
Longitudinal Genotype-Phenotype Association Study via 
Temporal Structure Auto-Learning Predictive Model

Xiaoqian Wang1, Jingwen Yan2,3, Xiaohui Yao2,3, Sungeun Kim2, Kwangsik Nho2, Shannon 
L. Risacher2, Andrew J. Saykin2, Li Shen2, and Heng Huang1

1Computer Science & Engineering, University of Texas at Arlington, TX, 76019, USA

2Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, 
USA

3BioHealth, Indiana University School of Informatics & Computing, Indianapolis, IN, 46202, USA

Abstract

With rapid progress in high-throughput genotyping and neuroimaging, imaging genetics has 

gained significant attention in the research of complex brain disorders, such as Alzheimer’s 

Disease (AD). The genotype-phenotype association study using imaging genetic data has the 

potential to reveal genetic basis and biological mechanism of brain structure and function. AD is a 

progressive neurodegenerative disease, thus, it is crucial to look into the relations between SNPs 

and longitudinal variations of neuroimaging phenotypes. Although some machine learning models 

were newly presented to capture the longitudinal patterns in genotype-phenotype association 

study, most of them required fixed longitudinal structures of prediction tasks and could not 

automatically learn the interrelations among longitudinal prediction tasks. To address this 

challenge, we proposed a novel temporal structure auto-learning model to automatically uncover 

longitudinal genotype-phenotype interrelations and utilized such interrelated structures to enhance 

phenotype prediction in the meantime. We conducted longitudinal phenotype prediction 

experiments on the ADNI cohort including 3,123 SNPs and 2 types of biomarkers, VBM and 

FreeSurfer. Empirical results demonstrated advantages of our proposed model over the 

counterparts. Moreover, available literature was identified for our top selected SNPs, which 

demonstrated the rationality of our prediction results. An executable program is available online at 

https://github.com/littleq1991/sparse_lowRank_regression.
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1 Introduction

As the most prevalent and severe type of neurodegenerative disorder, Alzheimer’s Disease 

(AD) strongly impacts human’s memory, thinking and behavior [1]. This disease is 

characterized by progressive impairment of memory and other cognitive abilities, triggered 

by the damage of neurons [2]. AD usually progresses along a temporal continuum, initially 

from a preclinical stage, subsequently to mild cognitive impairment (MCI) and ultimately 
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deteriorating to AD [3]. According to [4], AD is the 6th leading cause of death in the United 

States. Every 66 seconds, there is someone in the United States developing AD. Up until 

2016, an estimate of 5.4 million individuals in the United States are living with AD, while 

the number worldwide is about 44 million. To make matters worse, if no breakthrough 

discovered, the world will see a more striking increase in these numbers in near future.

With all these facts, AD has gained its growing attention in this day and age. Current 

consensus underscores the need of understanding the genetic causes of AD, with which to 

achieve the goal of stoping or slowing down disease progression [5]. Recent advances in 

neuroimaging and microbiology have provided a helping hand for exploring the associations 

among genes, brain structure and behavior [6]. Meanwhile, rapid developments in high-

throughput genotyping have enabled the measurement of hundreds of thousands of, or even 

more than one million single nucleotide polymorphisms (SNPs) simultaneously [7]. These 

progresses have facilitated the pullulation of imaging genetics, which holds great promise 

for better understanding complex neurobiological systems.

In imaging genetics, an emerging strategy to facilitate identification of susceptibility genes 

for disorders like AD is to evaluate genetic variation using outcome-relevant biomarkers as 

quantitative traits (QTs). The association studies between genetic variations and imaging 

measures usually maintain an obvious advantage over case-control studies, as QTs are 

quantitative measures with the ability of increasing statistical power four to eight fold and 

decreasing required sample size to a large extent [8]. Numerous works have been reported to 

identify genetic factors impacting imaging phenotypes of biomedical importance [9–11].

In the genotype-phenotype association study, we can denote our inputs in the matrix format 

as follows: the SNP matrix X ∈ ℝd×n (n is the number or samples, d is the number of SNPs) 

and the imaging phenotype matrices Y = [Y1, Y2, …, YT] ∈ ℝn×cT (c is the number of QTs, 

T is the number of time points, and Yt ∈ ℝn×c is the phenotype matrix at time t). The goal is 

to find the weight matrix W = [W1, W2, …, WT] ∈ ℝd×cT, which properly reflect the 

relations between SNPs and QTs and capture a subset of SNPs responsible for phenotype 

prediction at the same time. If we treat the prediction of one phenotype at one time point as a 

task, then the association study between genotypes with multiple longitudinal phenotypes 

can be seen as a multi-task learning problem.

Conventional strategies [12–14], which perform standard regression at all time points, are 

equivalent to carrying out regression at individual time point separately, thus ignore the 

longitudinal variations of brain phenotypes. Since AD is a progressive disorder and imaging 

phenotype is a quantitative reflect of its neurodegenerative status, prediction tasks at various 

time points can be reasonably assumed related. For a certain QT, its value at different time 

may be correlated, while distinct QTs at a certain time may also retain some mutual 

influence. To excavate correlations among longitudinal prediction tasks, several multi-task 

models were proposed on the basis of sparse learning [15, 16]. The main idea of these 

models is to exert trace norm on the entire parameter matrix, such that the common subspace 

globally shared by different prediction tasks can be extracted.
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However, longitudinal prediction tasks are interrelated as different groups, not as a whole. 

Existing methods cannot find the task interrelations properly. It is intractable to discover 

such task group structure. One straightforward way of capturing such interrelated groups is 

to conduct clustering analysis and extract the group structure as a preprocessing step. 

Nevertheless, such a heuristic step is independent to the entire longitudinal learning model, 

thus the detected group structures are not optimal for the longitudinal learning. To bridge 

this gap, we propose a novel temporal structure auto-learning low-rank predictive model to 

simultaneously uncover the interrelations among different prediction tasks and utilize the 

learned interrelated structures to enhance phenotype prediction.

Notations

In this paper, matrices are all written as uppercase letters while vectors as bold lower case 

letters. For a matrix M ∈ ℝd×n, its i-th row and j-th column are denoted by mi, mj 

respectively, while its ij-th element is written as mij or M(i, j). For a positive value p, the ℓ2,p-

norm of M is defined as ‖M‖2, p = (∑i = 1
d (∑ j = 1

n mij
2)

p
2 )

1
p

= (∑i = 1
d (‖mi‖2)p)

1
p .

2 Temporal Structure Auto-Learning Predictive Model

2.1 Illustration of Our Idea

Our main purpose is to construct a model to simultaneously detect the latent group structure 

of longitudinal phenotype prediction tasks and study SNP associations across all 

endophenotypes. As is shown in Fig. 1, the four phenotypes marked by the green rectangles 

have similar distributions and are very likely to be correlated. However, previous models are 

not capable of capturing such interlinked structures in different task groups. In our model, 

we expect to uncover such latent subspaces in different groups via low-rank constraints. 

Meanwhile, the SNP loci marked by the red rectangle, rs429358, appears to be predominant 

for most response variables. Correspondingly, we impose a sparsity constraint to pick it out. 

In consequence, our model should be able to capture the group structure within the 

prediction tasks and utilize this information to select prominent SNPs across the relevant 

phenotypes. In the next subsection, we will elaborate how to translate these ideas into the 

new learning model.

2.2 New Objective Function

To discover the group structure of phenotype prediction tasks, we introduce and optimize a 

group index matrix set Q. Suppose the tasks come from g groups, then we have Q = {Q1, Q2, 

…, Qg}, where Qi is a diagonal matrix and Qi ∈ {0, 1}cT×cT. For each Qi, (Qi)(k,k) = 1 

means the k-th feature belongs to the i-th group while (Qi)(k,k) = 0 means not. To avoid 

overlap of subspaces, we maintain the constraint that ∑i = 1
g Qi = I.

On the other hand, since SNPs are often correlated and have an overlap in impacting 

phenotypes, we impose low-rank constraint to uncover the common subspaces shared by 

prediction tasks. The traditional method to impose low-rank constraint is minimizing trace 

norm, which is a convex relaxation of rank minimization problem. However, trace norm is 
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not an ideal approximation of the rank minimization. Here, we use the Schatten p-norm 

regularization term instead, which approximates the rank minimization better than trace 

norm [17]. The definition of Schatten p-norm of a matrix M ∈ ℝm×n is:

‖M‖Sp
= (Tr((MTM)

p
2 ))

1
p

= ( ∑
i = 1

min{m, n}
σi

p)
1
p
, (1)

where σi is the i-th singular value of M. Specially, when p = 1, the Schatten p-norm of M is 

exactly the trace norm since ‖M‖∗ = ‖M‖S1
= Tr((MTM)

1
2) = ∑i = 1

min{m, n}σi. As we recall, the 

rank of M can be denoted as rank(M) = ∑i = 1
min{m, n}σi

0, where 00 = 0. Thus, when 0 < p < 1, 

Schatten p-norm is a better low-rank regularization than trace norm.

Moreover, since we intend to integrate the SNP selection procedure across multiple learning 

tasks, here we impose a sparsity constraint. One possible approach is ℓ2,1-norm 

regularization [18], which is popularly utilized owing to its convex property. However, the 

real data usually don’t satisfy the RIP condition, thus the solution of ℓ2,1-norm may not be 

sparse enough. See [19, 20] for details. To solve this problem, in our model, we resort to a 

stricter sparsity constraint, ℓ2,0+-norm, which is defined as follows:

‖M‖2, q = ( ∑
i = 1

d
( ∑

j = 1

n
mij

2)

q
2

)

1
q

= ( ∑
i = 1

d
(‖mi‖2)q)

1
q

,

where q is a positive value. Similarly to the previous discussion, when 0 < q < 1, ℓ2,0+-norm 

can achieve a more sparse solution than ℓ2,1 norm.

All in all, we propose a new temporal structure auto-learning model:

min
W , Qi|i = 1

g
‖XTW − Y‖F

2 + γ1 ∑
i = 1

g
(‖WQi‖Sp

p )k + γ2‖W‖2, 0 +, (2)

s . t . Qi|i = 1
g ∈ {0, 1}cT×cT , ∑

i = 1

g
Qi = I .

In Eq. (2), we adopt the k-power of Schatten p-norm to make our model more robust. The 

use of parameter k will be articulated in Section 4. Since it is difficult to solve the proposed 

new non-convex and non-smooth objective, in the next section we propose a novel 

alternating optimization method for Problem (2).
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3 Optimization Algorithm

In this section, we first introduce an optimization algorithm for general problems with 

Problem (2) being a special case, and then discuss the detailed optimization steps of Problem 

(2).

Lemma 1

Let gi(x) denote a general function over x, where x can be a scalar, vector or matrix, then we 

can claim:

When δ → 0, The optimization problem

min
x ∈ 𝒞

f (x) + ∑
i

Tr((gi
T(x)gi(x))

p
2 )

is equivalent to

min
x ∈ 𝒞

f (x) + ∑
i

Tr(gi
T(x)gi(x)Di),    where  Di = p

2 (gi
T(x)gi(x) + δI)

p − 2
2 . (3)

Proof—When δ → 0, it’s apparent that the optimization problem

min
x ∈ 𝒞

f (x) + ∑
i

Tr((gi
T(x)gi(x) + δI)

p
2 ) (4)

will reduce to

min
x ∈ 𝒞

f (x) + ∑
i

Tr((gi
T(x)gi(x))

p
2 ) . (5)

So we turn the non-smooth Problem (5) to the smooth Problem (4) where δ is fairly small.

The Lagrangian function of Problem (4) is:

ℒ(x, λ) = f (x) + ∑
i

Tr((gi
T(x)gi(x) + δI)

p
2 ) − r(x, λ), (6)

where r(x, λ) is a Lagrangian term for the domain constraint x ∈ . Take derivative w.r.t. x 
and set it to zero, we have:

Wang et al. Page 5

Res Comput Mol Biol. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f ′(x) + ∑
i

∂Tr((gi
T(x)gi(x) + δI)

p
2 )

∂x − ∂r(x, λ)
∂x = 0 . (7)

Based on the chain rule [21], Eq. (7) can be rewritten as:

f ′(x) + ∑
i

tr  2 p
2 (gi

T(x)gi(x) + δI)
p − 2

2 gi
T(x)∂gi(x)

∂x − ∂r(x, λ)
∂x = 0 . (8)

According to the Karush-Kuhn-Tucker conditions [22], if we can find a solution x that 

satisfies Eq. (8), then we usually find a local/global optimal solution to Problem (4). 

However, it is intractable to directly find the solution x that satisfies Eq. (8). Here we come 

up with a strategy as follows:

If we define Di = p
2 (gi

T(x)gi(x) + δI)
p − 2

2  as a given constant, then Eq. (8) can be reduced to

f ′(x) + ∑
i

tr (2Digi
T(x)∂gi(x))
∂x − ∂r(x, λ)

∂x = 0 . (9)

Based on the chain rule [21], the optimal solution x* of Eq. (9) is also an optimal solution to 

the following problem:

min
x ∈ 𝒞

f (x) + ∑
i

Tr(gi
T(x)gi(x)Di) . (10)

Based on this observation, we can first guess a solution x, next calculate Di based on the 

current solution x, and then update the current solution x by the optimal solution of Problem 

(10) on the basis of the calculated Di. We can iteratively perform this procedure until it 

converges.

According to Lemma 1 and the property of Qi that QiQi
T = Qi, Problem (2) is equivalent to:

min
W , Qi|i = 1

g
‖XTW − Y‖F

2 + γ1 ∑
i = 1

g
Tr(WQiW

TDi) + γ2Tr(WWTB) (11)
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s . t . Qi|i = 1
g ∈ {0, 1}cT×cT , ∑

i = 1

g
Qi = I,

where Di is defined as:

Di = kp
2 (‖WQi‖Sp

p )k − 1(WQiW
T + δ1I)

p − 2
2 , (12)

and B is defined as a diagonal matrix with the l-th diagonal element to be:

bll = q
2(wl(wl)T + δ2I)

q − 2
2 , (13)

and δ1 and δ2 are two fairly small parameters close to zero.

We can solve Problem (11) via alternating optimization.

The first step is fixing W and solving Q, then Problem (11) becomes:

min
Qi|i = 1

g
∑

i = 1

g
Tr((WTDiW)Qi) s . t . Qi|i = 1

g ∈ {0, 1}cT×cT , ∑
i = 1

g
Qi = I .

Let Ai = WTDiW, then the solution of each Qi is as follows:

Qi(k, k) =
1, i = arg min

j
A j(k, k)

0, otherwise
(14)

The second step is fixing Q and solving W. Problem (11) becomes:

min
W

‖XTW − Y‖F
2 + γ1 ∑

i = 1

g
Tr(WQiW

TDi) + γ2Tr(WWTB),

which can be further decoupled for each column of W as follows:

min
wk

‖XTwk − yk‖2
2 + γ1 ∑

i = 1

g
(Qi(k, k)wk

TDiwk) + γ2wk
TBwk .

Taking derivative w.r.t. wk in the above problem and set it to zero, we get:
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wk = (XXT + γ1( ∑
i = 1

g
Qi(k, k)Di) + γ2B)

−1
Xyk . (15)

We can iteratively update D, Q, B and W with the alternative steps mentioned above and the 

algorithm for Problem (11) is summarized in Algorithm 1.

Convergence analysis

Our algorithm uses the alternating optimization method to update variables, whose 

convergence has already been proved in [23]. As for the newly proposed reweighted 

algorithm, we will provide its convergence proof in Appendix A. In our model, variables in 

each iteration has a closed form solution and can be computed fairly fast. In most cases, our 

method converges within 10 iterations.

4 Discussion of Parameters

In our model, we introduced several parameters to make it more general and adaptive to 

various circumstances. Here we analyze the functionality of each parameter in detail.

In Problem (2), parameter p and q are norm parameters proposed for the two regularization 

terms. For p, it adjusts the stringency of the low-rank constraint. As analyzed in Section 3, 

Schatten p-norm makes a stricter low-rank constraint than trace norm when 0 < p < 1. The 

closer p is to 0, the more rigorous low-rank constraint the regularization term ‖M‖Sp
p

imposes. The rationale is similar for parameter q. The ℓ2,0+-norm is a better approximation of 

ℓ2,0-norm than ℓ2,1-norm when q lies in the range of (0, 1), thus makes our learned parameter 

matrix more sparse.

Algorithm 1

Algorithm to solve problem (11).

Input:

  SNP matrix X ∈ ℝd×n, longitudinal phenotype matrix Y = [Y1 Y2 … YT] where Yt|t = 1
T ∈ ℝn × c, parameter δ1 = 

10−12 and δ2 = 10−12, number of groups g.

Output:

  Weight matrix W = [W1 W2 … WT] where Wt|t = 1
T ∈ ℝd × c and g different group matrices Qi|i = 1

g ∈ ℝcT×cT

which groups the tasks into exactly g subspaces.

  Initialize W by the optimal solution to the ridge regression problem: min
W

‖WTX − Y‖F
2 + ‖W‖F

2

  Initialize Q matrices randomly

  while not converge do

    1. Update D according to the definition in Eq. (12).
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    2. Update Q according to the solution in Eq. (14)

    3. Update B according to the definition in Eq. (13).

    4. Update W, where the solution to the k-th column of W is displayed in Eq. (15).

  end while

In the low rank regularization term ‖M‖Sp
p , when p is small, the number of local solutions 

becomes more thus lead our model (2) to be more sensitive to outliers. Under this condition, 

we use k-power of this term as (‖M‖Sp
p )k to make our model robust. According to 

experimental experience, the value of k can be determined in the range of [2, 3].

The parameters γ1 and γ2 are proposed to balance the importance of two regularization 

terms. Larger γ1 lead to more attention on the low-rank constraint while larger γ2 lays more 

emphasis on the sparse structure. These two parameters can be adjusted to accommodate 

different cases.

In our empirical section, we didn’t make too much effort on tuning these parameters. 

Instead, in fairness to other comparing methods, we just simply set each parameters to a 

reasonable value. Though these parameters brought about great challenges in solving our 

optimization problem, they make our model more flexible and adaptive to different settings 

and conditions.

5 Experimental Results

In this section, we evaluate the prediction performance of our proposed method using both 

synthetic and real data. Our goal is to uncover the latent subspace structure of the prediction 

tasks and meanwhile select a subset of SNPs responsible for their variation.

5.1 Experiments on Synthetic Data

First of all, we utilize synthetic data to illustrate the effectiveness of our model. Our 

synthetic data is composed of 30 features and 3 groups of tasks from 4 different time points. 

Each group includes 4 tasks, who are identical to each other up to a scaling. After we 

generated weight matrix W in this way, we constructed a random X including 10000 

samples and get Y according to Y = XTW.

Fig. 2(a) shows the original Wo matrix, where weight matrices in different time points are 

arranged in a column order. According to the construction process of Wo, tasks in Wo should 

form three low-rank subspaces. For easier visualizing this low-rank structure, we reshuffled 

tasks in Wo by putting tasks in the same group together and formed Fig. 2(b). Now the low-

rank structure within the synthetic data can be easily detected, where every four columns in 

Fig. 2(b) make a low-rank subspace. We applied our method to this synthetic data and 

plotted our learned W matrix in Fig. 2(c). To evaluate the structure of W, we did the 

rearrangement likewise. By comparing Fig. 2(b) and Fig. 2(d), we note that our method has 
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successfully uncover the group structure of the synthetic data and recovered the parameter 

matrix W in an accurate way.

5.2 Experimental Settings on Real Benchmark Data

In the following we evaluate our method on real benchmark datasets. We compare our 

method with all the counterparts discussed in the introduction section, which are: 

multivariate Linear Regression (LR), multivariate Ridge Regression (RR), Multi-Task Trace-

norm regression (MTT) [24], Multi-Task ℓ2,1-norm Regression (MTL21) [25] and their 

combination (MTT+L21) [15, 16].

In our pre-experiments, we found the performance of our method to be relatively stable with 

parameters in the reasonable range (data not shown). For simplicity, we set γ1 = 1, γ2 = 1, p 
= 0.8, q = 0.1, and k = 2.5 without tuning. The definition and reasonable range of these 

parameters has been discussed in Section 4.

As the evaluation metric, we reported the root mean square error (RMSE) and correlation 

coefficient (CorCoe) between the predicted and actual scores in out-of-sample prediction. In 

our experiment, the RMSE was normalized by the Frobenius norm of the ground truth 

matrix. Better performance relates with lower RMSE or higher CorCoe value. We utilized 

the 5-fold cross validation technique and reported the average RMSE and CorCoe on these 5 

trials for each method.

5.3 Description of ADNI Data

Data used in this work were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu). One goal of ADNI is to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early AD. For up-to-date information, see 

www.adni-info.org. The genotype data [26] of all non-Hispanic Caucasian participants from 

the ADNI Phase 1 cohort were used here. They were genotyped using the Human 610-Quad 

BeadChip. Among all the SNPs, only SNPs, within the boundary of ±20K base pairs of the 

153 AD candidate genes listed on the AlzGene database (www.alzgene.org) as of 4/18/2011 

[27], were selected after the standard quality control (QC) and imputation steps. The QC 

criteria for the SNP data include (1) call rate check per subject and per SNP marker, (2) 

gender check, (3) sibling pair identification, (4) the Hardy-Weinberg equilibrium test, (5) 

marker removal by the minor allele frequency and (6) population stratification. As the 

second preprocessing step, the QC’ed SNPs were imputed using the MaCH software [28] to 

estimate the missing genotypes. As a result, our analyses included 3,576 SNPs extracted 

from 153 genes (boundary: ±20KB) using the ANNOVAR annotation (http://

www.openbioinformatics.org/annovar/).

Two widely employed automated MRI analysis techniques were used to process and extract 

imaging phenotypes from scans of ADNI participants as previously described [11]. First, 

Voxel-Based Morphometry (VBM) [29] was performed to define global gray matter (GM) 

density maps and extract local GM density values for 90 target regions. Second, automated 

parcellation via FreeSurfer V4 [30] was conducted to define volumetric and cortical 
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thickness values for 90 regions of interest (ROIs) and to extract total intracranial volume 

(ICV). Further details are available in [11]. All these measures were adjusted for the baseline 

ICV using the regression weights derived from the healthy control (HC) participants. The 

time points examined in this study for imaging markers included baseline (BL), Month 6 

(M6), Month 12 (M12) and Month 24 (M24). All the participants with no missing 

BL/M6/M12/M24 MRI measurements were included in this study, including 96 AD 

samples, and 219 MCI samples and 174 health control (HC) samples.

5.4 Performance Comparison on ADNI Cohort

Here we assessed the ability of our method to predict a set of imaging biomarkers via 

genetic variations. We tracked the process along the time axis and intended to uncover the 

latent subspace structure maintained by phenotypes and meanwhile capture a subset of SNPs 

influencing the phenotypes in a certain subspace.

We examined the cases where the number of selected SNPs were {30, 40, …, 80}. The 

experimental results are summarized in Table 1 and 2. We observe that our method 

consistently outperforms other methods in most cases. The reasons go as follows: 

multivariate regression and ridge regression assumed the imaging features at different time 

points to be independent, thus didn’t consider the correlations within. Their neglects of the 

interrelations among the data was detrimental to their prediction performance.

As for MTTrace, MTL21 and their combination MTTrace+MTL21, even though they take 

into account the inner connection information of imaging phenotypes, they simply constrain 

all phenotypes to a global space thus cannot handle the possible group structure therein. That 

is why they may overweigh the standard methods in some cases, but cannot outperform our 

proposed method. As for our proposed method, not only did we capture the latent structure 

among the longitudinal phenotypes, but we also selected a set of responsible SNPs at the 

same time. All in all, our model can capture SNPs responsible for some but not necessarily 

all imaging phenotypes along the time continuum, which save more effective information in 

the prediction.

5.5 Identification of Top Selected SNPs

Shown in Fig. 3 are the heat maps of top regression weights between imaging QTs and 

SNPs. APOE-rs429358, the well-known major AD risk factor, demonstrated relatively 

strong predictive power in both analysis: (1) In FreeSurfer analysis, it predicts mainly the 

cerebral cortex volume at M06, M12 and M24. (2) In VBM analysis, it predicts the GM 

densities of amygdala, hippocampus, and parahippocampal gyrus at multiple time points 

(Fig. 4). Both patterns are reassuring, since APOE-rs429358 and atrophy patterns of the 

entire cortex as well as medial temporal regions (including amygdala, hippocampus, and 

parahippocampal gyrus) are all highly associated with AD.

In addition, APOE-rs429358 has been shown to be related to medial temporal lobe atrophy 

[31], hippocampal atrophy [32] and cortical atrophy [33]. Variants within membrane-

spanning 4-domains subfamily A (MS4A) gene cluster are some other recently discovered 

AD risk factors [34]. Our analysis also demonstrated their associations with imaging QTs: 

(1) MS4A4E-rs670139 predicts cerebral white matter volume at BL, M06 and M12; and (2) 
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MS4A6A-rs667897 predicts GM densities of posterior cingulate and pallidum at almost all 

time points. Another interesting finding is EBF3-rs482761, which is identified in both 

analyses: (1) In FreeSurfer analysis, it predicts left cerebral white matter volume at M06; 

and (2) in VBM analysis, it predicts GM densities of left Heschl’s gyri, left superior 

temporal gyri, hippocampus, left amygdala at multiple time points. EBF3 (early B-cell factor 

3) is a protein-coding gene and has been associated with neurogenesis and glioblastoma. In 

general, both FreeSurfer and VBM analyses picked up similar regions across different time 

points. These identified imaging genomic associations warrant further investigation in 

independent cohorts. If replicated, these findings can potentially contribute to biomarker 

discovery for diagnosis and drug design.

6 Conclusions

In this paper, we proposed a novel temporal structure auto-learning model to study the 

associations between genetic variations and longitudinal imaging phenotypes. Our model 

can simultaneously uncover the interrelation structures existing in different prediction tasks 

and utilize such learned interrelated structures to enhance the feature learning model. 

Moreover, we utilized the Schatten p-norm to extract the common subspace shared by the 

prediction tasks. Our new model is applied to ADNI cohort for neuroimaging phenotypes 

prediction via SNPs. We conducted experiments on both synthetic and real benchmark data. 

Empirical results validated the effectiveness of our model by demonstrating the improved 

prediction performance compared with related methods. In real data analysis, we also 

identified a set of interesting and biologically meaningful imaging genomic associations, 

showing the potential for biomarker discovery in disease diagnosis and drug design.

Appendix A

Convergence proof of Reweighted Method in Algorithm 1

Before proving convergence of the reweighted algorithm shown in Lemma 1, we first 

introduce several lemmas:

Lemma 2

For any σ > 0, the following inequality holds when 0 < p ≤ 2:

p
2 σ − σ

p
2 + 2 − p

2 ≥ 0 . (16)

Proof—Denote f (σ) = pσ − 2σ
p
2 + 2 − p, we have the following derivatives:

f ′(σ) = p(1 − σ

p − 2
2 ),    and    f ″(σ) = p(2 − p)

2 σi

p − 4
2 .
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Obviously, when σ > 0 and 0 < p ≤ 2, then f″(σ) ≥ 0 and σ = 1 is the only point that f′(σ) = 

0. Note that f(1) = 0, thus when σ > 0 and 0 < p ≤ 2, then f(σ) ≥ 0, which indicates Eq. (16).

Lemma 3 ([35])

For any positive definite matrices M̃, M with the same size, suppose the eigen-

decomposition M̃ = U ΣUT, M = V ΛVT, where the eigenvalues in Σ is in increasing order 

and the eigenvalues in Λ is in decreasing order. Then the following inequality holds:

Tr(M∼ M) ≥ Tr(∑ Λ) . (17)

Lemma 4

For any positive definite matrices M̃, M with the same size, the following inequality holds 

when 0 < p ≤ 2:

Tr(M∼
p
2 ) − p

2 Tr(M∼ M
p − 2

2 ) ≤ Tr(M
p
2 ) − p

2 Tr(MM
p − 2

2 ) . (18)

Proof—For any σ > 0, λ > 0 and 0 < p ≤ 2, according to Lemma 2 we have 

p
2 (σ

λ ) − (σ
λ )

p
2 + 2 − p

2 ≥ 0, which indicates

p
2 σλ

p − 2
2 − σ

p
2 + 2 − p

2 λ
p
2 ≥ 0 . (19)

Suppose the eigen-decomposition M̃ = U ΣUT, M = V ΛVT, where the eigenvalues in Σ is in 

increasing order and the eigenvalues in Λ is in decreasing order. According to Eq. (19), we 

have

p
2 Tr(∑ Λ

p − 2
2 ) − Tr(∑

p
2 ) + 2 − p

2 Tr(Λ
p
2 ) ≥ 0, (20)

and according to Lemma 3 we have

p
2 Tr(M∼ M

p − 2
2 ) − p

2 Tr(∑ Λ
p − 2

2 ) ≥ 0, (21)

p
2 Tr(M∼M

p − 2
2 ) − Tr(∑

p
2 ) + 2 − p

2 Tr(Λ

p
2 ) ≥ 0 .
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Note that Tr(M∼
p
2 ) = Tr(∑

p
2 ) and Tr(M

p
2 ) = Tr(Λ

p
2 ), so we have

p
2 Tr(M∼M

p − 2
2 ) − Tr(M∼

p
2 ) + 2 − p

2 Tr(M
p
2 ) ≥ 0 Tr(M∼

p
2 ) − p

2 Tr(M∼M

p − 2
2 ) ≤ 2 − p

2 Tr(M
p
2 )

Tr(M∼
p
2 ) − p

2 Tr(M∼M

p − 2
2 ) ≤ Tr(M

p
2 ) − p

2 Tr(MM

p − 2
2 ),

which completes the proof.

As a result, we have the following theorem:

Theorem 1

The reweighted algorithm shown in Lemma 1, which optimizes Problem (3) instead of 

Problem (4), will monotonically decrease the objective of Problem (4) in each iteration until 

the algorithm converges.

Proof—In Problem (3), suppose the updated x is x̃. Thus we know

f (x∼) + ∑
i

Tr(gi
T(x∼)gi(x∼)Di) ≤ f (x) + ∑

i
Tr(gi

T(x)gi(x)Di), (22)

where the equality holds when and only when the algorithm converges.

For each i, according to Lemma 4, we have

Tr((gi
T(x∼)gi(x∼) + δI)

p
2 ) − p

2 Tr(gi
T(x∼)gi(x∼)(gi

T(x)gi(x) + δI)
p − 2

2 )

≤ Tr((gi
T(x)gi(x) + δI)

p
2 ) − p

2 Tr(gi
T(x)gi(x)(gi

T(x)gi(x) + δI)
p − 2

2 ) .

(23)

Note that Di = p
2 (gi

T(x)gi(x) + δI)
p − 2

2 , so for each i we have

Tr((gi
T(x∼)gi(x∼) + δI)

p
2 ) − Tr(gi

T(x∼)gi(x∼)Di) ≤ Tr((gi
T(x)gi(x) + δI)

p
2 ) − Tr(gi

T(x)gi(x)Di) . (24)

Then we have
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∑
i

Tr((gi
T(x∼)gi(x∼) + δI)

p
2 ) − ∑

i
Tr(gi

T(x∼)gi(x∼)Di)

≤ ∑
i

Tr((gi
T(x)gi(x) + δI)

p
2 ) − ∑

i
Tr(gi

T(x)gi(x)Di) .

(25)

Summing Eq. (22) and Eq. (25) in the two sides, we arrive at

f (x∼) + ∑
i

Tr((gi
T(x∼)gi(x∼) + δI)

p
2 ) ≤ f (x) + ∑

i
Tr((gi

T(x)gi(x) + δI)
p
2 ) . (26)

Note that the equality in Eq. (26) holds only when the algorithm converges. Thus the 

reweighted algorithm shown in Lemma 1 will monotonically decrease the objective of 

Problem (4) in each iteration until the algorithm converges.
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Fig. 1. 
Illustration of our temporal structure auto-learning regression model. In this figure, 

parameter matrices at different time points are arranged in the column order. Four tasks 

marked out by green rectangles obey similar patterns thus have high interrelations while one 

SNP loci rs429358 enclosed by a red rectangle appears to be correlated with most 

phenotypes. Our model is meant to uncover the group information among all prediction 

tasks along the time continuum, i.e., cluster the phenotypes in the same latent subspace 

(phenotypes marked out by green rectangles) into the same group and meanwhile discover 

genetic biomarkers responsible for most prediction tasks (SNPs marked out by red 

rectangles).
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Fig. 2. 
Visualization of the synthetic parameter matrix W. Columns of W denote 12 prediction tasks 

from 4 different time points, while rows of W correspond to 30 features. These 12 tasks are 

equally divided into 3 groups, where tasks in the same group are identical to each other up to 

a scaling factor. (a) The original weight matrix Wo. (b) Rearrangement of columns in Wo by 

putting tasks in the same group together, such that the low-rank structure of Wo is more 

clear. (c) The learned W matrix by our model. (d) Rearrangement of W learned by our 

model.

Wang et al. Page 18

Res Comput Mol Biol. Author manuscript; available in PMC 2018 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Heat maps of top regression weights between quantitative traits (QTs) and SNPs filtered by a 

user-specified weight threshold: (A) FreeSurfer QTs and (B) VBM QTs. Weights from each 

regression analysis are color-mapped and displayed in the heat maps. Heat map blocks 

labeled with “x” reach the weight threshold. Only top SNPs and QTs are included in the heat 

maps, and so each row (SNP) and column (QT) have at least one “x” block. Dendrograms 

derived from hierarchical clustering are plotted for SNPs. The color bar on the left side of 

the heat map codes the chromosome IDs for the corresponding SNPs.
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Fig. 4. 
Top 10 weights of APOE-rs429358 mapped on the brain for the VBM analysis.
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