transfer of zinc to
the downstream transporter, the transmembrane protein AdcB
of Streptococcus species (Fig. 8). Otherwise, overly stable and
strong binding would limit the cyclic utilization of zinc trans-
porters on the cell surface and the flux of zinc into the cell as
shown in Fig. 7B. This interdomain synergy via interatomic
interaction of the peptide chains endows Streptococcus with
exceptional zinc uptake efficiency in zinc-depleted media, thus
benefiting its survival in harsh conditions, e.g. in lung alveolar
lavages with low zinc concentration (7). Therefore, the emer-
gent features of the fused domains could be a simple evolution-
ary response to specific metal-deficient conditions (Fig. 8).

As organisms need multiple trace elements for physiology,
other metal ion transporters are also found to exist in double-
domain formats with two binding sites for the same ion. Exam-
ples are not restricted to bacteria and include the human trans-
ferrin receptor that binds two samarium ions (Protein Data
Bank code 1CX8), human copper-lactoferrin that binds two
copper ions (Protein Data Bank code 1LFI), Rapana thomasi-
ana hemocyanin that binds two copper ions (Protein Data Bank
code 1LNL), lactoferrin that binds two Fe3
 ions (Protein Data
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Figure 6. Identification of the N- and C-terminal interaction surfaces of Fig. 5C. A, the time evolution of RMSD values in the four mutant Zn-N-AdcAs,
D273A/T276A/K421A (blue), S258A/K280A/Y430A/G452A/D453A (gray), E235A/N237A/K457A/K460A (red), and the fully mutated variant (black). B, the RMSF of
the C-� for all residues of the four mutant proteins calculated over the 100-ns trajectory. The RMSF values of the mutated amino acids became greater.
Hydrogen bonds (red dashes), missing hydrogen bonds (black dashes with “�”), interaction surfaces (dotted line frame), and conformation changes of the
C-terminal domain are shown in the four mutated forms of Zn-N-AdcA, D273A/T276A/K421A (C), S258A/K280A/Y430A/G452A/D453A (D), E235A/N237A/
K457A/K460A (E), and the fully mutated variant (F). G, the calculated SASA values of the interface area, respectively, and error bars represent S.D.
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Bank code 1B7Z), and others. Our model for emergent interdo-
main synergy may provide new insights to better understand
such cases.

Our finding also emphasizes the interdomain conformation
change after metal binding, which may implicate a novel target
for antimicrobial drugs against pathogenic Streptococcus spe-
cies. No AdcA homolog was found in the human genome using
the HMMER tool (Fig. S8), suggesting that such a conformation
may not exist in the human proteome. Therefore, a rationally
designed blocker molecule that binds the interdomain surfaces
may abolish the synergy of the two domains, sufficiently reduce
the influx of zinc, and inhibit the growth of the pathogen. The
action mechanism of the designed blocker molecule would be
totally different from that of existing antibiotics. To be noted,
the interdomain interaction is stabilized by as many as 10
hydrogen bonds (38, 39), suggesting that mutation of a few
amino acids will not abolish the interaction, thus minimizing
the probability of the bacteria to evolve resistance by simple
point mutations. This finding may help during the treatment of
bacterial infections caused by Streptococcus.

In conclusion, we suggest a special zinc transportation mech-
anism mediated by AdcA in Streptococcus species. An N-termi-
nal binding site preferentially binds a zinc ion and induces sta-
bilization of the overall conformation of the protein via
interdomain interaction. This allows the C-terminal binding
domain to acquire a zinc ion while also allowing zinc bound by
the C-terminal domain to be more likely and preferentially
released (Fig. 8). This model elucidates the significance of the

evolution of the domain fusion, provides new insights on dou-
ble-domain transporter proteins with two binding sites for the
same ion, and implicates a novel target for antimicrobial drugs
against pathogenic Streptococcus species.

Experimental procedures

MD simulation

The preprocessed structures of apo-AdcA, Zn-N-AdcA
(mutation of the three zinc-binding ligands in the C-terminal
domain), Zn-C-AdcA (mutation of the four binding ligands in
the N-terminal domain), and Zn2-AdcA, obtained from homo-
logy modeling, were used as starting conformations. These con-
formations were solvated in cubic periodic boxes containing
0.15 M Na
 and Cl� ions to neutralize the system (40, 41). No
zinc ions were added to the simulated solution, representing a
zinc-deficient environment. Energy minimization in each
AdcA system was performed for the first relaxed energy
through 400 steps of the steepest descent energy method and
then continued with 25,000 steps of the conjugate gradient
method. All MD simulations were simulated at a temperature
of 310.15 K (42) and pressure of 1 atm (43) by the Gromacs 4.6.6
package with the simple point charge (SPC) model for liquid
water as described previously (44). The zinc ion force field of
the Gromacs package has been developed in various aspects
(45), including bonds, angles, impropers, metal center, dihe-
drals, and normal van der Waals, and it is suitable for the pro-
tein-zinc simulation (46 –48). Therefore, we used the default

Figure 7. The growth of bacteria in a zinc-deficient environment. A, the absorbance at 600 nm of WT S. pneumoniae (D39) and 	adcA 	adcAII mutant strains
cultured in C
Y medium containing TPEN at different final concentrations for 8 h. B, the growth curves (left) of D39 strains grown in C
Y medium containing
20 �M TPEN and corresponding growth rate constants (right) calculated for WT, 	adcA 	adcAII, and 	adcA 	adcAII with the N-lobe, C-lobe, and full-length
adcA, respectively, and error bars represent S.D. AU, absorbance units.
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parameters of Gromos43a1 force field for the simulation of
AdcAs with zinc. We set the value of the emtol convergence
criterion at 1,000 kJ/mol/nm, and the temperature in the box
was determined by the v-rescale temperature coupling method.
We used the particle mesh Ewald method to calculate electro-
static interactions within the system. The position restraint
simulations for the systems were executed for 50 ps, and then
we actualized the 40-ns unrestrained simulation.

We simulated four structures of the AdcA system as men-
tioned above, and each system was repetitively carried out three
times with random initial velocities (49). To avoid equilibration

artifacts, we calculated the structural features using trajectory
data ranging from 10 to 40 ns, which represents the structures
at their equilibrated states. To validate the equilibrium of each
structure, we also performed 300-ns MD simulations for apo-
AdcA and Zn2-AdcA. We analyzed RMSD, RMSF, secondary
structure, and Rg using Gromacs tools g_rms, g_rmsf, do_dssp,
and g_gyrate, respectively. The mean distances between resi-
dues were calculated by the Gromacs tool g_dist. Protein struc-
tures were visualized using PyMOL 1.7. The matrix of residue
distance fluctuations was represented by methods described
previously (50, 51), and it can be used to describe the plasticity

Figure 8. The model of zinc uptake in Streptococcus via AdcA from a zinc-deficient environment. The N-terminal (N-ter) domain and the C-terminal (C-ter)
domain of AdcA are colored cyan and green, respectively. The two binding sites are represented as an open state in apo-AdcA but a half-closed or closed state
in Zn2-AdcA. Compared with the C-terminal domain, the N-terminal domain has a faster binding rate and stronger affinity for zinc ions. The release of a zinc ion
from the C-terminal domain of AdcA to AdcB is easier than that from the N-terminal domain. The receptor proteins for zinc ions in the Streptococcus cytoplasm
are represented schematically by the gray loop.
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and elasticity of residues in structural fluctuations. To reduce
the deviation, all MD trajectories data were derived from three
replicates (Fig. S2).

Homology modeling

The NCBI BLAST search tool was used to find several pro-
teins that have the highest homology to AdcA. Then a multiple
sequence alignment and cluster analysis were performed using
proteins with high scores through the software package Clust-
alX 2.0. The tertiary structure of AdcA was modeled using
MODELLER in Accelrys Discovery Studio Client 4.1 (52, 53).
Proteins San-YodA (Protein Data Bank code 1TXL) and Bsu-
YcdH (Protein Data Bank code 2O1E), with a high level of
amino acid sequence homology to AdcA, were selected as the
templates to model the initial stage of the three-dimensional
structure of AdcA. Subsequently, flexible molecule docking
between AdcA and zinc was processed via the LigandFit mod-
ule of the software to find the lowest energy conformation com-
bining the ligand and the receptor in the active site (Fig. S1B).
The reliability of the model was evaluated by discrete optimized
potential energy and Ramachandran plots (54).

Construction, expression, and purification of WT AdcA

Genomic DNA extracted from S. pyogenes MGAS5005
(ATCC BAA-947TM) was used as a template to amplify the
adcA gene (1,488 bp without the N-terminal signal). PCR prim-
ers were designed to introduce the restriction enzyme sites of
BamHI and SalI for the adcA gene (Table S1). Detailed methods
were described previously (55). Purified AdcA protein was con-
firmed using 12% SDS-PAGE and identified using MS (ABI
4800 MALDI-TOF/TOF) according to a method described pre-
viously (56) (Fig. S3D).

Proteinase K resistance experiments

To test the proteinase K (Roche Diagnostics) sensitivity of
AdcA, the same amounts of apo-, zinc-saturated WT, and
mutant AdcA (15 �g) were incubated with 30 �g/liter protein-
ase K in 20 mM Tris-HCl buffer (pH 8.0) containing CaCl2 (10
mM) at 25 °C for 0, 1, 3, 5, 7, 10, and 30 min. Proteolysis was
stoppedbyadditionof5�lof100mMphenylmethanesulfonylfluo-
ride and boiling for 10 min. Digestion fragments were analyzed
by 12% SDS-PAGE. Gels were stained with Coomassie Blue
R-250 and scanned with Image Scanner II (GE Healthcare).

Circular dichroism spectroscopy

Far-UV CD studies were performed with a CD spectrometer
(Chirascan, Applied Photophysics Ltd., Leatherhead, UK) using
a quartz cuvette with a 0.1-cm optical path length at a wave-
length range of 260 –190 nm at room temperature. CD data
were collected for 5 �M apo-, zinc-saturated WT, and mutant
AdcA in 20 mM Tris-HCl (pH 7.4) in a data pitch of 1 nm at a
scanning rate of 100 nm/min. Each CD spectrum was repeated
three times, and a blank containing the same buffer was sub-
tracted as a reference. Analysis of the experimental data was
performed using the software CDPro. CD spectra were also
used to study the thermal stability of proteins in the absence or
presence of zinc ions. Thermal unfolding curves were moni-
tored from 20 to 90 °C using an increase rate of 2 °C/min by

detecting the loss of secondary structures at 222 nm. Each data
set was obtained three times using steps of 0.5 °C, and Tm values
were calculated by the included Glob3 software.

Growth media and growth curve assays

Casein-based semisynthetic liquid culture medium (C
Y
medium) was used to culture WT and mutant D39 strains (57).
To establish Zn(II) starvation conditions, TPEN (Sigma-Al-
drich) was added into C
Y medium at final concentrations of
10, 20, 30, and 35 �M (8, 58, 59). We determined the growth
curves for WT and 	adcA 	adcAII double-mutant strains cul-
tured in zinc starvation medium at 37 °C with 5% CO2 for 12 h
by measuring A600 values at different time points. For the dou-
ble-mutant strain, 20 �M TPEN significantly inhibited bacterial
growth at an A600 of �0.15 after 12 h of culture. We selected 20
�M TPEN to add to the medium to create zinc deficiency. Dif-
ferent treated S. pneumoniae strains were inoculated into C
Y
medium, and growth curves were determined three times.

Construction, expression, and purification of mutant AdcAs

Based on the predicted structure of AdcA with molecular dock-
ing, the N-terminal binding site is composed of His-36, His-122,
His-186, and Glu-261, and the C-terminal binding site is com-
posed of His-436, His-445, and His-447. The four amino acids
in the N-terminal domain and the three amino acids in the C-
terminal domain were simultaneously mutated to alanine to gen-
erate the four-residue mutant H36A/H122A/H186A/E261A
(C-AdcA) and the three-residue mutant H436A/H445A/
H447A (N-AdcA), respectively, using a QuikChange mutagen-
esis kit (Stratagene) with the original pGEX-4T-adcA plasmid
as template. The primers used for constructing the mutants are
listed in Table S1. All the constructed plasmids were trans-
formed to E. coli XL1-blue, which were then screened on LB
agar plates containing 100 �g/ml ampicillin followed by DNA
sequencing (Invitrogen). The plasmids with correct sequences
were transformed to E. coli BL21 (DE3) for expression. Expres-
sion and purification of mutant AdcAs were conducted as done
for WT AdcA.

Construction of the �adcA/�adcAII double-mutant strain

The primer sequences used to construct mutant strains are
listed in Table S1. The double mutant strain was constructed as
described previously (60, 61). Long flanking homology PCR
products contained an antibiotic resistance cassette (erythro-
mycin or spectinomycin) flanked by 600-bp-long fragments ho-
mologous to the end of each target gene, adcA or adcAII. Then
the long flanking homology PCR fragments were transformed
into S. pneumoniae D39 competent cells. Transformants were
selected with antibiotic-containing Columbia sheep blood agar
plates after overnight culture at 37 °C with 5% CO2 and con-
firmed by DNA sequence analysis and PCR (Fig. S3C). The
mutant strain was stable after six sequential passages in Todd-
Hewitt broth with 0.5% yeast extract (THY) medium in the
absence of antibiotics.

Construction of the three types of overexpression strains

To construct overexpression strains of S. pneumoniae D39
for recovery of expression of different types of AdcA, the plas-
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mid pIB169 (p169) was used in this study (62). We constructed
three recombinant plasmids, p169-N-lobe (expressing the
N-lobe alone), p169-C-lobe (expressing the C-lobe alone), and
p169-adcA (expressing full-length adcA) (Fig. S3C). The con-
structed plasmids were transformed into the 	adcA 	adcAII
double mutant strain, and the positive clones were screened
using Columbia blood plates with 4 �g/ml chloramphenicol.
The transformants with the recovered genes were verified by
PCR. All primers are listed in Table S1.

Comparison of the zinc binding strength of the two domains of
AdcA

To compare the binding strength of the N-terminal and
C-terminal domains of AdcA, a special zinc metallochromic
indicator, PAR, was used. A final concentration of 100 �M PAR
was added to 5 �M Zn-N-AdcA, Zn-C-AdcA, and Zn2-AdcA in
20 mM Tris-HCl (pH 7.4) with or without 6 M guanidine hydro-
chloride. UV/visible absorbance spectra were obtained from
300 to 600 nm after a 5-min equilibration at room temperature.

Zinc-binding affinity determination

To determine the binding affinities of WT and mutant
AdcAs with zinc, ITC experiments were performed at 25 °C
using a MicroCalorimeter Auto-ITC 200 (Malvern, UK). Prior
to the experiments, the instrument was washed with deionized
water, and the ZnCl2 and AdcAs were dissolved in the same
solution buffer (20 mM Tris-HCl, 100 mM NaCl (pH 7.4)) (55).
Typically, an experiment consisted of loading the syringe with
zinc ions at a concentration at least 10-fold higher than the
AdcAs samples, which were placed in the cell. The titration
parameters were set as follows: 2 �l of ZnCl2 solution were
injected into the 300-�l protein sample cell during each titra-
tion with 15–20 injections. The delay time between injections
was set at 200 s to ensure thermal equilibrium before the next
injection. The background heat effect was subtracted by addi-
tion of zinc alone to the buffer. All integrated heat data were
analyzed using Origin 7.0 software for fitting calculations.

Stopped-flow absorbance kinetics

Stopped-flow spectroscopy was performed on a stopped-
flow reaction analyzer (Chirascan SF.3, Applied Photophysics
Ltd.) using the absorbance mode to monitor absorbance
changes at 495 nm over time. The Zn(PAR)2 complex (200 �M

PAR in 20 mM Tris-HCl buffer combined with 40 �M Zn2
) was
loaded into the A drive syringe, the B drive syringe was filled
with 10 �M apo-AdcAs, and transient mixing of the reaction
was driven by bottled nitrogen. Experimental parameters were
set as follows: 1-nm bandwidth, 10-mm optical path, 495 nm
scanned wavelength with a 475-nm filter, and a 25 °C water
bath temperature. Buffer incubated with Zn(PAR)2 was used as
the reference. Tests were repeated until consistent results were
obtained. The collected data were analyzed using exponential
equations.
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