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Abstract

Disease in the brain is often associated with subtle, spatially diffuse, or complex tissue changes 

that may lie beneath the level of gross visual inspection, even on magnetic resonance imaging 

(MRI). Unfortunately, current computer-assisted approaches that examine pre-specified features, 

whether anatomically-defined (i.e. thalamic volume, cortical thickness) or based on pixelwise 

comparison (i.e. deformation-based methods), are prone to missing a vast array of physical 

changes that are not well-encapsulated by these metrics. In this paper, we have developed a 

technique for automated pattern analysis that can fully determine the relationship between brain 

structure and observable phenotype without requiring any a priori features. Our technique, called 

transport-based morphometry (TBM), is an image transformation that maps brain images loss-

lessly to a domain where they become much more separable. The new approach is validated on 

structural brain images of healthy older adult subjects where even linear models for 

discrimination, regression, and blind source separation enable TBM to independently discover the 

characteristic changes of aging and highlight potential mechanisms by which aerobic fitness may 

mediate brain health later in life. TBM is a generative approach that can provide visualization of 

physically meaningful shifts in tissue distribution through inverse transformation. The proposed 
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framework is a powerful technique that can potentially elucidate genotype-structural-behavioral 

associations in myriad diseases.
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1. Introduction

Recent advances in magnetic resonance imaging (MRI) technology have enabled high-

resolution imaging across many new modalities. Tissue properties can be now be measured 

at an unprecedented level of precision and detail. These developments hold promise to 

illuminate structural changes underlying diseases commonly considered medical mysteries. 

Unfortunately, the changes can often be subtle, spatially diffuse, and complex, escaping 

detection by visual inspection. For example, Figure 1 demonstrates how the common 

morphologic pattern that differentiates individuals who are most aerobically fit from those 

who are least fit defies identification by gross inspection alone. However, significant 

differences in several quantitative parameters are reported to exist from prior studies on 

these images [1, 2, 3]. Thus, there is a growing role for computer-aided techniques to aid in 

vision and detection of morphologic patterns from MRI. Computer-aided techniques are 

needed to answer the following questions: are there morphologic differences that 

differentiate these groups? If so, what are they?

Unfortunately, traditional techniques for MRI analysis have difficulty with analysis in the 

image domain as well, as they require features to be pre-specified and are prone to missing a 

multitude of physical changes that are not adequately assessed by these finite feature sets. 

For example, popular biomedical image analysis softwares such as WND-CHRM [4] or 

FreeSurfer [5] extract a number of pre-specified numerical descriptors, such thickness, 

volume, texture statistics, etc., from the images and test whether these quantities are 

statistically different between image sets using a trial and error approach. In fact, WND-

CHRM extracts nearly 3000 generic features from the images for testing. However, not only 

is testing descriptors a tedious process, numerical descriptors such as SIFT, Gabor features, 

or histogram statistics often do not have direct biological meaning. Another major limitation 

of these approaches is that the analysis does not incorporate anatomic prior information, 

missing an opportunity to compare variations in terms of known anatomy. Deformation-

based methods, which include deformation-based morphometry (DBM) [6], tensor-based 

morphometry [7], and voxel-based morphometry (VBM) [8], also have limitations. 

Deformation-based methods rely on a nonrigid registration to align images before 

comparing them pixel-wise. In practice, perfect structural and functional alignment cannot 

be ensured, and subtle changes in pixel alignment can vastly change the results obtained and 

undermine accuracy [9]. Another limitation in these techniques is that the deformation fields 

are not unique. Hence, the results of tensor-based morphometry and deformation-based 

morphometry, which compare pixelwise across the determinant of Jacobian or deformation 

fields respectively, will vary depending on the particular field generated by the algorithm. 

While these methods incorporate anatomical information, projecting images onto individual 
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pixels assumes that the changes are localized into clusters and misses spatially diffuse 

changes. Furthermore, deformation fields model changes in local volume expansion/

contraction in order to match gross shapes. However, as Figure 2 illustrates, deformation 

fields cannot fully match images with zero error because they cannot quantify differences in 

tissue topology or texture. Figure 3 illustrates several neurologic diseases for which the main 

variation is in tissue texture rather than brain volume contraction/expansion - multiple 

sclerosis lesions and brain tumors. The authors of deformation-based techniques state that 

these registration-based methods are a way to index into pixels based on amount of gray 

matter per unit volume [10], but cannot offer insight into the physical meaning of these 

changes [11] as these methods are not generative. If a technique is not generative, then an 

observable datapoint, or a brain MR image cannot be generated given a feature set such as a 

density map. However, a generative method would afford the ability to visualize the shifts in 

morphologic profile as dynamic changes across a series of brain MRIs to illuminate 

structural mechanisms.

In this paper, we describe transport-based morphometry (TBM) [13, 14, 15, 16, 17], which 

has the potential to enable fully automated MRI analysis without loss of information. Rather 

than analyzing images in the image domain where they may not be easily separable, we first 

transform them to a domain that enhances separability. Prior work demonstrates that when 

we transform 1D and 2D signals in other applications using TBM [13, 14, 15, 16, 17, 18, 

19], complex and nonlinear morphology in the image domain can be described by linear 

classification and regression models in the transform domain. Furthermore, the key advance 

of TBM is that it is generative and enables direct visualization of the interface between 

signal classes through inverse TBM transformation [19]. The TBM technique computes the 

distance needed to morph one image with respect to a common template using the 

mathematics of optimal mass transport (OMT). Optimal mass transport has a long 

mathematical history, starting in the 1700s with Monge and most recently due to its myriad 

applications in signal and data analysis [19]. As Figure 2 illustrates, unlike deformation-

based approaches, OMT can match both shape and texture variations simultaneously; thus, 

information is not missed. However, TBM has never been applied for MRI-based detection 

and pattern analysis as current formulations and solutions to TBM are designed for smaller 

signals [13, 14, 15, 16, 17, 18].

In this paper, we demonstrate a TBM framework that is suitable for analysis of radiology 

data, the majority of which comprises three-dimensional data. We hypothesize that 

transforming MRI data using the new TBM approach can facilitate both discovery as well as 

visualization of discriminating differences in a manner similar to 1D and 2D signal analysis 

previously reported [13, 14, 15, 16, 17, 18, 19]. Ultimately, the goals of discovering 

objective clinical markers and understanding structure-function relationships would be 

facilitated by a technique that could assess structural changes underlying clinical phenotype 

in a fully automated manner without information loss and visualize the shifts in tissue 

distribution as a series of radiology images as part of a unified framework.

The specific contributions of this work are:
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• Novel, robust formulation and solution of transport-based morphometry (TBM) 

enabling its first application to radiology data and computational validation

• A new image transform to facilitate pattern analysis on MRI data, with equations 

for analysis and synthesis as well as description of how the TBM pipeline can be 

used for discrimination, regression, and unsupervised learning

• Demonstration of TBM on real world neuroimage analysis problems showing the 

advantage of a generative technique in identification of morphologic changes as 

well as visualization compared to current morphometry techniques

The remainder of this paper is organized as follows. In Section 2, we summarize key 

theoretical results and present equations for forward and inverse TBM transformation. In 

Section 3, we present our TBM solver suitable for MRI data. Section 4 describes a 

framework for regression, discrimination, and blind signal separation tasks in the transform 

domain. In Section 5, experimental methodology is presented. Section 6 presents results 

showing robustness of the proposed solver for 3D data and the ability of TBM to accurately 

assess dependent brain morphology changes with age in Section 6, whereas the traditional 

approaches based on diffeomorphic anatomic registration through exponentiated lie algebra 

algorithm (DARTEL) fails to detect these changes [12]. Finally, in Section 7, we present 

discussion of the results and in Section 8, we conclude this paper. The Appendix material 

details the derivation and experimental validation for our solver in Section 3.

2. Optimal Mass Transport for Signal Transformation

This section summarizes key theorems related to optimal mass transport, equations for 

signal transformation using TBM, and OMT minimization.

2.1. Overview of optimal transport theory

Let Ω be a measurable space. Let μ and σ be probability measures defined on Ω, with 

corresponding positive probability densities I1 and I0, respectively. A mass preserving 

transform f that pushes σ to μ, or f#σ = μ, satisfies the following,

∫
A

dσ(x) = ∫
f (A)

dμ(x), ∀A ⊂ Ω . (1)

Figure 4 illustrates μ and σ, as well as the map f#σ = μ. Such a mass preserving (MP) 

mapping f is in general not unique; in fact, infinitely many MP mappings may exist that 

satisfy Equation 1. However, we are interested in finding the MP mapping that is optimal in 

the sense of mass transport, which we will define further in Equation 2. Optimal mass 

transport theory developed two major formulations: one in the continuous domain utilizing a 

transport map called the Monge formulation, and one able to work with discrete masses such 

as dirac delta called the Kantorovich formulation. These are further described in [19]. In this 

paper, we consider digital signals as being sampled from a continuous domain and employ 

the Monge formulation of the problem.
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Let MP be the set of all such mass preserving mappings, MP := {f : Ω → Ω|f#σ = μ}. The 

optimal MP mapping in the mass transport sense can be written according to Monge’s 

formulation, which minimizes the following cost function,

min
f ∈ MP

∫
Ω

c(x, f (x))dσ(x) (2)

Here, c : Ω × Ω → ℝ+ is the cost functional. The functional c measures mass transportation 

cost and is often chosen to be the Lp-norm for which Equation (2) becomes the Lp-

Wasserstein distance. The L2-Wasserstein distance, c(x, y) = |x − y|2, in particular has 

attracted rich attention in the image analysis, computer vision, and machine learning 

communities. For c(x, y) = |x − y|2, Brénier [22] showed that there exists a unique optimal 

transportation map f ∈ MP for which,

∫
Ω

x − f (x) 2dσ(x) ≤ ∫
Ω

x − g(x) 2dσ(x), ∀g ∈ MP (3)

when (i) Ω = ℝn and the probability measures have finite second-order moments (i.e. their 

densities vanish in the limit),

∫Ω
x 2dμ(x) < ∞ and ∫Ω

x 2dσ(x) < ∞,

and (ii) when σ is absolutely continuous with respect to Lebesgue measure.

For certain measures (e.g. when σ is not absolutely continuous) the Monge formulation of 

the optimal transport problem is ill-posed in the sense that there is no transport map that 

rearranges σ into μ. In such scenarios the Kantorovich formulation of the problem is 

preferred.

Moreover, Brénier showed through polar factorization [22] that the transport map f must be 

the gradient of a convex function ϕ : Ω → ℝ, f = ∇ϕ. The preceding property implies that 

when Ω is a convex and connected subset of ℝn, the optimal transport map is curl free.

2.2. Linear optimal transport analysis framework

By considering magnetic resonance images to be smooth density functions, the similarity in 

spatial distribution of two tissues can be quantified based on the L2-Wasserstein distance. 

The L2-Wasserstein distance defines a metric between images by identifying a unique spatial 

transformation for each brain image.

Any MRI modality that generates scalar intensity maps (i.e. T1-weighted, T2-weighted, 

FLAIR, fractional anisotropy, etc.) is amenable to analysis by the TBM framework. In this 

work, we analyze T1-weighted images, where treating images as densities enables 
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comparison between images where the absolute intensity value may not be physically 

meaningful.

Consider a set of magnetic resonance images I1, …, IK : Ω → ℝ+, corresponding to 

experimental subjects 1, …, K, where Ω = [0, 1]3, the images are first intensity normalized 

to produce densities such that

∫
Ω

Im(x)dx = 1 . (4)

where m ∈ 1, …, K. A common reference image I0, is chosen and the optimal transport 

mappings are calculated from the reference image to each subject’s MRI, Im. Let fm : Ω → 
Ω be a mass preserving mapping from I0 to Im. Then, the analysis equation [17] that 

transforms images to their corresponding representation in transform domain can be written 

based on

f m
∗ (x) = arg min

f m ∈ MP∫Ω
f m(x) − x 2 I0(x)dx,

s . t . det(D f m(x))Im( f m(x)) = I0(x) for ∀x ∈ Ω

(5)

Here, Dfm is the Jacobian of the mapping fm and MP is the family of all mass preserving 

mappings from I0 to I1. The existence of a unique solution f m
∗  to above optimization was 

shown by Brénier [22].

The transport maps f m
∗ (x) are vector fields that define the direction and amount of mass 

transport needed to morph Im(x) into I0(x). OMT defines a nonlinear distance metric, as 

Figure 5 shows, where the arcs, or geodesics, on the manifold between two images I0 and Im 

correspond to nonlinear OMT distances and are represented by f m
∗ (x). The metric space 

defined by the OMT-based distance metric is a Riemannian manifold, which is equipped 

with an inner product. Thus, projecting the manifold locally at I0 to the tangent space maps 

the geodesics f m
∗  to linearized versions in the tangent space, called the linearized optimal 

transport (LOT) metric.

Then, it can be shown that I m(x) = ( f m
∗ (x) − x) I0(x) provides a natural isometric linear 

embedding for image Im with respect to the LOT [13, 17]. This linear embedding is 

generative, thus, any arbitrary point in the LOT space can be directly inverted and visualized 

in the image domain [13, 17, 18, 19] as a new image according to the synthesis equation [13, 

17]
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I(x) = det(D f −1(x))I0( f −1(x))
where f −1(x) is the inverse mapping of f (x)

(6)

Unlike current approaches based on non-rigid registration, LOT defines a unique spatial 

transformation for each image, with equations for analysis and synthesis. Uniqueness makes 

LOT an invertible transformation. In contrast, current registration-based correspondences are 

not unique, mathematically speaking. As the authors of these techniques state, unless the 

generative model is invertible, the parameters studied have no physical meaning [11]. LOT is 

a powerful technique for image analysis because it enables generative modeling in which 

discovery of structural biomarkers and direct visualization of morphologic shifts are unified 

within a single framework. In the transport domain, simple Euclidean operations on the 

LOT-transformed embeddings, such as linear classification and linear regression correspond 

to nonlinear operations on the OMT manifold [17]. Thus complex, spatially diffuse, 

nonlinear morphologic shifts in the image domain can be captured by simple Euclidean 

operations in the LOT domain. Most importantly, physical shifts in tissue morphology can 

be directly visualized through inverse LOT transformation.

3. Proposed approach

We have developed a method for solving optimal transport that enables the transport-based 

morphometry technique to be extended to large 3D volumetric images such as MRI. The 

authors offer this OMT approach as a viable option for carrying out TBM transformation for 

3D volumetric images. While numerical OMT is a vast field, a detailed review or evaluation 

of OMT algorithms in general is beyond the scope of this paper.

3.1. Variational formulation of the problem

In order to find the optimal transport map, we reformulate the minimization in (2) by 

relaxing the MP constraint. Assuming that Ω is a convex and connected subset of ℝn, as it is 

the case for most image analysis problems (i.e. Ω = [0, 1]n), and assuming that the 

probability measures μ and σ are atomless and absolutely continuous, we can write the 

differential counterpart of Equation (1) as,

det(D f (x))I1( f (x)) = I0(x), ∀ f ∈ MP (7)

where D is the Jacobian matrix, and det(.) denotes the determinant operator. The 

minimization in (2) for c(x, y) = |x−y|2 can first be relaxed into the following optimization 

problem,

argmin f
1
2∫Ω

x − f (x) 2 I0(x)dx

s . t . det(D f )I1( f ) − I0
2 ≤ ε

(8)
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for some small ε > 0. Next, we use the result from Brénier’s theorem which states that the 

optimal transport map is a curl free mass preserving map. Therefore we propose to modify 

the optimization problem in Equation (8) by regularizing the objective function with the curl 

of the mapping f,

argmin f
1
2∫Ω

x − f (x)
2

I0(x)dx + γ
2∫Ω

∇ × f (x) 2dx

s . t . det(D f )I1( f ) − I0
2 ≤ ε

(9)

where γ is the regularization coefficient and ∇ × (.) is the curl operator. Therefore, the map f 
is sought that minimizes the total mass transport ∫|x − f(x)|2I0(x)dx subject to the mass-

preserving constraint ‖det(Df)I1(f) − I0‖2 < ε. We note that modifying (8) to penalize the 

objective with the curl ‖∇ × f‖2 does not change the optimal solution, but solving (9) in 

practice helps guide the solution toward the curl free map. We can relax the optimization 

problem above further and write it as a regularized (or penalized) unconstrained 

optimization problem,

argmin f
1
2∫Ω

x − f (x) 2 I0(x)dx + γ
2∫Ω

∇ × f (x) 2dx+

λ
2∫Ω

(det(D f (x))I1( f (x)) − I0(x))2dx

(10)

Hence the formulation above contains terms explicitly signifying properties of MP mapping 

‖det(Df)I1(f) − I0‖2 and a curl-free mapping ‖∇ × f‖2. The last term implicitly penalizes 

mappings that are not diffeomorphic when det(Df(x)) crosses zero.

The optimization problem in Equation (10) is not a convex problem. We use a multiscale 

variational optimization technique to help guide the solution toward the global optimum. We 

will see in the results section that the multiscale scheme is able to achieve solutions 

comparable to that obtained using convex methods when they apply. Section 3.3 describes 

the multiscale variational solver we devise for the optimization in (10).

3.2. Euler-Lagrange equations

The objective function in (10) can be written as,

M( f ) = ∫
Ω

ℒ(x, f (x), D f (x))dx . (11)

The Euler-Lagrange equations for the transport field f then are of the form,
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dM
d f i = ∂ℒ

∂ f i − ∑
k = 1

n d
dxk ( ∂ℒ

∂ f
xk
i ), i = 1, …, n (12)

where the superscripts denote the coordinate index for the vectors, and the subscripts denote 

partial derivatives, f
xk
i = ∂ f i

∂xk . Writing the Euler-Lagrange equations for the objective 

function in (10) leads to,

dM
d f = ( f − id)I0 + λ(det(D f )∇I1( f ) − ∇ ⋅ (adj(D f )I1( f )))Ierror + γ(∇ × ∇ × f ) (13)

where id(x) = x is the identity function, adj(.) denotes the adjugate operator, ∇ · (.) is the 

divergence operator, and Ierror = det(Df)I1(f) − I0. The derivation for the equation above is 

presented in the Appendix. Equation (13) is a key result from our formulation. The 

complexity for computing each gradient descent update step here is 𝒪(NlogN), where N is the 

number of pixels or voxels in the image. The computational complexity is determined by the 

cost of computing gradients 𝒪(N) in (13), but is dominated by the cost of cubic interpolation 

in computing the det(Df)I1(f) term.

3.3. Multiscale accelerated gradient descent

We can guide the solution toward the globally optimal solution by a multiscale scheme as 

depicted in Figure 6. Nesterov’s accelerated gradient descent method [23] is used at each 

scale to find the corresponding optimal transport map from Equation (10). The optimal 

transport map is then interpolated and used as the initial point for the accelerated gradient 

descent method in the next scale (finer scale).

The accelerated gradient descent update for k’th iteration (k > 1) at each scale is as follows,

gk = f (k + 1) + k − 2
k + 1( f (k − 1) − f (k − 2))

f k = gk − αk
dM(g(k))

d f

(14)

where αk is the gradient descent step size, and is automatically chosen at each gradient 

descent update such that the maximum displacement is fixed. The update at k = 1 is the 

usual gradient descent update.

Here, we have presented a viable approach for computing optimal transport minimization for 

MRI datasets, enabling a transport-based morphometry approach with radiology images.
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4. Modeling shape and appearance of the brain

As previous work has demonstrated that transforming signals to the transport domain using 

OMT may increase their separability [13, 14, 15, 16, 17, 18, 19], we describe a framework 

for regression, discrimination, and blind signal separation in the transport space.

The data matrix X ∈ ℝd×K stores the vectorized transport maps xm corresponding to each 

subject m ∈ 1, …, K where d is the number of elements in the vectorized transport map and 

K is the number of subjects. Figure 7 is the system diagram that illustrates the LOT 

transformation pipeline. In practice, the analysis is performed on the dimensionality-reduced 

data matrix that can provide a linear embedding for transport maps which, for the input data, 

can be used to fully represent each transport map. The reason for performing the 

computations in a reduced-dimension subspace is to enable standard regression techniques 

to be applied, as applying them in full high dimensional space (∼ 108) would be 

computationally expensive for most software packages.

4.1. Regression and correlation analysis with a clinical variable

The influence of an independent clinical variable v ∈ ℝK×1 on brain tissue distribution can 

be investigated by computing the direction in the transport domain wcorr such that the linear 

correlation with age is maximized according to (15) [15]. Here, X represents the reduced-

dimension data matrix.

wcorr = argmax
w

wTXv
wTw

= Xv
vTXTXv

(15)

Here, the direction w = x + vwcorr is a vector field that represents the direction and magnitude 

by which tissue is re-distributed due to v and ν represents the increment or decrement to 

sample along the maximally correlated direction. Pearson’s correlation coefficient is 

computed on centered v and X.

The images corresponding to the computed direction w can be visualized through inverse 

TBM transformation by Equation (6) and illustrate the morphology that is associated with 

outcome v.

4.2. Discriminant analysis to differentiate groups of subjects

Another class of problems facilitated by the TBM technique is that of discriminating classes 

based on MRI appearance, such as the one posed in Figure 1. For these problems, penalized 

linear discriminant analysis (PLDA) [24] performed in the transport domain can find the 

direction in transport space that maximally separates C classes. The PLDA direction is given 

by (16)
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wPLDA = arg max
w = 1

wTSTw

wT(SW + αI)w
(16)

where ST = 1
M ∑m (xm − x)(xm − x)T. Here, x = 1

M ∑m = 1
M xm

The within-class scatter matrix is SW = ∑C ∑n ∈ C (xn − xc)(xn − xc)T. The parameter α 

controls the tradeoff between the traditional linear discriminant analysis (LDA) direction and 

one that lies in the principal component analysis (PCA) subspace. The parameter α can be 

chosen by plotting the stability of the subspace as a function of α.

Sampling along and inverting the direction wPLDA yields images showing the typical 

morphology of a class and how it changes as one progresses from one class to another.

4.3. Visualizing principal phenotypic variations in the brain

Given the covariance matrix ST defined in Section 4.2, the principal components are given 

by the eigenvectors of ST. The eigenvectors represent the directions in the transport space 

that capture the main modes of variability in the dataset [15].

The factorization in Equation (17) gives both the principal components and eigenvalues, 

where the diagonal components of Σ represent the variance for each principal component.

ST = U∑UT (17)

For high dimensional data, the covariance matrix can be implicitly represented using the 

approach in [25]. Each principal component can be inverted and visualized to yield the 

principal phenotypic variations that comprise the images in the dataset.

5. Computational experiments

Here we describe image acquisition, preprocessing, morphometry analysis, and statistical 

learning steps. The code was prototyped in MATLAB (MathWorks, Natick, MA) using built-

in libraries.

5.1. Datasets

5.1.1. MRI pattern analysis using transport-based morphometry—The ability of 

transport-based morphometry to aid in regression, discrimination, and signal separation 

tasks was assessed on images of 135 healthy subjects, ranging in age from 58 to 81 years 

(mean age 66.6 years, standard deviation 5.9 years). Both male and female subjects are 

included. T1-weighted brain images were collected using a 3D Magnetization Prepared 

Rapid Gradient Echo Imaging (MPRAGE) protocol with 144 contiguous slices. Images were 

acquired on a 3 T Siemens Allegra scanner with repetition time = 1,800 ms, echo time = 
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3.87 ms, field of view (FOV) 256 mm, and acquisition matrix 192×192 mm, flip angle = 8 

[26]. These images provide an expanded dataset of older subjects on which age-related brain 

morphology can be investigated.

5.2. Multiscale variational optimal transport

5.2.1. Image preprocessing—Images were skull-stripped and affinely registered to the 

MNI template using Statistical Parametric Mapping (SPM) software version 12 [27]. The 

merits and demerits of the existing brain tissue segmentation methods are discussed in [28], 

which offer insight into the comparative performance of methods based on clustering, 

thresholding, convolutional neural networks (CNNs), and Markov Chain Monte Carlo 

(MCMCs).

Images were normalized so that the sum of intensities was equal in both images (equal 

mass). By normalizing to a large positive number, 106, numerical precision errors resulting 

from computations with small numbers are avoided. We also add a small constant 0.1 to the 

normalized images and renormalize so that they are strictly positive [29] to ensure that the 

OMT problem is well-posed.

The template image was chosen to be the Euclidean average of the sample images. In prior 

work utilizing linear optimal transportation for pattern analysis, both the Euclidean average 

[13], and Frechet mean [17] have been used to approximate the 2-Wasserstein distance 

between images. In previous work, substituting a smooth template with its sharper nearest 

neighbor did not increase or decrease discrimination accuracy significantly [17].

5.3. Experiment 1: Modeling the effects of aging on brain tissue distribution

Regression analysis was performed to assess the relationship between brain tissue 

distribution and age using the approach outlined Section 4.1. The common reference image 

I0 was computed by the Euclidean average of all the subjects. Statistical significance of the 

computed direction is assessed using permutation testing with T = 1000 tests.

The reults of regression analysis in the transport space were compared to those obtained 

using deformation-based analysis. The DARTEL [12] toolbox in SPM12 [27] was used to 

compute deformation fields. DARTEL is commonly used to perform standard VBM and 

DBM analysis. Images were skull-stripped, segmented, and affine registered to the MNI 

template similar to the OMT procedure before non-rigid registration by performed by 

DARTEL. The most correlated direction was computed on the tissue density maps of 

DARTEL-registered images using Equation (15) for VBM and using the deformation fields 

for DBM analysis. Modulated versions are used to compensate for the effects of spatial 

normalization [30].

The TBM analysis is also performed on segmented gray matter and white matter tissue maps 

separately to enable comparison to VBM.

5.4. Experiment 2: Assessing the effects of aerobic fitness on brain health

Discriminant analysis between high aerobic fitness vs. low aerobic fitness groups is 

performed using the PLDA approach in transport space described in Section 4.2. Aerobic 
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fitness is measured by vO2 L/min. The individuals were grouped into low-fit and high-fit 

groups based on those who had a vO2 L/min greater than one standard deviation above the 

mean (high-fit: n = 22) and lower than one standard deviation below the mean (low-fit: n = 

16).

Discriminant analysis using TBM was compared with that performed using deformation 

fields instead of transport maps generated by DBM. In VBM analysis, voxel-wise 

comparison on modulated tissue maps was performed to seek the voxel clusters that are 

significantly different between the two classes using two-sample t-test, uncorrected for 

multiple comparisons or cluster thresholding.

5.5. Experiment 3: Visualizing principal phenotypic variations

Unsupervised learning using PCA was performed to visualize the top three principal 

phenotypic variations in the transport space using the approach described in Section 4.3.

6. Results

6.1. Modeling normal variability in the brain

Figure 8 shows the fraction of variance captured by principal components of the image 

domain (raw voxel values after affine registration) compared to modulated DARTEL 

registration and optimal mass transport solved using the described approach. Fewer 

components are needed to represent more of the variance in the transport space than either 

for image domain or DARTEL pixelwise comparison. Therefore, the information about 

variability in the dataset appears to be better captured by examining tissue distribution using 

OMT rather than comparing tissue intensities individually, before or after nonrigid 

registration. The intuition for how OMT better capture variability in the dataset was 

previously illustrated by Figure 5.

6.2. Modeling the effects of aging on brain tissue distribution through TBM regression

Aging is clinically known to be associated with tissue atrophy and disproportionate loss of 

tissue from frontotemporal regions [31]. In this section, TBM is compared with DBM and 

VBM in the ability to independently discover and model these changes.

6.2.1. Assessing global changes—The direction maximally correlated with age 

computed in the transport space using TBM is found statistically significant (Pearson’s r = 

0.4605, p < 0.001). Figure 9a shows the data when it is projected onto the maximally 

correlated direction, with each datapoint representing a subject’s image.

The most correlated direction shown in Figure 9a can be inverted to visualize the dynamic 

changes in morphology underlying the aging process. Figure 9b shows images generated by 

TBM inverse transformation (images are colorized to aid visual interpretation). We see that 

the changes captured by the TBM regression framework are well-corroborated by known 

changes in the clinical literature [31]. Specifically, the changes shown here are enlarging 

ventricles, especially in slices 75 and 66. There is global tissue thinning, and enlargement of 

the occipital horns of the lateral ventricles in slice 58. Normal anatomic landmarks 

Kundu et al. Page 13

Neuroimage. Author manuscript; available in PMC 2018 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characteristic of the brain are also clearly visible in Figure 9b, such as the internal capsule in 

slice 66 and thalamus in slice 58.

We also compare the results of our TBM regression analysis with that using deformation 

fields generated by DARTEL, commonly used in DBM analysis. The relationship between 

the deformation fields and age is found to be statistically significant (Pearson’s r = 0.2918, p 

= 0.0240), as Figure 10a shows, suggesting that there are significant shape changes with age 

that are captured by a DBM approach. Compared to the visualizations generated by TBM, 

we see that the those yielded by the deformation-based approach depict global shape 

changes but not texture changes. In all slices generated by deformation-based analysis, 

normal tissue landmarks are distorted. Especially, at the gray-white interface, there are is a 

ring-like texture that does not represent normal brain anatomy. Examining the associated 

images generated using the deformation-based approach, we see that while volume 

expansion of the ventricles is correctly identified, expected changes in tissue distribution are 

not well-captured using deformations alone. For example, in slice 75, the expected tissue 

thinning is not well-depicted in the frontal areas. In slice 66, there is an area of bilateral 

focal hyperintensity near the ventricles. This represents the distorted internal capsule that is 

correctly represented in slice 66 of Figure 9b. Other normal landmarks such as thalamus and 

putamen are notably absent in slice 58 as well as the occipital horns of the lateral ventricles. 

Thus, while DBM can capture global shape changes, such as enlargement of ventricles, 

texture information is not well modeled and many normal landmarks and are distorted.

6.2.2. Assessing gray matter and white matter changes—Transport-based 

morphometry was also applied to explore the effect of age on gray matter and white matter 

maps separately. Figure 11b shows the effect of age on gray matter distribution. The 

relationship is statistically significant with Pearson’s r = 0.4271 and p<0.001. There is 

thinning of the gray matter tissue when progressing from a 53 year old brain to a 79 year old 

brain, most markedly in the temporal lobe as can be seen in slice 75. Atrophy can be seen in 

all the slices by enlargement of the spaces.

The relationship between white matter distribution and age similarly shows atrophy and 

enlargement of the ventricles in Figure 12. The relationship is statistically significant with 

Pearson’s r = 0.4026 and p = 0.005. In addition, there appears to be disproportionate loss of 

white matter tissue from the frontal and temporal regions, which is best illustrated in slices 

75 and 66 in Figure 12b.

In contrast, regression analysis performed on the modulated density maps registered by 

DARTEL, used for VBM, was unable to find a significant relationship between age and 

either gray matter morphology (Pearson’s r = 0.6787, p = 0.1980) or white matter 

morphology (Pearson’s r = 0.4965, p = 0.3870).

Figures 13 and 14 show the images generated by attempting to fit a regression model on 

individual pixel values on a fixed grid. We see that in both cases, progressing from age 53 to 

age 79, the intensity at voxels in the cortical gray matter is shown to decrease. However, no 

gross differences in shape are depicted. Similarly, examining the white matter images 

generated by regression on VBM maps (Figure 14), the intensity in the frontal white matter 
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appears to grossly decrease, especially in slices 75 and 58. However, neither of these 

relationships were statistically significant, nor do they adequately depict atrophy and loss of 

tissue from frontotemporal regions.

Overall, the known effects of aging on the brain are best assessed and depicted by the 

transport-based morphometry technique. A DBM approach does not adequately model tissue 

texture and VBM can identify intensity changes at fixed voxel locations, but these do not 

appear to be statistically significant when it comes to modeling the effect of aging on the 

brain tissue.

6.3. Assessing the effects of aerobic fitness on brain health through TBM discrimination

The effects of aerobic fitness on the brain are assessed by separating high-fit individuals 

from low-fit individuals using the PLDA approach for discriminant analysis, comparing the 

ability of TBM, DBM, and VBM to discover and visualize the interface between the two 

groups.

Clear separation in the training subspace is an expected result whether raw pixels, 

deformation fields or transport maps are used, as Figures 15a and 16a show, but when 

visualizing the interface between classes, TBM demonstrates clear advantages in physical 

interpretability. Visualizing the interface between the high-fitness and low-fitness groups 

using TBM in Figure 15b, we see that brains corresponding to low-fit individuals appear to 

demonstrate changes in tissue distribution that are similar to those due to advancing age in 

Figure 9b. Similarly, those individuals belonging to the high-fit group have brain 

morphology that appears to be resemble those of younger subjects in an older adult 

population as the ventricles appear smaller and tissue architecture in the frontotemporal 

regions are better preserved. Thus, it appears that fitness preserves areas of the brain that are 

affected in normal aging.

Comparing the results to that obtained utilizing the deformation fields generated by 

DARTEL that are used in DBM analysis, the DBM visualizations show distortion of tissue 

topology. Figure 16b appears to depict enlargement of ventricles with low fitness, but normal 

anatomic landmarks are not easily visualized, including the interface between gray and 

white matter. Additionally, texture variations are not well-assessed.

The analysis is performed on gray matter and white matter maps separately as well in order 

to compare the performance of TBM with that of VBM. Figure 18 and 17 show the results 

when transport-based morphometry is performed on white matter maps and gray matter 

maps individually.

The interface between the groups is visualized using TBM, which shows loss of temporal 

lobe gray matter with low fitness in Figure 17b. White matter changes visualized by TBM 

shows loss of frontotemporal white matter with low fitness and enlarging ventricles in Figure 

18b. The pattern of changes in brain tissue distribution seen is similar to that seen in aging.

For VBM analysis, the voxels were compared individually to identify those which had 

significant differences in intensity across the tissue density maps. The heat maps illustrating 

voxelwise differences are identified in Figure 19. The clusters here are uncorrected for 
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multiple comparisons, but significance was selected at level p < 0.01. The clusters identified 

by VBM appear to be spatially distributed across the entire brain. There are changes 

identified both in occipital and frontal regions of gray matter, as well as in the 

periventricular white matter affecting frontal regions predominantly. Interestingly, these are 

some of the same regions identified to be affected by fitness in Figure 15b. However, the 

global shifts in tissue profile such as atrophy are not captured or well-indexed by a 

voxelwise analysis, which is better suited for localizing to clusters.

Therefore, while VBM is better suited to localize changes to specific clusters or anatomic 

regions, and DBM does not adequately assess tissue topology, transport-based morphometry 

is able to more fully assess the role of fitness on brain health on tissue distribution later in 

life to generate direct visualizations of the interface between the two classes.

6.4. Visualizing principal phenotypic variations using TBM for unsupervised learning

Finally, TBM can be used to visualize the top three PCA directions generated in transport 

space using TBM to gain a sense of the principal modes of variation in the dataset, which 

show variations in brain size, level of tissue atrophy, and prominence of midbrain structures 

shown by Figure 20.

7. Discussion

We demonstrate a fully automated technique for MRI analysis that facilitates discovery of 

structural shifts associated with observable phenotypes called transport-based morphometry 

(TBM). The results confirm our hypothesis that designing a TBM framework suitable for 

analysis of radiology images can facilitate tasks of regression, discrimination, and signal 

separation in the transform domain. Our approach is able to assess and visualize aging-

related morphologic changes in a fully automated manner. The changes discovered 

independently by TBM match those that are well-accepted clinically. Additionally, our 

technique is able to investigate morphological differences between high-fitness and low-

fitness groups and yield physically meaningful visualization of the interface between the two 

classes, suggesting a new mechanism by which fitness may mediate brain health later in life. 

Finally, transport-based morphometry is shown to enable signal separation by allowing 

visualization of biologically interpretable principal phenotypic variations.

Traditional methods for assessing structural correlates in neuroimages, such as those that 

utilize numerical descriptors or pixelwise comparison are able to test only a subset of the 

information available. Deformation-based morphometry computes local volume expansion/

contraction in terms of deformation fields [11], but cannot quantify differences in texture. 

We see that DBM is able to identify volume expansions, but the deformation fields lose 

information about tissue topology, distorting the texture of normal landmarks in the image. 

Voxel-based morphometry identifies voxels on a fixed grid, but is primarily designed to 

characterize regionally specific changes [11]. However, VBM has difficulty in assessing 

nonlinear or spatially diffuse changes such as atrophy or tissue thinning, as has been 

previously reported [11]. Thus, results obtained using deformation-based analysis are 

influenced by limitations of the method, which confound biological insights. Furthermore, in 

registration-based methods, it is a well-described challenge that transformation parameters 
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that result in feature similarity may not result in a correspondence that is physically 

meaningful [32]. The authors of VBM and DBM state that unless the generative model is 

invertible, the parameters generated for analysis have no physical meaning [11].

Transport-based morphometry is an invertible transformation that allows generative 

modeling of the shifts in morphologic distribution underlying discrimination and regression 

models. TBM analyzes tissue spatial distribution in the transform domain, where we see that 

even linear regression and discrimination techniques in the transform domain are sufficient 

to assess and visualize changes in tissue distribution that are nonlinear, spatially diffuse, and 

affect various regions of the brain in unequal ways. There are several reasons why 

transforming images to transport space enhances a range of pattern analysis tasks. First, 

optimal mass transport provides a metric by which to compare nonlinear signals through 

morphing rather than registration whereby distances between images in the image domain 

can be modeled in terms of geodesics on a Riemannian manifold in transport space [17, 13, 

19]. By projecting these geodesics locally to the tangent space, linearized versions of these 

metrics are available and as we see in this paper, Euclidean models in the transport space can 

capture a range of nonlinear morphologic changes. Second, the optimal mass preserving 

mapping has a unique minimizer with a bijective relationship with the source image with 

respect to a template. Therefore, in addition to enabling complex relationships to be more 

easily modeled, transport-based morphometry is a generative technique. An observable 

datapoint can be generated from any arbitrary point in the manifold. Because TBM is 

generative, a linear model can be directly visualized as a series of physically interpretable 

images through inverse TBM transformation [19]. In contrast, VBM and DBM are not 

generative methods. We see indeed that compared to DBM and VBM, transport-based 

morphometry provides enhanced insight into the morphologic shifts in the data. Using the 

TBM technique, we are able to adequately assess both global atrophy and local 

frontotemporal thinning with aging. In contrast, DBM was able to depict only local volume 

contraction and VBM was able to localize to individual voxels undergoing density changes. 

Furthermore, compared to VBM and DBM, transport-based morphometry coupled with 

discriminant analysis revealed a possible mechanism by which aerobic fitness mediates brain 

health later in life. By analyzing tissue spatial distribution using OMT, TBM can capture 

important phenomena that is not considered by existing techniques. Finally, our formulation 

and TBM solver are fully general to any image modality and encompasses a wide range of 

problems in regression, discrimination, and unsupervised learning. Thus, our approach 

opens the door to numerous research and clinical advances.

There are several limitations of this work. First, our approach for optimal transport 

minimization is non-convex. Although the approach does not guarantee theoretically that 

global minima will be achieved, the experimental results demonstrate that the multiscale 

scheme guides the minimization to the global minima and the results are comparable to 

those using convex formulations in 2D. We pose it as a future problem to couple the TBM 

framework presented in this paper with solvers that can overcome limitations with large 3D 

images and at the same time are convex. Another limitation is that analyzing the spatial 

distribution of voxels requires a normalization of images. Thus, the TBM transform does not 

directly consider whether there are statistically significant differences in the sum of voxel 
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intensities. However, the latter limitation is easily remedied, as the sum of voxel intensities 

can be included as a feature when statistical analyses are performed in the feature domain.

8. Conclusion

In conclusion, we presented a novel image transformation framework for MRI data to 

losslessly facilitate discovery of trends as well as yield biologically interpretable 

visualization of the morphologic changes associated with a variety of clinical outcomes. We 

demonstrate that our fully automated approach facilitates regression, discrimination, and 

blind signal separation with significant advancement over currently used techniques. Our 

approach is able to independently discover aging-related changes that are well-corroborated 

clinically and provide new insight into the effects of fitness on the brain, unlike traditional 

methods. The results validate that our approach can be used as a statistical learning tool in 

diseases for which gene-structure-behavior relationships are not well-known.
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Appendix A: Derivation of Euler-Lagrange Equation

Here we present the derivation of the Euler-Lagrange equation in (13). Starting from the 

objective function in Eq. (10) we have

M( f ) = 1
2 det(D f )I1( f ) − I0

2 + λ
2 ∇ × f 2

= 1
2∫Ω

(det(D f (x))I1( f (x)) − I0(x))2dx

M1( f )

+ λ
2∫Ω

∇ × f (x) 2dx

M2( f )

(18)

where the first term, M1(f), enforces f to be mass preserving while the second term, M2(f), 
enforces f to be curl free. Starting with the first term we can write the Euler-Lagrange 

equation as,

dM1
d f i =

∂ℒ1
∂ f i − ∑

k = 1

n d
dxk (

∂ℒ1
∂ f

xk
i ), i = 1, …, n (19)

where we have,
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∂ℒ1
∂ f i = det(D f )

∂I1( f )
∂ f i Ierror (20)

Let C be the cofactor matrix of Df. Then det(Df) can be written as the sum of the cofactors 

of any columns or rows of Df,

det(D f ) = ∑
i = 1

n
f

x j
i Ci, j, ∀ j ∈ 1, …, n

= ∑
j = 1

n
f

x j
i Ci, j, ∀i ∈ 1, …, n

(21)

Using the cofactor matrix, C, we can write,

∂ℒ1
∂ f

xk
i = Ci, kI1( f )Ierror (22)

And from Equations (20) and (22) we have,

dM1
d f i = Ierror(det(D f )

∂I1( f )
∂ f i − ∑

k = 1

n d
dxk Ci, kI1( f )) (23)

and writing the vector form of the above equation for all i and using CT = adj(Df) we can 

write,

dM1
d f = Ierror(det(D f )∇I1( f ) − ∇ ⋅ (adj(D f )I1( f ))) . (24)

For the second term, we have

∂ℒ1
∂ f i = 0 (25)

Furthermore, assuming that n = 2, 3 and using the Levi-Civita symbol we can write the norm 

squared of the curl of f as follows,

|∇ × f |2 = ∑
p = 1

n
( ∑
l = 1

n
∑

m = 1

n
εplm f

xl
m)

2
(26)
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which leads to,

∂ℒ1
∂ f

xk
i = λ ∑

p = 1

n
εpki( ∑

l = 1

n
∑

m = 1

n
εplm f

xl
m) . (27)

Therefore we have,

dM
d f i = − λ ∑

k = 1

n d
dxk ( ∑

p = 1

n
εpki( ∑

l = 1

n
∑

m = 1

n
εplm f

xl
m))

= − λ ∑
k = 1

n
∑

p = 1

n
εpki d

dxk ( ∑
l = 1

n
∑

m = 1

n
εplm f

xl
m)

= λ ∑
k = 1

n
∑

p = 1

n
εikp d

dxk ( ∑
l = 1

n
∑

m = 1

n
εplm f

xl
m)

= λ(∇ × ∇ × f )i

(28)

Finally, combining Equations (24) and (28) will lead to,

dM
d f = Ierror(det(D f )∇I1( f ) − ∇ ⋅ (adj(D f )I1( f ))) + λ∇ × ∇ × f (29)

Appendix B: Validating OMT registration on MRI Data

8.1. Optimal transport minimization

The equations for analysis and synthesis can be solved in closed form only for 1D signals 

[33], but for higher-dimensional signals, they must be solved using optimization techniques. 

Many solvers have been described in the OMT literature, although special challenges 

including drift, artifact, and computational time/complexity arise in numerical OMT of large 

image sets that may exceed millions of voxels.

For example, Haker et al.[34] solve for an initial MP map f0 (not unique or optimal) through 

the Knothe-Rosenblatt rearrangement [33, 35] and then progressively update the initial map 

using composition (with another MP map s that satisfies s#σ = σ) so that it becomes curl free 

to signify optimality. As pointed out by Haber et al.[36] and Rehman et al.[37], however, 

there exist two main shortcomings to the preceding numerical approaches. First, a robust 

method is needed to obtain an initial MP mapping, and the obtained initial map is often far 

from the optimal transport map. Second, and much more importantly, such methods update 

the transformation in a space which is tangential to the linearized MP constraint. Hence, for 

any finite step update used in the optimization, f0(sk), the mapping deviates or drifts from 

the set of mass preserving mappings MP. While the level of drift may or may not be 

acceptable in practice for a 2D solution, the drifting is amplified for 3D images as 
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demonstrated in Section 6. The drift phenomenon necessitates solution by alternative 

methods for 3D images.

Convergent methods have also been proposed based on a fluid dynamics formulation of the 

problem [38, 39] or based on the solution of the Monge-Ampère equation [40], but these 

formulations come at the cost of an additional virtual time dimension, which is 

computationally expensive. Computational cost also becomes a challenge in approaches 

utilizing a system of linear equations that arise from the finite-difference implementation of 

the linearized Monge-Ampere equation [41, 42].

Another family of solvers [43, 44, 29] are based on Kantorovich’s formulation of the 

problem. In short, Kantorovich’s formulation searches for the optimal transport plan π 
defined on Ω × Ω with marginals μ and σ that minimizes the following,

min
π ∈ ∏ (μ, σ)

∫
Ω × Ω

c(x, y)dπ(x, y) (30)

Here Π(μ, σ) is the set of all transport plans with marginals μ and σ. Chartrand et al [29] 

solves the dual problem to the Kantorovich formulation. Chartrand et al obtain the optimal 

transport map through a gradient descent solution. The obtained transport map as pointed 

out in [29] and shown in this paper see Figure 22 comes with the trade off of undesired 

artifacts, especially when the images are not smooth. Thus, additional work is needed to 

overcome challenges related to quality of MP match with the Chartrand et al.[29] approach.

In summary, in order to test the hypothesis that transport-based morphometry can both 

extract discriminant information and produce visualization of differences on MRI data, an 

OMT solution is required that can overcome computational challenges for large 3D data.

We validated our OMT approach on healthy, adult brain images obtained from the IXI 

dataset, Biomedical Image Analysis Group at the Imperial College in London [45].

10 images were selected at random from Guy’s Hospital in UK. Subjects were male and 

ranged from 41 to 86 years of age at the time of imaging (mean age 57.8 years, standard 

deviation 15.7 years). The images were T1-weighted images, obtained using a Philips 

Medical Systems Intera 1.5 T scanner, with the following imaging parameters. Repetition 

time = 9.813 ms, echo time = 4.603 ms, number of phase encoding steps = 192, echo train 

length = 0, reconstruction diameter = 240, flip angle = 8°. The images are 128 × 128 × 128 

matrix, with 1 mm3 resolution.

8.1.1. Optimization parameters—The step size for accelerated gradient descent is 

chosen such that the maximum displacement per update is 0.01 of a pixel, the same for our 

method and comparison methods. At every step of gradient descent, there is a check to 

maintain that the mapping is diffeomorphic and the step size is reduced as necessary in order 

to ensure a diffeomorphic mapping. The parameters were obtained experimentally: λ = 100, 

γ = 6.5 × 104 when the MSE reaches 25% of the initial MSE to steer the solution towards a 

curl-free MP mapping, number of scales = 3. The multiscale approach was also implemented 
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for the two other OMT methods in this paper, although the results did not significantly 

change when the scheme was used.

The termination criteria for all methods implemented is when MSE of the morphed source 

image relative to the template image reaches 0.55%. When the drifting phenomena in the 

Haker method [46] produces MSE 100× the initial MSE, we terminate the code. We report 

the mean L2 norm of the curl per voxel and MSE relative to the template.

We use a numerical discretization scheme in which values are placed at pixel or voxel 

centers. A consistent second-order finite difference approximation was used for all 

differential operators, utilizing the DGradient toolbox for MATLAB [47].

8.2. Experiment: Validating OMT registration on MRI

We compare the approach of Haker et al [46] and Chartrand et al [29] to the approach 

described in this paper. The computational complexity of the gradient descent update step 

for all three methods implemented is 𝒪(NlogN). All methods implemented utilized the same 

preprocessed images.

All unique pairs of images were registered to each other for the 10 images, resulting in 45 

total registration problems. The statistics reported in this paper are based on the registrations 

performed in turn with our method, that of Chartrand et al, and that of Haker et al.

The following three experiments investigate TBM for MRI pattern analysis enabled by our 

OMT approach.

8.3. Comparing MP registration methods

We report results for both 2D and 3D MP registration using optimal transport. The 2D image 

dataset was derived from the 3D dataset by extracting the same axial slice from the middle 

of every 3D brain image. The solver and accelerated gradient descent update equations are 

the same whether working with 2D or 3D images. We compare our OMT approach to 

current methods in the literature based on both the Monge formulation ([46]) and 

Kantorovich formulation ([29]) to demonstrate that our method is robust to the challenges of 

other OMT approaches.

8.3.1. 2D optimal mass transport—Table 2 displays the mapping statistics for the set of 

2D images. The mass transported is lowest for the Chartrand et al.’s method and compares 

favorably to the mass transport achieved using our method. The MSE for Chartrand et al 
indicates that this method also produces the poorest MP mapping of the three methods. The 

MSE achieved is 3–4 times that achieved by the other two methods, demonstrating that this 

method is prone to artifacts.

Our method achieves the lowest MSE in addition to mass transport distance. As reviewed in 

Section 2, the optimal MP mapping is the MP mapping that achieves minimum mass 

transport. The curl, a measure of optimality of the MP mapping, is 0 by design for the 

method of Chartrand et al.as expected (see Section 2). The mean curl is the highest for our 

method compared to the other two methods, but is still small in an absolute sense (10−4).
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Our method produces the best results in terms of mass-preservation and mass transport. In 

Figure 21, we see the optimal transport fields and their corresponding morphings for several 

2D brain images. Visually, the transport fields and quality of morphings are similar for all 

three methods.

The proposed method was prototyped in MATLAB using built-in functions. The average 

runtime for 256 × 256 brain images with 3 scales was 19.36 ± 7.91 seconds.

8.3.2. 3D optimal mass transport—While in 2D all three methods seem to produce 

visually similar OMT mappings, we see in 3D that several phenomena become evident. 

Examining Figure 23, we compare the plots of curl and relative MSE over gradient descent 

iterations for several brain images. We see that the magnitude of the curl (on the order of 

106) is large for the Haker et al.’s method. The curl for the Chartrand et al.’s method remains 

at 0 by design. Our method produces curls for all images that tend toward zero with 

iterations of gradient descent.

We see that relative MSE with the Haker et al.’s approach increases significantly until we 

terminate the code when the MSE reaches 100x its initial value. Hence, starting after around 

100 iterations of gradient descent, the phenomenon of drift with the Haker et al.’s approach 

becomes evident. The relative MSE of the Chartrand et al.’s approach decreases, but remains 

large in magnitude (5–10%) at termination. The large MSE results in visual artifacts in the 

quality of the MP match, which we can see in Figure 22. In contrast, for our method, all 

images are able to achieve the 0.55% termination criterion.

Table 2 corroborates the plots in Figure 23. Our method produces the lowest relative MSE 

(best MP mapping), and all brain images are able to achieve the termination criterion of 

0.55%. Furthermore, our curl at termination is 8 orders of magnitude lower than that 

obtained using the Haker method.

In terms of mass transported, the Chartrand et al.’s method produces the lowest transport 

distance, although the MSE of the MP mapping is about 5–10x higher than that achieved 

using our method. We can also see artifacts visually in the mappings produced by the 

Chartrand et al.’s method compared to our method (Figure 22).

In Figure 22, we compare axial, sagittal and coronal slices mapped using our method and 

that of Chartrand et al.’s (The method of Haker et al. failed to produce a viable solution, 

which is why it is not shown.) We see that mappings produced by our method result in 

visually similar images to the target image I0, whereas those produced by the Chartrand et 
al.’s method contain several artifacts.

Overall, our method outperforms both comparison methods for 3D images. Our method 

achieves the lowest MP mapping, while at the same time achieving small curl and mass 

transported.

The median runtime was under 20 minutes per brain in MATLAB using built-in libraries on 

a general purpose computer. There is significant opportunity for improvement with an 

implementation in native C.
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Thus, we see that our approach is able to overcome traditional limitations of drift, artifact, 

and impractical computational complexity. Our approach enables the goal of pattern analysis 

on MRI using a transport-based morphometry approach.
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Figure 1. 
MR images belonging to 10 older adults in their 6th or 7th decades of life. The 

corresponding axial slice is depicted for each subject for comparison. The dataset from 

which the images are drawn is described further in 5.1.1. The images correspond to subjects 

who are +σ above the population mean aerobic fitness (most fit) or −σ below the mean 

aerobic fitness (least fit) as assessed by vO2 L/min. Prior groups have reported differences in 

quantitative tissue density [2], brain volume [3], as well as hippocampal volume [1] as a 

function of fitness on a subset of images from the same dataset. The goal is to determine 

whether there is a common morphologic feature that separates these groups, and if so, 

visualize it in a physically interpretable manner.
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Figure 2. 
Compared to deformation fields computed using DARTEL [12], transport maps computed 

using optimal mass transport (OMT) captures both shape and texture differences between I0 

and I1 and match images perfectly, up to an interpolation error. The three boxes in the top 

row should all look the same. However, deformation fields lose texture variation 

information, thus resulting in high MSE when attempting to match source and target images.
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Figure 3. 
Neurologic conditions where pathology affects biophysical properties of tissue manifesting 

as texture variation. (a) Multiple sclerosis (source: [20]), (b) metastatic breast cancer tumor 

(source: Dept. of Radiology, University of Pittsburgh Medical Center), (c) GBM (left) and 

debulking procedure (right) (source: [21])
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Figure 4. 
Given a pile of dirt and a castle of the same total mass, the coupling is sought between units 

of mass in the pile of dirt and units of mass in the castle that is optimal because it minimizes 

the transportation cost
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Figure 5. 
Compared to the simple Euclidean distance (black), the OMT distance (red) between images 

defines a nonlinear distance metric between a pair of images, represented by the red arc on 

the manifold. Compared to simple Euclidean interpolation to estimate the middle image IM, 

which leads to artifacts in the ventricles and other artifacts, the nonlinear OMT-based 

distance appears to better capture the natural structure of the brain.

Kundu et al. Page 31

Neuroimage. Author manuscript; available in PMC 2018 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The schematic of the multiscale approach devised in this paper. The solution to the 

accelerated gradient descent is first calculated at a coarse level and then refined as the 

optimization proceeds.
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Figure 7. 
System diagram. Images are first skull-stripped, intensity normalized and affine registered. 

A series of transport maps is computed using LOT transformation, and subsequent pattern 

analysis is performed in the transport space. Inverse LOT transformation provides 

visualization of the regression, discrimination, or principal component directions in the 

transport space for physical interpretation.
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Figure 8. 
Compared to the models utilizing pixel-wise comparison (Eulerian and DARTEL 

registration), the model based on OMT is able to capture more of the variability in the 

dataset with fewer principal components.
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Figure 9. 
(a) Projection of data onto the direction that maximizes linear correlation with age, (b) 

Visualization of changes in tissue distribution that are statistically dependent on age. The 

vertical axis shows various axial slices from a 3D dataset from rostral (towards head) to 

caudal (towards toe). The horizontal axis shows the effect of increasing age from left to right 

on that axial slice. We see enlarging ventricles, and global atrophy of both gray matter and 

white matter with increasing age.
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Figure 10. 
Visualization of aging-related changes captured by DARTEL deformation fields used in 

deformation-based morphometry. Normal tissue texture is not well-modeled using a 

deformation-based approach.
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Figure 11. 
Visualization of aging-related changes found by transport-based morphometry on gray 

matter channels. There is atrophy and loss of GM from temporal lobes.
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Figure 12. 
Visualization of aging-related changes found by transport-based morphometry on white 

matter channels. TBM depicts overall atrophy and loss of white matter disproportionately 

from the frontal lobes.
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Figure 13. 
Visualization of aging-related changes found by voxel-based morphometry on gray matter 

maps.
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Figure 14. 
Visualization of aging-related changes found by voxel-based morphometry on white matter 

maps.
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Figure 15. 
(a) High-fit and low-fit individuals can be perfectly separated based on their transport maps 

given by TBM when projected onto the most discriminant direction computed by PLDA, (b) 

images illustrating the differences between high-fit and low-fit individuals generated based 

on transport maps.
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Figure 16. 
(a) High-fit and low-fit individuals can be perfectly separated based on the deformation 

fields given by DARTEL when projected onto the most discriminant direction computed by 

PLDA, (b) modulated images illustrating the differences between high-fit and low-fit 

individuals generated based on deformation fields.
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Figure 17. 
(a) High-fit and low-fit individuals can be perfectly separated based on transport maps of 

gray matter when projected onto the most discriminant direction computed by PLDA, (b) 

modulated images generated by TBM depicting the gray matter differences between high-fit 

and low-fit individuals showing loss of tissue from temporal lobe in slice 75 with low 

fitness.
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Figure 18. 
(a) High-fit and low-fit individuals can be perfectly separated based on transport maps of 

white matter when projected onto the most discriminant direction computed by PLDA, (b) 

modulated images generated by TBM depicting the white matter differences between high-

fit and low-fit individuals show that fitness appear to protect frontotemporal white matter 

architecture.
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Figure 19. 
Heat maps showing the voxels on modulated gray matter and white matter densities whose 

intensity levels are significantly different between high-fitness and low-fitness groups 

(p<0.01).
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Figure 20. 
Visualizing top principal components in transport space. (a) PC1: variability in brain size, 

(b) PC2: variability in brain tissue atrophy and size of ventricles, (c) PC3: variability in 

prominence of midbrain and brainstem structures
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Figure 21. 

The source image I1, target image I0, and their calculated optimal transport map f , 

corresponding determinant of Jacobian matrices, and the error image for the Haker method, 

the Chartrand method and our method. All are comparable for 2D OMT
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Figure 22. 
The target image (a–c), the morphed image in axial, coronal and sagittal cuts using our 

method (d–f) and the method presented by Chartrand et al.[29] (g–i), and the source image 

(j–l)
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Figure 23. 
We see the plots for MSE, curl and mass transported for all three methods. The plots for our 

method are shown only for the last scale of the GP, using an initial point already close to the 

final point.
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Table 1

Comparing methods of solving OMT in 2D

2D OT Mapping Statistics

Method Relative MSE Mean curl Mass transported

Our method 0.23 ± 0.056% (8.7 ± 5.3) × 10−4 1.63 ± 0.57

Chartrand et al. 1.8 ± 2.9% 0 1.56 ± 0.46

Haker et al. 0.45 ± 0.59% (7.0 ± 0.16) × 10−6 2.37 ± 0.79

Neuroimage. Author manuscript; available in PMC 2018 April 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kundu et al. Page 51

Table 2

Comparing methods of solving OMT in 3D

3D OT Mapping Statistics

Method Relative MSE Mean curl Mass transported

Our method 0.55 ± 0.0011% 0.37 ± 0.61 1.3 ± 0.50

Chartrand et al. 3.0 ± 1.8% 0 0.07 ± 0.04

Haker et al. 9.9 ± 2.5% (4.5 ± 1.6) × 106 12.5 ± 4.8
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