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Abstract

This mini review gives an overview over different design approaches and methodologies applied in 

rational and semirational enzyme engineering. The underlying principles for engineering novel 

activities, enantioselectivity, substrate specificity, stability, and pH optimum are summarized.
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The ability to produce desired molecules in a direct, inexpensive and efficient fashion is the 

ultimate goal of applied chemistry. Despite the abundance of easy and inexpensive sources 

of energy (e.g., heat, electricity, and light) the complex task of taking available chemical 

building blocks to drive thermodynamically allowed processes in one particular direction is 

far from solved. Nature has found many ways to accomplish this task through enzymatic 

catalysis, promoted by proteins and nucleic acids. Thus, it is hardly surprising that ever since 

the discovery of the first enzyme chemists attempt to replicate their amazing efficiency by 

creating proteins capable of producing chemicals of industrial relevance. Many different 

approaches have been explored with various degrees of success (Table 1). Existing catalysts 

were repurposed to change the substrate scope and reactions specificity. Proteins that have 

no enzymatic function adopted new catalytic functions. Catalysts have been prepared from 

protein scaffolds not present in nature and proteins that have no observable enzymatic 

activity for the reaction of interest—this I refer to as de novo design. Finally, catalysts for 

reactions that were not observed in nature until now could be created in protein scaffolds by 

mutagenesis: novel activities were designed by a careful placement of chemical 

functionalities that are provided by nature’s menu of amino acids to stabilize transition 

states, enable proton transfers, facilitate the interaction of the substrate with the active site or 

with cofactors present in the protein, or modulate the chemical reactivity of natural 

cofactors. The spectrum of catalysis was further extended by introducing artificial cofactors 

or unnatural amino acids [28]. Table 1 gives examples for this large spectrum of design 

approaches.

Design tools have been very diverse: ranging from purely combinatorial [29] to highly 

rational [30]. Combinatorial methods (relying on random mutagenesis) have been successful 

in repurposing of existing proteins to adopt new functions and creation of new catalytic 

function from random sequences [29, 31, 32]. However, the enormity of sequence space to 

be explored in a design problem means that in practical terms some degree of rational input 

has to be made to limit the search space to a manageable size. Thus, a clear line between 
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rational and combinatorial approaches is hard, if not impossible, to draw. One crucial 

requirement in rational design is the necessity to understand the molecular basis of the 

protein’s property that is the subject of the design study (structure–function relationship). 

Table 1 lists specific rational design techniques and how they are used to modify a well-

defined property of an enzyme.

Many application-oriented enzyme-engineering projects focus on creating or adapting the 

substrate scope of an enzyme to gain access to (a class of) compounds of interest. This often 

also involves tuning enantioselectivity or regioselectivity in the desired direction. Increasing 

the stability of the biocatalyst under process conditions is an equally important goal. For all 

these questions, a rational understanding has become available during the past few decades.

1 Semirational Tools for Engineering Substrate Specificity and 

Enantioselectivity

Certain features of catalysts can be modified relatively easily: Substrate specificity and 

enantioselectivity are often governed by steric factors of the active site [33]. Thus, the 

easiest approach to guide a semirational design is to use structural visualization to identify 

hot spot residues that are then targeted in a site-saturation mutagenesis experiment. The 

active site must be shape-complementary to the transition state of the reaction to accelerate 

formation of the desired product [34]. A well-defined geometry allows the preferred binding 

and positioning of one enantiomeric form of the substrate, or the preferred creation of one 

configuration of the chiral product. On the contrary, binding poses that lead to undesired 

regio or stereo isomers have to be blocked. Additionally, selectivity towards different 

substrates is affected during their passage of the entrance tunnel of the enzyme: 

modifications of tunnel residues influence the access of different compounds to the active 

site and thus induce selectivity [35].

Rational redesign of the active site is often easily possible, e.g., by blocking the productive 

binding of the undesired enantiomer by introducing a bulky residue. However, as enzymes 

are often more complex than it is apparent from the structural models, many effects cannot 

be predicted (due to protein dynamics or effects on protein folding). The more detailed the 

available information and knowledge of catalysis is, the better. While detailed structural 

information on the intermediates in the catalytic cycle can be obtained, most of X-ray and 

NMR structures present in the Protein Data Bank represent the structure without direct 

information about how substrate binds or is turned over. Additional studies that require 

crystallization of the enzyme with an appropriate inhibitor may require a long time without 

any definitive guarantee of success. Fortunately, several very successful algorithms have 

been developed to identify the location and possible poses of the substrate in the enzyme 

[36]. Cavity search and docking techniques give hints how and where the substrate might be 

bound. Even low-resolution information about how the substrate associates with the protein 

is often sufficient to make educated guesses in which positions mutagenesis needs to be 

done to achieve maximum desired effect. Especially when the active site or the substrate is 

large and can adopt multiple conformations, or when binding is based mainly on 

hydrophobic interactions, reliable predictions are not yet possible. Partial or complete 
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randomization of identified hot spots is therefore an efficient approach, which often leads to 

success. Iterative site saturation mutagenesis has become a very popular engineering tool 

[37].

The CAVER software is an easy to handle tool for identification and analysis of tunnels and 

channels in protein structures [38]. CAVER is used as a plugin in Pymol, a program, which 

is employed frequently for protein visualizing [39]. It predicts the location of “hot spot” 

residues, which can be mutated to enhance enzyme activity, stability, specificity, and 

enantioselectivity. Another commonly used program YASARA [39] provides the user with a 

graphic, user-friendly interface to detect hotspots and to perform molecular mechanics based 

simulations for rational protein engineering. If no structure is available for the protein of 

interest, YASARA has a tool for the computer-aided construction of a homology model. 

Some structural information, although the accuracy of the model might be limited, can be 

obtained from related proteins with sequence identities as low as 30%. On the other hand, if 

a reliable structure is available, computational docking–which is also integrated in 

YASARA–has shown enormous predictive power in identifying residues to be modified in 

order to alter the selectivity and improve the reactivity of the existing proteins. However, 

much care has to be taken when interpreting results of docking experiments that rely on 

homology models.

It is universally accepted that enzymes are far from static and rely on concerted movement 

of amino acids to achieve function [40]. Semiempirical molecular dynamics, (MD) 

approaches have been extremely useful in deciphering the intricate details of protein-

catalyzed chemical reactions [41]. Owing to the continuous improvement of computational 

hardware MD techniques are becoming more and more available to solve protein design 

problems [42]. MD simulations have been useful in improving the enzyme activity and 

enantioselectivity. This is the most difficult and time consuming aspect of rational design 

and much needs to be learned before our methods are efficient and accurate enough to 

reliably predict mutations that are likely to improve enzymatic efficiency.

MD simulations generate an ensemble of possible conformations and conformational 

transitions, as compared to a static picture provided by X-ray crystallography. Combined 

with knowledge of the reaction mechanism (e.g., from quantum mechanical modeling), MD 

simulations determine how frequently geometries that will promote catalysis according to 

the model are observed, as compared to “unproductive conformations” [43]. MD simulations 

are also used to identify dynamic, flexible regions of a protein. Changes in these regions can 

affect protein stability and activity, because catalysis requires certain flexibility of critical 

residues or parts of the protein. Loop flexibility can also determine reaction specificity, as 

was demonstrated by reengineering a phenylalanine mutase into a phenylalanine ammonia 

lyase by introducing a single mutation in a loop near the active site [44].

2 Advanced Computational Engineering for Optimizing Enantioselectivity 

and Thermostability

Computational engineering creates large virtual libraries of variants in silico. Designs are 

then evaluated and ranked automatically, e.g., by energy scoring functions or geometric 
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restraints, and only a few hits (ten to some hundreds) are manually inspected and tested in 

the lab [30]. Different tools that often introduce several mutations at once are used for the 

creation of the libraries. Computational enzyme design allows for engineering highly 

enantioselective catalysts for a particular chemical transformation already catalyzed by the 

enzyme, complete redesign of active sites to fit substrate structures that are very different 

from the natural ones, and de novo design of enzymes, i.e., proteins catalyzing nonnatural 

reactions.

In the first step, optimal geometries of possible active site residues that stabilize the 

transition state of the reaction are predicted using QM simulations. The resulting 

arrangements of amino acid residues, called theozymes, are placed in suitable protein 

scaffolds identified by RosettaMatch. Finally, RosettaDesign optimizes the complete active 

site pocket to allow the precise positioning of the catalytic residues and the transition state. 

Designs are then evaluated and ranked in silico, and only a few (ten to some hundreds) are 

manually inspected and tested in the lab. This strategy was used for de novo engineering 

Kemp eliminases, retroaldolase, Diels-Alderases, but also to generate highly enantioselective 

epoxide hydrolases [13–17]. For the latter study, in silico variants were screened using high-

throughput multiple independent MD simulations [45], a technique that leads to a more 

complete sampling of protein conformational space in a shorter time (compared to long 

single-run MD simulations) and showed an improved correlation between predicted and 

observed enantioselectivity. This helped to reduce library size that had to be actually 

screened. Moreover, computational approaches can assist in improving enzymes using 

directed evolution: semirationally developed libraries produced up to 4–5-fold higher hit rate 

as compared to a full coverage libraries thus greatly limiting effort to identify productive 

mutations [46]. While many programs have been developed and successfully used for 

performing MD simulations, YASARA provides a user-friendly interface for a beginner.

A second very important engineering target is enzyme thermostability. It became clear early 

on that practical applicability (and evolvability!) of an enzymatic catalyst is related to its 

stability [47]. Enzymes from thermophilic organisms are commonly used in many different 

applications, but what if the catalyst to be repurposed/improved has no obvious thermophilic 

analog? Homology modeling and rational evaluation of the structure has been very 

productive in identification of mutations to improve stability. This sometimes also leads to 

improvement in the yield of recombinant expression of soluble enzymes, although the 

evidence is somewhat anecdotal.

Several approaches have been successfully used to predict and improve thermostability [42, 

48–50]. Most often protein stability is increased by rigidification of flexible sites. Analysis 

of B-factors in crystal structures (B-Fit Method) [5], high temperature unfolding MD 

simulations, and comparative MD simulations of homologous proteins from mesophilic and 

thermophilic organisms at different temperatures unravel flexible regions of the protein that 

are susceptible to unfolding to guide reengineering [42].

Alternatively, protein stability can be increased by improving hydrophobic packing of the 

protein core [51] and/or creating a favorable network of positive and negative charges at the 

protein surface [52]. Scoring of variants is then performed by evaluating differences in the 
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free energy of folding using specifically parameterized energy functions [49, 53] such as one 

included in the FoldX suite. Finally, stabilizing disulfide bridges can be engineered into the 

protein using the FRESCO algorithm in YASARA.

In summary, the path to developing the ability to create functional proteins for a particular 

purpose has been long, windy, and full of obstacles. Decades of research in biochemistry, 

enzymology, and biotechnology produced a number of exciting discoveries that advance our 

understanding of enzymatic catalysis, nonetheless we still fall short from being able to 

create a single unique tool that will allow us to create efficient protein catalysts from scratch 

[54]. Despite the disappointment with the overall progress of the field, fueled in part by the 

overzealous promises that could not be fulfilled thrown around so easily, many amazing 

stories of success that apply rational principles to (re)design of proteins have emerged 

through the years [55–59]. Advances in computation led to an explosive growth of structural 

information and the development of robust tools for building protein structures of predefined 

fold. Creating a crucial link between a (re)designed well-defined structure and catalytic 

function is the next major milestone for the field.
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Table 1

Representative examples of proteins designed using various approaches

Design principles, methodsa Parameters introduced/optimized Representative citations

Substitution of amino acids by rational design

Visual inspection, Docking, ISM Substrate specificity Stereoselectivity [1]

CAVER, ISM Activity, Stabiliy [3, 4]

B-Fit, ISM Thermostability [5]

MD-simulations Enantioselectivity [6, 7]

Prediction of pKa pH Optimum [8–11]

Computational design

FRESCO Thermostability [12]

CASCO Rosetta Design Enantioselectivity [13]

Rosetta Design/Rosetta match Introducing new chemical activities [14–17]

Minimalist design Introducing new chemical activities [18–20]

De novo design of protein folds

Semiempirical computation Introducing catalysis [21]

Introduction of noncanonical amino acids

Rational, substrate docking Introducing new chemical activities [22]

Rosetta Protein–peptide interface, metal cofactor binding [23, 24]

Redesign of the existing or introduction of new cofactors

Introducing metal cofactors into proteins [25]

Substitution of metal ions in existing cofactors Introducing new chemical activities [26]

Transition metal complexes anchored by biotin conjugation [27]

a
Note the list is by no means exhaustive

ISM iterative saturation mutagenesis, MD molecular dynamics, FRESCO framework for rapid enzyme stabilization by computational libraries, 
CASCO catalytic selectivity by computational design
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