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Abstract

Objective—We investigate an optimization-based approach to image reconstruction from list-

mode data in digital time-of-flight (TOF) positron emission tomography (PET) imaging.

Method—In the study, the image to be reconstructed is designed as a solution to a convex, non-

smooth optimization program, and a primal-dual algorithm is developed for image reconstruction 

by solving the optimization program. The algorithm is first applied to list-mode TOF-PET data of 

a typical count level from physical phantoms and a human subject. Subsequently, we explore the 

algorithm’s potential for image reconstruction in low-dose and/or fast TOF-PET imaging of 

practical interest by applying the algorithm to list-mode TOF-PET data of different, low-count 

levels from the same physical phantoms and human subject.
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Results—Visual inspection and quantitative-metric analysis reveal that the optimization 

reconstruction approach investigated can yield images with enhanced spatial and contrast 

resolution, suppressed image noise, and increased axial volume coverage (AVC) over the reference 

images obtained with a standard clinical reconstruction algorithm especially for low-dose TOF-

PET data.

Significance—The optimization-based reconstruction approach can be exploited for yielding 

insights into potential quality-upper bound of reconstructed images in, and design of scanning 

protocols of, TOF-PET imaging of practical significance.

Index Terms

TOF PET; list mode; optimization-based reconstruction; total-variation (TV)

I. INTRODUCTION

Algorithms based upon update procedures of the maximum-likelihood (ML)-expectation-

maximization (EM) [1]–[5], maximum a posterior (MAP) [6]–[9], and penalized maximum 

likelihood (PML) methods [10]–[12], especially in an order-subset (OS) form [13]–[18], 

have been investigated and developed for reconstructing images of pre-clinical and clinical 

utility from time-of-flight (TOF) positron emission tomography (PET) [19]–[21]. However, 

some of the algorithms may also yield images of limited axial volume coverage (AVC) and 

of considerably deteriorating quality when applied to data of low counts [22], [23], which 

are often of application interests in performing fast and/or low-dose TOF-PET imaging. In 

this work, we investigate and develop an optimization-based image reconstruction from list-

mode TOF-PET data. The reconstruction problem is formulated as a convex optimization 

program based upon list-mode-data-likelihood maximization subject to an image-total-

variation (TV) constraint. Because the optimization program is non-smooth, existing 

iterative algorithms for TOF-PET reconstruction are not applicable to solving the program. 

Instead, we develop and tailor a Chambolle-Pock (CP) primal-dual algorithm [24]–[28] to 

reconstruct images from list-mode TOF-PET data through solving the non-smooth convex 

optimization program.

We apply the algorithm to reconstructing images from real list-mode TOF-PET data of 

physical phantoms and a human subject collected with a clinical, SiPM-based digital TOF-

PET scanner. In the real-data study, using the clinical reconstruction as a reference, we seek 

to demonstrate that, under imaging conditions of practical interest, the algorithm developed 

can yield reconstructions comparable to, and possibly improved on, the reference in terms of 

visualization, AVC, and NEMA-quality metrics, thus showing the possibility of the 

optimization-program design and algorithm development for improving image quality in 

TOF PET. We have also applied specifically the algorithm to reconstructing images from 

list-mode TOF-PET data of low levels of photon counts, mimicking scanning conditions of 

fast and/or low-dose TOF-PET imaging, and characterized the reconstructions by using 

visual inspection as well as AVC and NEMA-quality metrics.

Zhang et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. SYSTEM AND DATA

A. TOF-PET scanner

In the work, we employ a Philips Vereos clinical PET/CT system [29] for data acquisition 

from physical phantoms and a human subject. The system has a SiPM-based digital PET 

scanner capable of acquiring list-mode data with TOF information. The detector 

configuration of the scanner is formed by tightly assembling P = 18 identical detector 

modules, each of which is a flat panel containing U = 5 by V = 4 identical tiles of square 

shape, on the surface of a cylinder of radius R = 382 mm, and each of the tightly 

congregated tiles itself is composed of E × E (E = 8) identical crystal bins of square shape 

and of length l = 4 mm connected to the SiPMs [28]. The module centers are placed on the 

same circular ring on the cylindrical surface, while the horizontal central lines of the 

modules are parallel to the central axis of the cylindrical surface. Overall, the PET 

configuration consists effectively of U rings of P × V = 72 tiles, forming a total of MR = 

153, 446, 400 lines of response (LORs) each of which is a straight line connecting the 

centers of two crystal detector-bins. Furthermore, a TOF bin measures the difference of the 

traveling time of the two coincident photons in an event, and thus its size reflects the 

accuracy of the TOF measurement. The TOF-PET scanner used in this work has a TOF-bin 

size of 19.5 ps, and the traveling-time difference of two coincidence photons is considered 

often as a random variable of a Gaussian distribution with a full-width-at-half-maximum 

(FWHM), which is referred to as the timing resolution of a TOF-PET scanner. For the TOF-

PET scanner used in the work, it has a timing resolution of 325 ps.

B. Data acquisition

The TOF-PET scanner described above is used for data acquisition from physical phantoms 

and a human subject. In each scan, data of ME events are recorded and then stored in a list-

mode format, in which an entry represents one recorded event at TOF bin τ along LOR k. 

We collected list-mode TOF-PET data with a high level of photon counts from each of the 

physical Jaszczak and IEC phantoms and from a human subject, and refer to the data as the 

full-count data. Subsequently, we created two data sets with lowered levels of photon counts 

by randomly sampling the full-count data acquired from a phantom or human subject 

mimicking the fast, and/or low-dose imaging conditions of practical interest. For the human-

subject study, data collection was carried out at multiple overlapping bed positions for 

imaging the head, neck, and torso, and we refer to the combination of the multiple-bed-

position scans as the whole-body scan, with a 39% overlap between two consecutive bed 

positions.

III. METHODS

A. Design of the optimization program

1) List-mode data model for TOF PET—Let vector g denote the model data in which 

an entry is the events measured at TOF bin τ along LOR k, and g is of size ∑k = 1
K 𝒯k, 

where K is the total numbers of LORs of the scanner and 𝒯k is the number of TOF bins in 

LOR k. Also, let vector u of size N indicate the three-dimensional (3D), discrete image of 
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interest in a concatenated order in which an entry is the image value, i.e., the activity level, 

within a voxel except for a scaling constant. A linear data model considered is given by

g = 𝒫u + c, (1)

where P denotes the system matrix of size ∑k = 1
K 𝒯k × N vector c of size ∑k = 1

K 𝒯k the 

contribution of scatter and random events, P has elements Pkτj = akηkQkτj, ak and ηk are the 

attenuation factor and detector-pair efficiency factor for LOR k, respectively, Qkτj = SkjTkτj, 

Skj denotes the intersection length of LOR k within voxel j, and Tkτj, the TOF kernel 

centered at TOF bin τ along LOR k for voxel j, is a Gaussian Tkτ j = 1
2πσ e

−
(dkτ j)

2

2σ2
 [1], dkτj 

is the distance from the center of TOF bin τ on LOR k to the center of image-voxel j, and σ 
= 20.69 mm that corresponds to a timing resolution of 325 ps, and element ckτ represents the 

contribution of scatter and random events at TOF bin τ on LOR k. Therefore, an element in 

model data g can be written as [g]kτ = ∑
j

akηkQkτ ju j + ckτ, where uj is the jth entry of vector 

u, i.e., the image value within voxel j.

2) Data divergence—Let vector gm of size ∑k = 1
K 𝒯k denote the TOF-PET data 

measured, in which the non-zero entries can be reordered into a list-mode data format with 

the ith entry to be 1. We consider the Kullback-Leibler (KL) divergence

DKL(gm, g) = ∑
k, τ

[g]kτ − [gm]
kτ

ln[g]kτ . (2)

Noting ∑
τ

Tkτ j = 1 and ∑
τ

Qkτ j = Sk j∑
τ

Tkτ j = Sk j, we re-write the KL divergence as

DKL(gm, g) = ∑
k, τ

(∑
j

akηkQkτ ju j + ckτ) − ∑
k, τ

[gm]
kτ

ln(∑
j

akηkQkτ ju j + ckτ)

= ∑
k

([ℛu]k + ∑
τ

ckτ) − ∑
i

ln[ℋu + c′]kiτi
,

(3)

where matrices ℛ and ℋ have entries Rkj = akηkSkj and Hkiτi j = aki
ηki

Qkiτi j, ki and τi denote 

the LOR and TOF bin corresponding to the ith event and ∑
i

1 = ME, entries in ln[·] that are 

smaller than 10−20 are replaced by 10−20, c′ is a vector of list-mode data size with entry ckiτi
′

denoting the scatter and random estimation at TOF bin τi along LOR ki.

3) Optimization program—We consider an image-TV-constrained optimization program 

[28]
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u ∗ = arg min
u

DKL(gm, g)s . t f TV ≤ t1, f j ≥ 0, and u = 𝒢f, (4)

where u and f denote image and latent-image vectors of size N in a concatenated form; 

image-TV ‖f‖TV = ‖|∇f|MAG‖1 with |∇f|MAG, i.e., the magnitude image of the spatial gradient 

of f; t1 is a constraint parameter; fj is the jth entry of vector f, j = 1, 2, 3, …, N; and 𝒢 is a 

matrix of size N × N that maps latent image f to image u, which in this work, is calculated as 

a 3D isotropic Gaussian function centered at a given voxel in the image array [28]. 

Therefore, the task of image reconstruction is to obtain a solution u to the optimization 

program.

4) Optimization-program parameters—The complete specification of the program also 

requires additional parameters, referred to as the program parameters in this work, which, as 

shown in Eq. (4), include voxel size, matrices ℛ, ℋ, and 𝒢, scatter and random estimation c

′, and constraint parameter t1. In the work, we reconstruct images with a voxel size of 2 × 2 

× 2 mm3 used in clinical reconstructions; matrices ℛ and ℋ are discussed above. In 

computing 𝒢, a standard deviation of 2.0∼3.0 mm was used. The scatter and random events 

in c′ were estimated by use of the single-scatter simulation method [30] and the delayed 

coincidence method [31], respectively. Finally, image-TV-constraint parameter t1 plays an 

important role in specifying the optimization program, which is determined by use of the 

same schemes as those described in Ref. [28].

B. Reconstruction algorithm

We derive an instance of the Chambolle and Pock (CP) algorithm specifically for solving the 

convex, non-smooth optimization program in Eq.(4) because the CP algorithm has been 

demonstrated to be an effective tool for solving a variety of convex, non-smooth 

optimization programs in CT imaging [25], [32], [33] and non-TOF-PET [28] imaging 

recently.

1) The CP-algorithm instance—Following the strategy described in Refs. [25], [28], we 

derive in the Appendix the CP-algorithm instance for solving Eq. (4) with the pseudo codes 

in Algorithm 1: un and fn of size N denote the image and latent-image vectors at the nth 

iteration; uconv the convergent reconstruction when the convergence conditions are satisfied; 

ℛ and ℋ system matrices defined in Sec. III-A2; parameter νℋ =
ℋ𝒢 SV

∇ SV
, where ‖·‖SV 

denotes the largest singular value of a matrix [25]; λE and λR are a vectors of size ME and 

MR, respectively, with all entries set to λ; matrix ∇ denotes a spatial gradient matrix of size 

3N × N, with its transpose ∇⊤ = ∇x
⊤, ∇y

⊤, ∇z
⊤ , where matrices ∇x, ∇y, and ∇z of size N × N 

represent the finite difference matrices along x-, y-, and z-axis, respectively; matrix ℋ∇ has 

a transpose ℋ∇
⊤ = 𝒢⊤ℋ⊤, ν∇⊤ ; pos(f) enforces fj = 0 if fj < 0, where fj denotes the jth entry 

of vector f of size N. In line 7, vector 1I is of size N with entries set to 1; vector ϱ of size 3N 
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is defined as ϱ = qn + σν∇fn, where ∇ yields vectors ∇xfn, ∇yfn, and ∇zfn of size N, which 

form vector ∇fn of size 3N [25], [28]; and vector s of size N is given by

s = ProjOntoℓ1Ballνt1
( |ϱ |MAG /σ), (5)

where |ϱ|MAG depicts a vector of size N with entry j given by 

( ϱ MAG )
j

= (ϱ) j
2 + (ϱ) j + N

2 + (ϱ) j + 2N
2 , and (ϱ)j indicates the jth entry of vector ϱ; operator 

ProjOntoℓ1Ballνt1
 projects vector |ϱ|MAG/σ onto the ℓ1-ball of scale νt1 [27]. Note that when 

(|ϱ|MAG)j = 0 in Line 7 the corresponding elements of qn+1 are set to 0. Algorithm 

parameters λ and ν have no effect on the designed solution specified by the optimization 

problem, but can impact the algorithm’s convergence behavior. ν is determined with 

matrices ℋ, 𝒢, and ∇, and λ is selected between 10−4 to 10−3 [27], [28], [32], [33].

Algorithm 1

The CP-algorithm pseudo codes solving Eq. (4)

 INPUT: c′; ℛ, ℋ; and λ

1: ν ← νℋ, L ← ‖ℋ∇‖SV, τ ← 1/L, σ ← 1/L

2: θ ← 1, n ← 0

3: INITIALIZE: f0, u0, p0, and q0 to zero

4: f0 f0
5: repeat

6: pn + 1
1
2 pn + σℋ𝒢fn + σc′− (pn + σℋ𝒢fn + σc′)2 + 4σλE

7: qn+1 ← ϱ(1I − σs/|ϱ|MAG)

8: fn + 1 pos fn − τ 𝒢⊤ℛ⊤λR+𝒢⊤ℛ⊤pn + 1 + ν∇⊤qn + 1

9: un + 1 𝒢fn + 1

10: fn + 1 fn + 1 + θ(fn + 1 − fn)

11: n ← n + 1

12: until the practical convergence conditions are satisfied

13: OUTPUT: image uconv ← un

2) Convergence conditions—For specifying the convergence conditions of the 

algorithm developed, we consider three metrics: DKL(un) = DKL(gm, gn)/DKL(gm, g1), 

TV(un) = fn TV
− t1 /t1, and cPD(un) = cPD(un)/cPD(u1) , where un and fn denote 

reconstructions at iteration n, gn = ℋun + c the model data estimated at the nth iteration, and 

cPD is the conditional primal-dual gap defined in Ref. [25]. Therefore, the mathematical 

Zhang et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



convergence conditions for the algorithm are given by 
∂DKL(un)

∂n 0, TV(un) 0, and 

cPD(un) 0, as iteration number n → ∞. Clearly, the mathematical convergence conditions 

are unlikely to be achievable in practical calculations because of limited computer precision. 

Instead, using the mathematical convergence conditions, we design practical convergence 

conditions by computing 
∂DKL(un)

∂n , TV(un), and cPD(un), as functions of iteration number n, 

and then stop at iterations when the computation precision of the computer used is reached. 

We refer to the conditions as practical convergence conditions and to the corresponding 

convergent reconstructions simply as the reconstructions unless stated otherwise in the work. 

For the computer with single precision used in the study, it takes about 2000~5000 iterations 

to achieve the convergent reconstructions.

3) Reference images—In the work, we use the clinical reconstructions as reference 

images to benchmark and guide the optimization-based reconstructions involving real data 

from physical phantoms and a human subject.

IV. STUDY RESULTS

A. Image reconstruction of the Jaszczak phantom

1) Study materials—The Jaszczak phantom containing 6 sections of cold rods of 

diameters 4.8, 6.4, 7.9, 9.5, 11.1, and 12.7 mm is used for characterizing reconstruction 

spatial resolution. A set of full-count, list-mode TOF-PET data containing ∼250 million 

events were acquired from the phantom; low-count data sets with 63 and 25 million events 

(i.e., 1/4 and 1/10 of the full counts) were extracted by randomly sampling the full-count 

data. With each of the full- and low-count data sets, the image of the Jaszczak phantom is 

reconstructed on a 3D array of 128×128×82 identical cubic voxels of size 2 × 2 × 2 mm3; 

the standard deviation of matrix 𝒢 is 1.0 times of the voxel size; and constraint parameter t1 

is determined by use of the scheme described in Ref. [28]. We display reconstructions within 

a coronal slice at x = 4 mm (plane of x = 0 mm includes the z axis) in Fig. 1, and within 

transverse slices at z = 22 mm and 74 mm from the axial center in Figs. 2 and 3, 

respectively, along with the corresponding reference images.

2) Reconstructions from full-count data—While the middle portions in the images 

appear visually comparable (see column 1 in Figs. 1 and 2), it can be observed that the 

image-quality deterioration in the regions toward the top and bottom of the reference image 

appears to be reduced in the images reconstructed (see images in column 1 of Figs. 1 and 3). 

The images reconstructed have a reduced level of background noise compared to that of the 

reference image in which the cold rods especially in the section containing the rods of 

second to smallest diameter (see column 1 of Fig. 3) are visually less discernible than the 

counterparts in the former.

3) Reconstructions from low-count data—In columns 2 and 3 in Figs. 1–3, images 

reconstructed from the two low-count data sets, along with the corresponding reference 

images, are shown. As expected, image quality decreases as the photon counts are lowered. 
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The images reconstructed show suppressed background noise relative to their reference 

counterparts. In particular, significant deterioration observed in the top and bottom regions 

of the reference image is compensated considerably for in the reconstructions obtained with 

the algorithm (see images in columns 2 and 3 in Figs. 1 and 3), suggesting that the algorithm 

proposed can yield an improved effective AVC over that of the reference images from low-

count data.

4) Axial volume coverage—We define AVC metric Sℓ as

Sℓ =

∑
j ∈ Ωℓ

u jℓ
− uℓ

2

Tℓ − 1 (6)

for characterizing the reconstruction “variance” at transverse slice ℓ, where Tℓ and Ωℓ denote 

the total number of voxels and the set of the voxel indices contained in ROIs selected within 

transverse slice ℓ, u jℓ
 is entry jℓ of image vector u for voxels within Ωℓ, and uℓ the mean-voxel 

value in the selected ROIs within slice ℓ. We select ROIs of rectangular shape within 

transverse slices ℓ in the background region. Therefore, a low, flat AVC is desired, and the 

height and flatness extent of AVC metric Sℓ as a function of ℓ can be used as measures of the 

AVC goodness. For the images reconstructed, we compute and plot their Sℓ as functions of ℓ 
in Fig. 4, along with their counterparts from the reference images. It can be observed that the 

Sℓ curves of images reconstructed are flatter and lower than those of the reference images, 

especially toward both ends of the axial field of view (FOV), indicating reconstructions with 

improved AVC over the reference images.

B. Image reconstruction of the IEC phantom

1) Study materials—The IEC phantom embedded with 6 fillable spheres of diameters 10, 

13, 17, 22, 28, and 37 mm for evaluation of reconstruction contrast (and spatial) resolution is 

used for collecting a set of full-count, list-mode TOF-PET data of ∼100 million counts. The 

two largest spheres have zero activity, while the other four are filled with positron-emitter 

activity at a concentration level 4 times of the background-activity level. We then extracted 

low-count data sets of 25 and 10 million counts (i.e., one quarter and one tenth of the full 

counts) by randomly sampling the full-count data set. Images of the phantom are 

reconstructed on a 3D array of N = 288 × 288 × 82 identical cubic voxels of size 2 × 2 × 2 

mm3; the standard deviation of matrix 𝒢 is 1.0 times of the voxel size; and constraint 

parameter t1 is determined by use of the scheme described in Ref. [28].

2) Reconstructions from full-count data—In column 1 of Figs. 5–7, we display 

images reconstructed from the full-count data set, along with the reference images. It can be 

observed that the reconstructions are with visually enhanced contrast (and spatial) resolution 

and considerably reduced background noise over the reference images. Enhanced 

background uniformity is somewhat expected of a regularized reconstruction with most 

forms of regularization, but the simultaneous enhancement in contrast and spatial resolution 

Zhang et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is not. Again, the algorithm proposed appears to yield images with visually comparable 

quality throughout the longitudinal FOV, whereas the reference images show considerable 

quality deterioration in its top and bottom region (see column 1 in Fig. 5 and 7). The 

observation is consistent with that of the Jaszczak-phantom results, suggesting that the 

algorithm proposed yields an improved, effective AVC over that of the reference image from 

full-count data.

3) Reconstructions from low-count data—We also display in columns 2 and 3 in 

Figs. 5–7 images within a coronal and two transverse slices reconstructed by use of the 

algorithm, along with the corresponding reference images, from the two low-count data sets 

of the IEC phantom. Similar to the Jaszczak-phantom study, while the overall image quality 

diminishes as the photon counts are lowered, the contrast levels of hot and cold spheres 

appear to be retained, with the background noise in the reconstructions effectively 

suppressed relative to those of the reference images. Also, no significant quality 

deterioration similar to those observed in the top and bottom regions of the reference images 

is observed in the reconstructions (see columns 2 and 3 in Figs. 5 and 7), indicating that the 

algorithm proposed can improve the effective AVC over that of the reference image from 

low-count data.

4) Analysis of reconstruction contrast—We calculate NEMA-contrast metrics QH,r or 

QC,r for sphere r of the 4 hot spheres or of the 2 cold spheres. Also, 6 regions-of-interest 

(ROIs) are selected for computation of the background-noise metric Np within ROI p. We 

display in Fig. 8 the NEMA metrics computed for full- and low-count data. The quantitative 

results in rows 1–3 of Fig. 8 show that the algorithm proposed yield reconstructions with 

consistent contrast levels of hot and cold spheres, and level of background noise, for full- 

and low-count data sets. For the low-count data, while an increased level of background 

noise is observed in the reconstructions and in the reference images, the level of background 

noise in the former is lower than that in the latter. The contrast levels of the hot spheres in 

the reference images from the low-count data (see rows 2 & 3 and column 1 of Fig. 8) 

appear “higher” than that in the reference image from the full-count data (see row 1 and 

column 1 of Fig. 8). The false improvement results from the higher noise in the reference 

reconstruction from low-count data.

5) Axial volume coverage—Using Eq. (6), we calculate AVC metric Sℓ from the 

reconstructed and reference images, and plot them in Fig. 9. It can be observed in Fig. 9 that 

AVC metrics Sℓ of the reconstruction images are generally flatter and lower than those of the 

reference images, especially toward both ends of the axial FOV, indicating that the algorithm 

proposed can yield reconstructions with improved AVC over the reference images.

C. Image reconstruction of the human subject

1) Study materials—In the human-subject study, data were acquired sequentially at 5 

consecutive, but partially overlapping, patient-bed positions for covering the head, neck, and 

torso of the subject. For each bed position, we reconstruct an image on a 3D array of N = 

288 × 288 × 82 identical cubic voxels of size 2 mm, with its short dimensionplaced in 

parallel to the central axis, and its center coinciding with the center point of axial FOV, of 
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the scanner. There is a separation of 100 mm between the centers of two consecutive bed 

positions along the central axis of the scanner. Considering the physical, longitudinal length 

(∼ 164 mm) of the scanner, the 100-mm separation thus results in ∼ 39% overlap of each 

pair of consecutive bed positions. The purpose of the bed-position overlap is designed to 

compensate for the deterioration of image quality in regions toward both ends of a bed 

position when the images from all of the overlapping bed positions are assembled to form an 

upper-body image of the subjects.

The 5 data sets, referred to as the full-count data sets, collected at the 5 bed positions contain 

approximately 80, 60, 52, 54, and 56 million total counts, with scatter and random events 

corrected for. Furthermore, from each of the full-count data sets, we randomly extract two 

data sets containing one-quarter and one-tenth of the total counts to mimic low-count data 

sets. From the full- or low-count data sets collected at a bed position, we reconstruct images 

with the standard deviation in matrix 𝒢 chosen as 1.0, 1.2, and 1.5 times of the voxel size for 

full-count data and for the low-count data sets containing one-quarter and one-tenth of the 

full-count data.

2) Image reconstruction of the head/neck region—We first reconstructed from full-

count data collected at bed-position 1 covering the head and upper portion of the neck of the 

human subject, and show in column 1 of Figs. 10 and 11 images within sagittal and coronal 

slices, and in column 1 of Fig. 12 images within the transverse slice indicated in Fig. 10, 

along with the corresponding reference images. It can be observed that reconstructions 

visually appear to be of slightly improved spatial and contrast resolution over, yet with a 

background-noise level comparable to, that of the reference images. We also carried out 

reconstructions from the low-count data sets and show in columns 2 and 3 of Figs. 10–12 

images within the same sagittal, coronal, and transverse slices as those in the full-count 

reconstructions. While low-count-data reconstructions are, as expected, with reduced image 

quality as compared to their corresponding full-count-data reconstructions, they appear to 

have an improved level of spatial and contrast resolution yet with slightly reduced 

background noise over their reference counterparts. Moreover, the reconstruction from one-

quarter of the full-count data appears to have spatial/contrast resolution better than, and a 

noise level comparable to, the full-count reference images. Overall, the AVCs in 

reconstructed images for all of the data sets remain unchanged, while an increased noise and 

some false hot spots can be observed in the regions toward to the bottom portions of the 

reference images in Figs. 10 and 11, suggesting that the algorithm proposed yields an 

improved AVC for full- and low-count data sets.

3) Image reconstruction of the torso region—We also conducted reconstructions 

from full- and low-count data collected at bed-position 4 covering the torso region 

containing the lung of the human subject, and show in Figs. 13–15 images within sagittal, 

coronal, and transverse slices, along with their respective reference images. Again, in terms 

of spatial and contrast resolution and background noise, observations similar to those for 

bed-position 1 covering the head and neck can be made for the reconstructions covering the 

torso region. When the data-count level deceases substantially, the spatial and contrast 

resolution in the reconstructions diminishes, as expected, but at a pace slower than that in the 
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reference images, as the low-count-data reference images display considerably heightened 

noise levels. In particular, significant amount of false hot spots can be descried especially in 

the top and bottom regions in the reference images in Figs. 13 and 14 for full- and low-count 

data. It is the need to compensate for the considerable deterioration of image quality 

observed in the regions toward both ends of the axial FOV in the reference images that 

motivates the current clinical scanning protocol of data collection at multiple, overlapping 

bed positions.

4) Image reconstructions of the upper-body—We finally reconstructed images from 

data of the full- or a low-count level collected at the five overlapping bed positions and form 

an upper-body reconstruction of the subject by concatenating the five reconstructions 

according to the five bed positions. As mentioned above, the axial overlap between two 

adjacent bed positions is about 64 mm amounting to 39% of the axial FOV of one single bed 

position. In Figs. 16 and 17, we display the images within coronal and sagittal slices of the 

upper-body reconstruction for the human subject for full- and low-count data sets. The 39% 

bed-position-overlap effectively eliminates much of the false hot spots observed in reference 

images of the head/neck and torso obtained from single bed-position data, which, however, 

is done at the cost of a significantly reduced efficiency in terms of total AVC and/or imaging 

time. On the other hand, observations made above for reconstructions obtained in a single 

bed-position scan remain unchanged. While their quality diminishes as the level of data 

counts decreases, the reconstructions appear to maintain an improvement over their 

reference images in terms of spatial and contrast resolution as well as background noise. In 

particular, as shown in Figs. 16 and 17, false hot spots can be observed in the region toward 

the bottom of the axial FOV in the reference images, including those obtained from the full-

count data, due to the fact that there is no overlap scanning for the region. Conversely, it can 

be seen that the reconstructions for full- and low-count data appear to be free of such false 

hot spots observed in the reference images.

V. DISCUSSIONS

We have investigated an optimization-based image reconstruction from list-mode data 

collected with SiPM-based digital TOF PET, in which the image is designed as a solution to 

a convex, but non-smooth, optimization program containing a KL-data divergence and 

image-TV constraint, and a CP algorithm is proposed to reconstruct the image through 

solving the optimization program. When applied to full-count data, the algorithm appears to 

yield reconstructions with visualization, spatial resolution, and NEMA contrast metrics 

comparable to, and an AVC larger than, that of the reference images. Furthermore, we 

explore and demonstrate the algorithm’s potential for image reconstruction from low-count 

data, mimicking low-dose and/or fast imaging conditions of practical interest. Results of 

visual inspection and quantitative-metric analysis reveal that the algorithm proposed can 

reconstruct images with enhanced spatial and contrast resolution, suppressed background 

noise, and increased AVC over the reference images from list-mode TOF-PET data of low-

count levels.

As the focus of the work is to achieve the convergent reconstruction (i.e., the designed 

solution to the optimization program,) the algorithm takes a considerable number (~2000) of 
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iterations until achieving the convergent reconstruction, thus minimizing the impact of 

iterations on the reconstruction. However, it is also of interest to inspect reconstructions at 

earlier iterations for gaining insights that may be useful for the design of practical 

reconstruction procedures involving only a small number of iterations for yielding images 

comparable to the reference or the convergent reconstruction. In Fig. 18, we display 

reconstructions of intermediate iterations from data of the human subject collected at bed-

position 4. It can be observed that, despite some visual texture difference, reconstructions at 

earlier iterations appear to reveal leading features of interest such as hot spots and spine 

disks observed in the convergent reconstruction. Similar observation can be made for 

reconstructions of the physical phantoms and human subject at other bed positions.

We remind that, while the study is to demonstrate that the algorithm can be a useful tool for 

exploring, and for yielding insights into, the design of practical optimization-based 

reconstruction in TOF-PET imaging, it is not intended to establish and assess the truly 

application-specific utility of the reconstruction design and algorithm proposed, especially 

as a practical image-reconstruction tool for use in routine or clinical TOF-PET applications, 

because such an assessment must be clinical/preclinical task-specific and must consider 

adequately imaging-protocol-specific conditions, which are neither defined nor considered 

in the work.

While the KL-data divergence was considered in the work, it is of theoretical and practical 

significance to investigate optimization-based reconstruction employing other data 

divergences. Optimization programs with non-KL-data divergences and their associated CP 

algorithms can readily be developed mathematically. However, numerous data divergences 

with forms (e.g., ℓ2 or ℓ1-form [28], [32]) of interest can be written only in a form in which 

the number of computation operations involved is in the order of ∼ 1015, i.e., the product of 

the total numbers of TOF bins and the number of image voxels. For an advanced, clinical 

TOF-PET scanner, this can be a huge number and can thus impose a practically prohibitively 

high demand (at least currently) on computational memory and time. There is also increased 

interest in exploring TOF-PET scanning configurations with sparsely populated detector 

modules for reducing hardware cost and complexity [28]. The optimization program and 

algorithm developed in the work can readily be extended to exploring image reconstruction 

from list-mode data collected with TOF-PET scanning configurations populated only 

sparsely by detector modules.

VI. CONCLUSION

We have developed an optimization-based approach for image reconstruction from list-mode 

data collected in advanced TOF PET and exploited the approach to investigating image 

reconstructions from TOF-PET data of different count levels collected from both physical 

phantom and human subject studies. The results suggest that an appropriately designed 

optimization-based reconstruction approach can yield TOF-PET images with enhanced 

spatial and contrast resolution, suppressed background noise, and increased AVC, over those 

obtained with a standard clinical reconstruction algorithm. The optimization-based 

reconstruction approach can be exploited for yielding insights into potential quality-upper 
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bound of reconstructed images in, and design of scanning protocols of, TOF-PET imaging of 

practical significance.
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APPENDIX: DERIVATION OF THE CP ALGORITHM

To derive the instance of the CP algorithm for Eq. (4), we reformulate it as [25], [28]

u ∗ = arg min
u

λ(∑
k

[ℛu]k − ∑
i

ln[ℋu + c′]kiτi
) + δDiamond(νt1) ν∇f MAG + δP(f) , (7)

where λ and ν are positive parameters, ∇ represents a gradient matrix of size 3N × N with 

its transpose given by ∇⊤ = (∇x
⊤, ∇y

⊤, ∇z
⊤); superscript ‘⊤’ indicates a transpose operation; 

∇x
⊤, ∇y

⊤, and ∇z
⊤ are matrices of size N × N representing two-point differences along x-, y-, 

and z-axis, respectively, yielding vectors ∇x
⊤, ∇y

⊤, and ∇z
⊤ of size N, which in turn form 

vector ∇f of size 3N in a concatenated form in the order of x, y, and z; |∇f|MAG denotes a 

vector of size N in which entry j is given by ( | ∇f |MAG )
j

= (∇f) j
2 + (∇f) j + N

2 + (∇f) j + 2N
2 ; 

and indicator functions δP (x) and δDiamond(νt1)(x) are defined as:

δP(x) ≡ 0 x ≥ 0
∞ Otherwise

δDiamond(νt1)(x) ≡
0 x 1 ≤ νt1

∞ x 1 > νt1

.
(8)

We consider two vectors a and b of sizes kN and N, with entries aj and bj, where k ≥ 1 is a 

positive integer, and define vectors ab and a/b of sizes kN as the multiplication and division 

of a and b, with entry j given by (ab) j = a jb jm
 and (a/b) j = a jb jm

, respectively, where j = 1, 

2, …, kN, and jm = mod(j, N) indicates the remainder of j dividing by N, and b jm
≠ 0. When 

k = 1, a⊤b denotes their inner product of a and b.

The generic CP algorithm solves simultaneously a primal minimization and dual 

maximization problems below:
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x∗ = arg min
x

F(Kx) + G(x) , (9)

y∗ = arg max
y

− F∗(y) − G∗( − K⊤y) , (10)

where primal and dual variables x and y are vectors in spaces X and Y, K a linear transform 

from X to Y, F and G convex functions mapping the X and Y spaces to non-negative real 

numbers, and the convex conjugate functions

F∗(y) = max
y′

y⊤y′ − F(y′)

G∗(y) = max
y′

y⊤y′ − G(y′) .
(11)

The pseudo-codes of the generic CP algorithm that solves the primal-dual problem in Eqs. 

(9) and (10) are given in Algorithm 2, in which the proximal mappings are given by

proxσ[F∗](y) = arg min
y′

F∗(y′) + 1
2(y − y′)⊤ y − y′

σ (12)

proxτ[G](x) = arg min
x′

G(x′) + 1
2(x − x′)⊤ x − x′

τ . (13)

Algorithm 2

Pseudo codes of the generic CP algorithm

1: L ← ||K||SV, τ ← 1/L, σ ← 1/L

2: θ ← 1; n ← 0

3: initialize x0 and y0 to zero

4: x0 x0
5: repeat

6: yn + 1 proxσ[F∗](yn + σKxn)

7: xn+1 ← proxτ[G](xn − τK⊤yn+1)

8: xn + 1 xn + 1 + θ(xn + 1 − xn)
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9: n ← n + 1

10: : until n ≥ 𝒩

11: OUTPUT: image x𝒩

We show below that Eq. (7) can be interpreted as a primal problem. Letting

x = f, r = ℛ𝒢f, v = ℋ𝒢f,
z = ν∇f, K⊤ = (𝒢⊤ℛ⊤, 𝒢⊤ℋ⊤, ν∇⊤),

(14)

we can rewrite Eq. (7) as

u∗ = 𝒢arg min
f

F(r, v, z) + G(f) , (15)

where F(r, v, z) = F1(r) + F2(v) + F3(z),

F1(r) = λ∑
k

[r]k, (16)

F2(v) = − λ∑
i

log[v + c′]kiτi
, (17)

F3(z) = δDiamond(νt1) z MAG , (18)

G(x) = δP(x), (19)

||z||MAG a vector of size N with entry j given by z MAG j
= |(z) j|

2 + |(z) j + N|2 + |(z) j + 2N|2, 

and (z)j entry j of vector z. Thus, the optimization program in Eq. (7) is cast into a primal 

minimization problem in Eq. (15).

The convex conjugates of F and G are obtained as
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F∗(w, p, q) = F1
∗(w) + F2

∗(p) + F3
∗(q)

G∗(y) = max
x

y⊤x − G(x) = δP( − y),

(20)

where vectors w, p, and q are of sizes MR, ME, and 3N,

F1
∗(w) = max

r
w⊤r − F1(r) = λδ(w − λR), (21)

F2
∗(p) = max

v
p⊤v − F2(v) = − c′⊤p + ∑

i
[ − λE + λlog( −

λE
p )]

kiτi
s . t . (p)kiτi

< 0, (22)

F3
∗(q) = max

z
q⊤z − F3(z) = νt1 q MAG ∞, (23)

vectors λR of size MR and λE of size ME with constant entries λ, (p)kiτi
 the entry of vector p 

in TOF bin τi along LOR ki, || · ||∞ norm the largest entry of a vector, ||q||MAG a vector of 

size N with entry j given by q MAG j
= |(q) j|

2 + |(q) j + N|2 + |(q) j + 2N|2, and (q)j entry j of 

vector q Using Eqs. (20)–(23) in Eq. (10), we obtain the dual maximization problem as

(w∗, p∗, q∗) = arg max
w, p, q

− λδ(w − λR) + c′⊤p − ∑
i

[ − λE + λlog( −
λE
p )]

kiτi

− νt1 ( q MAG) ∞ − δP( − 𝒢⊤ℛ⊤w − 𝒢⊤ℋ⊤p − ν∇⊤q) .

(24)

Also, using Eqs. (20)–(23) in Eqs. (12) and (13), we obtain the proximal mappings, which 

are the key steps of the CP algorithm of our interest, as

proxσ[F1
∗](w) = λR, (25)

proxσ[F2
∗](p) = 1

2 p + σc′ − (p + σc′)2 + 4σλE , (26)
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proxσ[F3
∗](q) = q − σqProjectOntoℓ1Ballνt1

( q MAG/σ)/ q MAG, (27)

proxτ[G](f) = pos(f), (28)

where ProjectOntoℓ1Ballνt1
(x′) yields a vector of size N by projecting vector x′ of size N 

onto the ℓ1-ball of scale νt1, and pos(f) = 0 and fi for fi ≤ 0 and fi > 0, respectively, enforcing 

the non-negativity constraint.

Using proxσ[F1
∗](w), proxσ[F2

∗](p), and proxσ[F3
∗](q) in Eqs. (25), (26) and (27) to replace 

proxσ[F∗](y) in Line 6, and proxτ[G](f) in Eq. (28) to substitute proxτ[G](x) in Line 7, in 

Algorithm 2, we obtain the pseudo codes in Lines 6 and 7 of Algorithm 1 for the CP-

algorithm instance for solving Eq. (4), or equivalently, the program in Eq. (15).
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Figure 1. 
Reconstruction (row 1) and reference (row 2) images within a coronal plane of the Jaszczak 

phantom at x = 4 mm obtained from data of 251 (column 1), 63 (column 2), and 25 (column 

3) million counts, respectively. Arrows (a) and (b) highlight the axial positions of the two 

transverse slices shown in Figs. 2 and 3 below. Display window: [200, 3000] a.u.
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Figure 2. 
Reconstruction (row 1) and reference (row 2) images within a transverse slice, indicated by 

arrow (a) in Fig. 1, of the Jaszczak phantom obtained from data of 251 (column 1), 63 

(column 2), and 25 (column 3) million counts, respectively. Display window: [200, 3000] 

a.u.
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Figure 3. 
Reconstruction (row 1) and reference (row 2) images within a transverse slice, indicated by 

arrow (b) in Fig. 1, of the Jaszczak phantom obtained from data of 251 (column 1), 63 

(column 2), and 25 (column 3) million counts, respectively. Display window: [200, 3000] 

a.u.
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Figure 4. 
AVC metric S of the reconstruction (solid) and reference (dashed) images of the Jaszczak 

phantom obtained from data of 251 (column 1), 63 (column 2), and 25 (column 3) million 

counts, respectively.
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Figure 5. 
Reconstruction (row 1) and reference (row 2) images within a coronal slice of the IEC 

phantom obtained from data of 100 (column 1), 25 (column 2), and 10 (column 3) million 

counts, respectively. Arrows (a) and (b) highlight the axial positions of the two transverse 

slices shown in Figs. 6 and 7 below. Display window: [0, 1800] a.u.
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Figure 6. 
Reconstruction (row 1) and reference (row 2) images within a transverse slice, indicated by 

arrow (a) in Fig. 5, of the IEC phantom obtained from data of 100 (column 1), 25 (column 

2), and 10 (column 3) million counts, respectively. Display window: [0, 1800] a.u.
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Figure 7. 
Reconstruction (row 1) and reference (row 2) images within a transverse slice, indicated by 

arrow (b) in Fig. 5, of the IEC phantom obtained from data of 100 (column 1), 25 (column 

2), and 10 (column 3) million counts, respectively. Display window: [0, 1800] a.u.
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Figure 8. 
NEMA-contrast metrics QH,r for hot spheres 1–4 (column 1) and QC,r for cold spheres 5–6 

(column 2) and NEMA-background-variability metric Np (column 3) computed from the 

reconstruction (+) and reference (×) images of the IEC phantom for data of 100 (row 1), 25 

(row 2), and 10 (row 3) million counts, respectively.
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Figure 9. 
AVC metric Sℓ of the reconstruction (solid) and reference (dashed) images of the IEC 

phantom obtained from data of 100 (column 1), 25 (column 2), and 10 (column 3) million 

counts, respectively.
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Figure 10. 
Reconstruction (row 1) and reference(row 2) images within a sagittal slice of the head/neck 

of the human subject obtained from data of 80 (column 1), 20 (column 2), and 8 (column 3) 

million counts, respectively. The arrow highlights the axial position of the transverse slice 

within which the image is shown in Fig. 12 below. Display window: [−1625, 0] a.u.
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Figure 11. 
Reconstruction (row 1) and reference (row 2) images within a coronal slice of the head/neck 

of the human subject obtained from data of 80 (column 1), 20 (column 2), and 8 (column 3) 

million counts, respectively. Display window: [−1625, 0] a.u.
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Figure 12. 
Reconstruction (row 1) and reference (row 2) images within a transverse slice, indicated by 

the arrow in Fig. 10 obtained from data of 80 (column 1), 20 (column 2), and 8 (column 3) 

million counts, respectively. Display window: [−1625, 0] a.u.
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Figure 13. 
Reconstruction (row 1) and reference (row 2) images within a sagittal slice of the torso of 

the human subject obtained from data of 54 (column 1), 13.5 (column 2), and 5.4 (column 3) 

million counts, respectively. The arrow highlights the axial position of the transverse slice 

within which the image is shown in Fig. 15 below. Display window: [−300, 0] a.u.
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Figure 14. 
Reconstruction (row 1) and reference (row 2) images within a coronal slice of the torso of 

the human subject obtained from data of 54 (column 1), 13.5 (column 2), and 5.4 (column 3) 

million counts, respectively. Display window: [−300, 0] a.u.

Zhang et al. Page 32

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 15. 
Reconstruction (row 1) and reference (row 2) images within a transverse slice, indicated by 

the arrow in Fig. 13 obtained from data of 54 (column 1), 13.5 (column 2), and 5.4 (column 

3) million counts, respectively. Display window: [−300, 0] a.u.
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Figure 16. 
Reconstruction (row 1) and reference (row 2) images within a sagittal slice of the upper 

body of the human subject obtained from data of 302 (column 1), 75.5 (column 2), and 30.2 

(column 3) million counts, respectively, collected at the 5 overlapping bed positions. Display 

window: [−1200, 0] a.u.
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Figure 17. 
Reconstruction (row 1) and reference (row 2) images within a coronal slice of the upper 

body of the human subject obtained from the full- and low-count data sets of 302 (column 

1), 75.5 (column 2), and 30.2 (column 3) million counts, respectively, collected at the 5 

overlapping bed positions. Display window: [−1200, 0] a.u.
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Figure 18. 
Reconstructions at iterations 30 (a), 50 (b), and 150 (c), along with the convergent 

reconstruction (d) within a coronal slice of the human subject. Display window: [−300, 0] 

a.u.
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