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Abstract

Coordination in groups faces a sub-optimization problem1–6 and theory suggests that some 

randomness may help achieve global optima7–9. We performed experiments involving a networked 

color coordination game10 in which groups of humans interacted with autonomous software agents 

(“bots”). Subjects (n=4,000) were embedded in networks (n=230) of 20 nodes to which we 

sometimes added 3 bots. The bots were programmed with varying levels of behavioral randomness 

and different geodesic locations. Here, we show that bots acting with small levels of random noise 

and placed in central locations meaningfully improve the collective performance of human groups, 

accelerating the median solution time by 55.6%. This is especially the case when the coordination 

problem is hard. Behavioral randomness worked not only by making the task of humans to whom 

the bots were connected easier, but also by affecting the game play of the humans among 

themselves and hence creating further cascades of benefit in global coordination in these 

heterogeneous systems.
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Collective action and large-scale cooperation are important challenges1–3. Most work on 

cooperation has focused on the social dilemma aspect, namely, on getting people to be 

willing to make sacrifices for the greater good11,12. Yet, even when this dilemma can be 

addressed, there remains another substantial problem: coordination4–6. The difficulty of 

achieving optimal collective action in groups may arise not only from the conflicting 
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interests among individuals, or between individuals and their group, but also as a 

consequence of the inability of individuals to effectively coordinate their actions globally. 

Even if all individuals behave properly in their local interactions, this may not result in the 

optimal outcome for the whole community1,2.

Prior theoretical work has suggested a surprising, even paradoxical, solution to the 

coordination problem: adding “noise.”13–15 Noise is usually defined as meaningless 

information, and it is often seen as problematic16. When it comes to optimization, however, 

noise can help a system to reach a global optimum. For example, mutation has an essential 

role in evolution17; error can facilitate search for information18; random fish schooling may 

enhance survival19; and cooperation may benefit from deviant behavior7–9,20.

Here, we evaluate the benefits of noise in addressing the coordination problem of human 

groups21,22. And given that human interactions are embedded within social networks, we 

also consider the impact of network position on the potentially beneficial effect of noise23. 

We first characterize the collective-action dynamics of networks of people interacting in a 

classic color coordination game10. Then, we test the effect of noise on collective 

performance using autonomous software agents (“bots”), manipulating both the noisiness 

and geodesic placement of the bots. By adding bots into experimental social networks, we 

therefore explore the performance of heterogeneous systems involving both real humans and 

autonomous agents, while also demonstrating a possible practical solution to the problem of 

global coordination itself.

We recruited 4,000 unique subjects online and randomly assigned them to one of eleven 

conditions in a series of 230 sessions (see SI). Subjects were assigned a location in a 

network of 20 nodes, generated by a preferential attachment model24; the network structure 

was created de novo for each session by attaching new nodes (each with two links) to 

existing nodes; and subjects were placed into the resulting networks at random. The 

collective goal is for every node to have a color different than all of its neighbor nodes10. 

This color coordination game successfully captures the problem of systematic failure by 

sub-optimization in coordination; that is, while each individual attempts to reach a solution 

that is optimal for that individual, this may not be optimal for the whole group (Fig.1a).

In the sessions, each subject was allowed to choose a color from three choices (green, 

orange, and purple) at any time. The number of colors made available was the minimum 

necessary to color the entire network without conflicts, which is known as the “chromatic 

number”; and all networks in our experiments are, by construction, globally solvable. 

However, while all the networks allowed the subjects to reach the collective goal, the 

networks could (by chance) vary in their number of solutions (i.e., the networks ranged from 

6 to 13,824 possible “colorings” that would work, known as the “chromatic polynomial” – 

see SI).

Subjects could see only the colors of neighbors to whom they were connected, in addition to 

their own color. Thus, although a subject might have solved the problem from his or her own 

point of view, the game might continue because the network still had conflicts in other 

regions of the graph. In terms of the optimization problem, the game’s cost function is 
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expressed as the sum of the number of conflicts. As in past work10, the subjects got paid 

according to how long it took for all conflicts in the network to be resolved, and they had to 

complete the task within 5 minutes (see SI for details). All subjects consented, and the Yale 

Committee of the Use of Human Subjects approved this research.

Within this basic setup, we then introduced 3 bots into the network in exchange for the same 

number of humans (no bots were placed in the control sessions – see Table S1). Subjects 

were not informed that there were bots. We manipulated noisiness of the bots as follows: In 

the “zero noise” condition, the bots behaved with a simple, greedy strategy: when a bot had 

a chance to minimize color conflicts with its neighbors, it chose that color; otherwise, it 

maintained its current color. In the other two conditions, the bots behaved with the same 

greedy strategy most of the time, but they also randomly picked a color from the three 

permissible options regardless of their local situation – with a probability of 10% (“small 

noise”) or 30% (“large noise”). In all the conditions, the bots made decisions every 1.5 

seconds, which was the typical human reaction time (Extended Data Fig.1).

Independent of bot noise, we also manipulated their network location as follows: In the 

“central” condition, the bots were assigned to the 3 positions that had the largest number of 

neighbors (the highest network degree). Likewise, in the “peripheral” condition, the bots 

were assigned to the 3 positions with the lowest degree. In the “random” condition, the bots 

were randomly assigned to their locations. It was permissible for the bots to be connected to 

each other, by chance, in all conditions.

As noted, the bots acted using only their local information. To assess the effect of such bot 

behavior compared to the much more demanding case requiring global knowledge of the 

entire network structure and its solution space in advance, we also carried out experiments 

with a “fixed color” condition. In this extra condition, we evaluated all color combinations 

of each network that resulted in no conflicts, and then assigned the initial colors of three of 

the nodes based on one of those combinations (chosen at random). That is, during the game, 

the 3 nodes were not controlled by bots that coordinated with their neighbors, but rather, 

these nodes simply stayed at their initial colors, which were known to be consistent with a 

global solution to the problem. We examined this treatment only in the case where the fixed 

nodes were in the central condition.

In sum, we evaluated eleven conditions: one control condition not involving any bots; nine 

treatment combinations of noise and location of bots (3 levels of behavioral randomness – 

0%, 10%, and 30% – crossed with 3 types of location – random, central, and peripheral), and 

one final condition with 3 fixed-color nodes. We conducted 30 sessions for the control 

condition and 20 sessions for each of the treatment conditions (so as to be able a priori to 

evaluate at least a 30% difference in solvability), for a total of 230 sessions and 4,000 

subjects.

For the games involving only human subjects, 20 of 30 resulted in an optimal coloring of the 

network in less than the allotted 5 minutes (median time = 232.4 seconds; IQR 143.7 – 

300.0). Although the subjects aimed to eliminate all the conflicts, they often found 

themselves unable to reach the collective goal only by reducing their local conflicts on an 

Shirado and Christakis Page 3

Nature. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual basis. For example, as of 105 seconds in Fig.1a (or Video S1), each of the 

subjects had chosen one of the least common colors among their neighbors; that is, no one 

person could change their color for the better. A conflict between neighbors, however, still 

remained. Such states in which players get caught in locally unresolvable conflicts are 

regarded as local minima of the game’s cost function (in contrast to resolvable conflicts 

which can be addressed by local action). Players would need a moderate level of deviancy 

from the norm of conflict minimization in order to overcome the local minimum and reach a 

global solution (e.g., Fig.1a, at 245 seconds).

By analyzing the sessions involving only human subjects, it is possible to discern that games 

were more likely to be solved when some players occasionally chose a locally inappropriate 

color, temporarily increasing conflicts10; moreover, the effect of such behavioral deviance 

varied according to the geodesic location of the players, as captured by their network degree 

(Fig.1b). In addition, and distinctly, some networks could be intrinsically easier to solve (i.e., 

the chromatic polynomial could be higher) (Fig.1c).

To demonstrate how bots could improve the performance of human groups, Fig.2 shows 

survival curves of the sessions involving the 9 bot treatments. Before implementing pairwise 

comparisons of each treated group with the control group, we performed a log-rank test of 

the null hypothesis that all the survival curves are identical; that hypothesis was rejected (P = 

0.024), indicating that at least two of the survival curves differed. The sessions having bots 

with 10% noise and central locations were the most likely to be solved within the allotted 5 

minutes (17 of 20 sessions, or 85%, compared with 20 of the 30 control sessions, or 67%, 

with humans alone); moreover, the solution was achieved more than 129.3 seconds faster 

(i.e., 55.6% faster) than sessions involving just humans (median time = 103.1 seconds [IQR 

49.5 – 170.1] versus 232.4 seconds [IQR 143.7 – 300.0]), which was significantly better (P 
= 0.015, log-rank test).

We then examined the difference in effectiveness of the various bot treatments – while 

furthermore controlling for the intrinsic solvability of the network – using Cox proportional 

hazard models. Bot behavioral randomness of 10%, central location, and the logarithm of the 

chromatic polynomial all have a significantly positive impact on the completion time (P < 

0.05; n=180 bot-treated sessions; see SI). We also evaluated another metric of the 

complexity of the solution space (i.e., mean convergence steps with linear probabilities) and 

got similar results (Extended Data Fig.2 and Table S4). The statistical model with full 

interactions shows that the bots affect the solution time only when they behave with 10% 

randomness and are placed in the central location in the network (Fig. 3a); moreover, when 

the network affords many solutions, the beneficial impact of bots decreases, as shown by the 

three-way interaction (Fig.3b). In short, the bots are especially helpful when the network is 

globally hard to solve.

We found that the impact of 10%-noise bots was comparable to the impact of assigning three 

nodes with fixed (constant) colors in a configuration known ex ante to be compatible with a 

global solution. There was no significant difference between the sessions with 10%-noise 

bots and the sessions with fixed colors (P=0.675, log-rank test). Thus, the bots intervention, 

based on local decision-making alone, is equally as effective as a pre-calculated solution that 
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(in typical circumstances) impractically would require prior global knowledge of the entire 

network structure and its solution space.

The bots appear to have improved collective performance in part by changing the color-

conflict behaviors of human players in the whole system (Extended Data Fig.3). When 

placed at high-degree nodes, the bots with 0% behavioral randomness reduced the number of 

conflicts but they increased the duration of unresolvable conflicts; the bots with 30% 

randomness decreased the duration of unresolvable conflicts but increased overall conflicts; 

and only the bots with 10% randomness decreased both the number of conflicts and the 

duration of unresolvable conflicts, compared with the control sessions. In contrast, when 

placed at low-degree nodes, the bots were less likely to influence the entire network of 

humans, regardless of their noisiness.

When the bots were placed in high-degree positions, their behavioral randomness was able 

not only to facilitate the solution of their own conflicts, but also to nudge neighboring 

humans to change their behavior in ways that appear to have further facilitated a global 

solution. The bots with 0% behavioral randomness reduced the randomness of other human 

players (Fig.4a), which made the human players, particularly the middle-degree players, 

come to be stuck in unresolvable conflicts (Fig.4d). The bots with 30% behavioral 

randomness destabilized the entire network, including the low-degree players, who evinced 

more noise in their own actions (Fig.4c); as a result, the sessions with 30%-noise bots 

showed the same level of unresolvable conflicts as those without bots (Fig.4f). The bots with 

10% behavioral randomness increased the randomness of the central players but reduced that 

of the peripheral players (Fig.4b); hence, through the influence of their behavioral 

randomness, the 10%-noise bots reduced the unresolvable conflicts not only of themselves 

but also of the entire network, including links between human subjects unconnected to the 

bots (Fig.4e). These results obtain even though the subjects were, in fact, less and less 

satisfied with their counterparts the noisier the bots were (Extended Data Fig.4).

In a separate, further experiment involving an additional 340 subjects and a matched set of 

N=20 graphs, we found that these beneficial effects on group coordination and learning 

obtained even when players knew they were interacting with bots (see SI). The solution time 

was statistically indistinguishable (Extended Data Fig.5) and the effect on players 

throughout the system was also similar (Extended Data Fig.6).

Adding autonomous agents with simple strategies to social systems may make it easier for 

groups of humans to achieve global optima for complex group-wide tasks. Here, the setting 

was a global coordination game, but other settings might include cooperation, sharing, or 

navigation5,12,25. The bots, however, might only be helpful if they have certain properties, 

including noisiness or particular geodesic locations. Like other situations13,14,17,18,20, some 

noise may be good from the point of view of the group. Moreover, bots with some noise, 

with solely local information, improved global outcomes here just as much as bots 

employing global information acquired in advance.

We find that these slightly noisy bots work not only by making the task of humans to whom 

they are connected easier, but also by affecting the game play of the humans themselves 
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when they interact with still other humans in the group, thus creating cascades of benefit. 

And this happens even when people know they are interacting with bots. In this sense, even 

simple artificial intelligence (AI) agents can serve a teaching function, changing the strategy 

of their human counterparts and modifying human-human interactions, and not just affecting 

human-bot interactions. More generally, our work illustrates the performance of combined, 

heterogeneous groups composed neither solely of humans nor solely of robots attempting to 

coordinate their actions. Future work can explore even more realistic or complex 

interactions, such as military or commercial robots working within human groups.

While laboratory experiments afford robust causal inference, they must sacrifice some 

verisimilitude and breadth. Guided by prior theory, we chose to focus on only two aspects of 

bot contributions (noise and placement) and their impact on one primary outcome (success 

of global coordination in a standard game10). We also necessarily made other design 

choices, including using a scale-free network limited to 20 people (which was required if the 

games were to be tractable). But there are other features of social interactions that might 

affect the ability of groups to coordinate to solve a problem, including group size, network 

topology10, and bot fraction; whether the networks are dynamic or static26,27; or whether 

social institutions (e.g., policing, sanctions, or norms) are present. These elements are 

important directions for future work.

Adding bots of moderate noisiness to strategic positions within human networks might help 

address diverse problems, especially when the coordination problem is hard. For example, 

narrowly focused workers might each labor to enhance their own productivity, but this might 

actually decrease overall company performance. Crowd-sourcing applications in science 

(such as solving quantum problems28 or other sorts of “citizen science” ranging from protein 

folding29 to the assessment of archeological or astronomical images) might be facilitated by 

adding some bots or noise to groups working collaboratively. Moreover, our work reinforces 

the idea that both simple and sophisticated AI might be useful. For instance, simple bots 

might help reduce racist remarks online30. The simplicity and transparency of decision-

making in simple AI might also make it intelligible to humans, thereby eliciting an effective, 

long-term relationship11. Simple autonomous agents, when mixed into complex social 

systems, might offer substantial advantages, and they could help groups of humans to help 

themselves.

Methods

A total of 4,000 unique subjects (plus a further 340 for the secondary experiment regarding 

bot visibility – see SI) participated in our incentivized economic game experiments. They 

were recruited using Amazon Mechanical Turk (AMT; see SI), and they interacted 

anonymously over the Internet using customized software playable in a browser window 

(available at http://breadboard.yale.edu). While keeping other initial conditions the same, we 

completed 30 sessions for the only-human condition (control) and 20 sessions for each bot-

treated condition (treatment). In each session (after passing various tutorials), the subjects 

were paid a $2 show-up fee and a declining bonus of up to $3 depending on speed to a 

global solution in which every player in a group had chosen a different color than their 
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connected neighbors. When they did not reach a global solution within 5 minutes, the game 

was stopped and the subjects earned no bonus.

Except for the control group sessions, the networks had 3 bots in addition to 17 human 

subjects. These bots were assigned to three geodesic locations (peripheral, central, or 

random “locations”). The bots were controlled programmatically with a simple, greedy 

algorithm incorporating a random element; we drew a random number from a uniform 

distribution between 0.0 and 1.0; if the random number was less than a preset threshold 

(“behavioral noise”), the bot picked a color among the three color options at random; 

otherwise, it behaved based on the colors of its neighbors; if the bot’s current color was not 

the least common among its neighbors, it changed to the least common color; otherwise, it 

maintained the current color.

To evaluate the difference in effectiveness between the various bot treatments, we analyzed 

the solution time of the N=180 sessions using Cox proportional hazard models. The sessions 

that were not solved within 300 seconds were regarded as censored. Each network session 

had a distinct level of complexity with respect to finding a coloring solution because it is 

generated de novo; thus, we controlled for the number of possible color combinations of the 

network (the “chromatic polynomial”). We also performed various statistical robustness 

checks (see SI).

We examined the impact of bots’ behavioral noise on the humans’ behavior using a 

generalized linear mixed model (GLMM) involving logistic regression (see SI). The 

dependent variable is the errant color-change rate evinced by the human players (i.e., choices 

that deviate from the simple, greedy strategy to minimize local conflicts). The model 

incorporated fixed effects for the behavioral noise of bots, the number of neighbors, the 

number of neighboring bots, the session length, and random effects for session.

Extended Data

Extended Data Figure 1. Histogram of the response time of humans in the color-matching test 
(n=142)
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In the color-matching test in our preliminary experiments, subjects were asked three times to 

click the same color button as a picture on the screen with five options: green, orange, 

purple, pink, and yellow. This histogram shows the response time (from when a color in 

question showed up on screen until when a subject clicked a button) for 142 pilot subjects. 

Most subjects clicked the correct button in 1.0 to 2.0 seconds (median time = 1.59 seconds).

Extended Data Figure 2. Relationship between different measures of the structure-based 
complexity of the graph coloring sessions
The correlated coefficient after logarithmic transformation is −0.990 (P < 0.001; n=180). 

The solution set (x axis), known as the chromatic polynomial, is the number of possible 

color combinations that satisfy the task of coloring the network The linear probability 

algorithm (y axis) involves computing the following statistics: a node is randomly selected 

and changes its color to one that is different from its random neighbor until a solution is 

reached. This algorithm offers the advantage of allowing us to evaluate the landscape of the 

solution space starting from an arbitrary initial value. The “mean convergence steps” statistic 

was calculated for 100 iterations of each experimental network given the same initial 

coloring with the experiment.
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Extended Data Figure 3. Impact of bots on color conflicts over the entire network
The error bars are standard errors (n=30 for the no-bots sessions; n=20 for all the bots-

treated sessions). When placed in the center, bots with 0% behavioral noise reduce the 

number of conflicts but increase the duration of unresolvable conflicts; bots with 30% noise 

decrease the duration of unresolvable conflicts but increase the overall conflicts; and bots 

with 10% noise decrease both the number of conflicts and the duration of unresolvable 

conflicts, compared with results of only human players. In contrast to central placement, 

when bots are placed in the periphery, conflict status does not vary with behavioral noise 

(data points are overlapping).

Extended Data Figure 4. Impact of bots’ behavioral noise on players’ satisfaction with their 
neighbors
After each session was completed, subjects rated their satisfaction with the actions of their 

neighbors on a five-point scale: very satisfied, satisfied, neither, dissatisfied, and very 
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dissatisfied (the specific question asked was: “How satisfied were you with the actions of 

your neighbors you were connected with?”). These coefficients show the effect of number of 

bots among neighbors on their satisfaction with their neighbors, estimated by a proportional 

odds logistic regression, incorporating number of neighbors and whether the session was 

solved. The error bars are standard errors (n=3,035).

Extended Data Figure 5. Survival curves for sessions by bot visibility
The curves show the percentage of sessions unsolved at a given time. Dark blue lines show 

the n=20 sessions (involving n=340 additional subjects) where human players were 

informed of which nodes were played by bots (visible-bots condition; n=20), and light blue 

lines show the sessions where humans were not informed (invisible-bots condition; n=20). 

The difference of the survival curves is not statistically significant (P = 0.435, log-rank test).
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Extended Data Figure 6. Impact of bot visibility on players’ unresolvable conflicts for each 
geodesic location
The dark purple line shows results for the sessions where human players were informed of 

which nodes were played by the bots (visible-bots condition; n=20), the dark blue line shows 

results from the sessions where humans were not informed (invisible-bots condition; n=20). 

In both conditions, the bots were located at high-degree nodes with 10% noise. The light 

blue line shows results for the sessions with all human players as a control (n=30). The error 

bars are standard errors by session. Except for the addition of the dark purple line (the 

results of the visible-bots condition), this figure is the same as Fig. 4e. Pertinently, the dark 

purple and dark blue lines are not statistically distinguishable, suggesting that making the 

bots visible has a similar effect throughout the network on players’ behavior compared to 

keeping them invisible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Results of sessions involving only human players
(a) An example of the color coordination game. The figures are snapshots with players’ node 

color at 0, 105, and 245 seconds (see Video S1 for full version). Red edges show that the 

connected players are the same color (“color conflicts”). Some conflicts can be resolved 

when either player selects the rarest color among his/her neighbors (“resolvable conflicts”); 

but others cannot (“unresolvable conflicts”). (b) The actual fraction of solved games 

depending on the behavior of the most central or peripheral three players is shown. The 

“errant color change rate” is the ratio of color selections (by the subjects) producing more 
color conflicts divided by the opportunities to make such selections (see SI for details). An 

intermediate level of errant color choice among high-degree human players resulted in the 

greatest solvability (which comports with the programming strategy for helpful bots). (c) 

The actual fraction of solved games in relation to the number of possible color combinations 

(the “chromatic polynomial”) is shown; having more possible solutions is associated with a 

higher solution rate.
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Figure 2. Survival curves of sessions, by noisiness and location of bots
The curves show the percentage of sessions unsolved at a given time. Dark blue lines show 

results for the sessions including bots (n=20), by their noise level (horizontal dimension) and 

geodesic location (vertical dimension). Light blue curves show results for the control 

sessions involving solely human players (n=30). Total n=210. Sessions are censored at 300 

seconds; P-values given by the log-rank test. Bots having 10% behavioral noise and located 

at the center of the network cause a significant improvement in the solvability of the game 

(P=0.015) and induce 55.6% acceleration in the median time to solution, from 232.4 seconds 

to 103.1 seconds.
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Figure 3. Results of the survival analysis by bot and network characteristics
(a) Hazard ratios for game solution time according to bot noise, bot location, number of 

solutions of the network (chromatic polynomial), and all interactions among these variables 

(n=180; see Table S3 for details). The results show that the benefit of bots varies with the 

solution space; when a network has few possible color combinations, placing bots in a 

central location (high-degree nodes) facilitates resolution. (b) These network snapshots show 

initial and final states of illustrative sessions involving bots with 10% noise. Square nodes 

show the bots, and round nodes show human players; red edges show color conflicts.
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Figure 4. Impact of bots on the behavior of human players
(a–c) Snapshots show estimates of the errant color change rate (i.e., humans choosing 

“wrong” colors) in the same network with central bots, depending on bot noise. Square 

nodes show bots and round nodes show humans (see SI and Table S5 for regression 

modeling details). Note that the intermediate white color shows the estimated errant rate of 

average human players in sessions without bots (0.041); thus, the red color shows that 

human players behave in a more noisy way as a result of the influence of the bots; the blue 

color shows the opposite. (d–f) These graphs show the average accumulated time of 

unresolvable conflicts per link for each geodesic location of players. Dark blue lines show 

results for sessions with central bots (whose degree was typically ≥ 6) by their noise level, 

and light blue lines show results for the control sessions with only humans. Bots with 10% 

noise change the behaviors of the human players in the whole system for the better (e). Error 

bars are standard errors.
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