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Abstract

We compare side chain prediction and packing of core and non-core regions of soluble proteins, 

protein-protein interfaces, and transmembrane proteins. We first identified or created comparable 

databases of high-resolution crystal structures of these three protein classes. We show that the 

solvent-inaccessible cores of the three classes of proteins are equally densely packed. As a result, 

the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions 

of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint 

model with the same high prediction accuracies (> 90%) as core residues in soluble proteins. We 

also find that for all three classes of proteins, as one moves away from the solvent-inaccessible 

core, the packing fraction decreases as the solvent accessibility increases. However, the side chain 

predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA ≲ 0.3, 

for all three protein classes. Our results show that ≈ 40% of the interface regions in protein 

complexes are ‘core’, i.e. densely packed with side chain conformations that can be accurately 

predicted using the hard-sphere model. We propose packing fraction as a metric that can be used 

to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results 

also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the 

computational methods we are developing for the analysis of the effect of hydrophobic core 
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mutations in soluble proteins will be equally applicable to analyses of mutations in membrane 

proteins.
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1 Introduction

The computational design of protein-protein interfaces [1–9] and the prediction of the 

structure of transmembrane proteins [10–12] are still unsolved problems. For example, in a 

recent Critical Assessment of Prediction of Interactions (CAPRI) competition [4], 

researchers were given a set of models of 21 protein-protein complexes, 20 of which fail to 

bind in experiments, and challenged to find the one true protein-protein complex [13]. Only 

two out of 28 groups correctly identified the pair that binds in experiments. If we are unable 

to distinguish true complexes from decoys, how can we expect to accurately design new 

complexes? Several computational designs have been successful, but these have involved 

testing many of the computational designs experimentally before finding one that works or 

have used methods that are not effective across different protein design problems [5, 14–18].

Membrane proteins comprise nearly 30% of the proteome. They perform vital functions, 

including electron transport, ion conductance, and signal transduction. Nevertheless, we 

currently only have a rudimentary understanding of their structure and thermodynamic 

stability [19–21]. For example, we do not know whether membrane proteins are 

fundamentally different from soluble proteins. Specifically, are membrane proteins less, 

more, or equally well-packed as soluble proteins? One conjecture is that to achieve 

thermodynamic stability, membrane proteins must be more densely packed than soluble 

proteins, because the hydrophobic effect does not contribute to their stability [22]. 

Conversely, others have argued that because many membrane proteins transduce signals 

across the membrane, they must be more flexible and loosely packed compared to soluble 

proteins [23–25]. Clearly, to understand their structure, much less to design new membrane 

proteins, we must answer this question.

We believe that an improved fundamental understanding of protein structure will aid in the 

development of predictive computational tools for protein design. A defining feature of our 

strategy is that we start with simple models and test their ability to predict features of protein 

structure that are seen in high resolution crystal structures. Such predictability is the key 

metric of success in protein design. In prior work, we investigated the range and limits of the 

predictability of protein side chain conformations for uncharged amino acids, using a simple 

repulsive-only hard-sphere plus stereochemical constraint model [26–33]. We showed that 

the hard-sphere model, when applied to a dipeptide mimetic (Fig. 1), is able to predict the 

side chain dihedral angle distributions observed in natural proteins for most of the uncharged 

residues (e.g. Ile, Leu, Val, Thr, Tyr, Trp, Phe, and Cys) [29]. When we consider both intra- 

and inter-residue atomic interactions, the hard-sphere model is able to predict the specific 
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side chain conformation of each of these amino acids in protein cores [30]. We have shown 

that Met requires additional attractive interactions for the hard-sphere model predictions to 

match the observed side chain dihedral angle distributions [32], and that only about 50% of 

Ser residues can be predicted using the hard-sphere model alone [30, 33]. (We presume that 

the absence of hydrogen-bonding interactions explains the limited prediction accuracy of Ser 

using the hard-sphere model.)

We have also found that protein cores are as densely packed as jammed packings of residue-

shaped particles with explicit hydrogens, which possess a packing fraction ϕ ~ 0.55 [34, 35]. 

With these data as background, we now seek to investigate to what extent the hard-sphere 

modeling approach can be applied to contexts other than the cores of soluble proteins–

namely non-core residues, protein-protein interfaces, and membrane-embedded regions of 

transmembrane proteins.

The high accuracy of the hard-sphere model in predicting side chain conformations in 

protein cores stems from the fact that protein cores are densely random-packed [34] and thus 

each buried side chain can only exist in a single conformation without having atomic 

overlaps [33]. We therefore first investigated how the packing fraction varies with solvent 

accessibility (i.e. relative solvent accessible surface area, rSASA), and performed the same 

calculations on soluble proteins, protein-protein interfaces (Fig. 2), and the membrane-

embedded regions of transmembrane proteins (Fig. 3).

We find that for all three types of proteins, rSASA is inversely related to the packing 

fraction. Importantly, the relationship between packing fraction and rSASA is similar for 

soluble proteins, protein-protein interfaces, and the membrane-embedded regions of 

transmembrane proteins. Therefore, we use rSASA as a surrogate for packing fraction. We 

then calculate the fraction of residues for which the hard-sphere model is able to predict the 

side chain dihedral angles within 30° of the crystal structure values as a function of rSASA. 

We find that for soluble proteins, protein-protein interfaces, and membrane proteins, the 

accuracy of the side chain predictions decreases as solvent accessibility increases. The 

predictions for soluble proteins, protein-protein interfaces, and transmembrane proteins all 

show similar behavior as a function of rSASA.

In this article, we provide strong evidence showing that the hydrophobic cores of soluble 

proteins, solvent inaccessible regions of protein-protein interfaces, and buried residues in the 

membrane-embedded regions of transmembrane proteins are essentially all the same–i.e. 

they are all equally well packed. These results are important because they help us identify 

the key variables that control successful protein-protein interaction designs. Moreover, they 

show that contrary to the conclusions of several prior studies [22, 23, 36, 37], the buried 

residues in the membrane-embedded portions of transmembrane proteins are neither more 

nor less well-packed than the cores of soluble proteins and the side chain conformations are 

just as predictable as those in soluble proteins using the hard-sphere model.

The remainder of the article is organized into three sections. In the Methods section, we 

describe the datasets of protein crystal structures that we investigate in this study and details 

of the hard-sphere model that we employ to predict the side chain conformations of residues. 
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We also explain the methods that we used to calculate the packing fraction and solvent 

accessibility. In the Results section, we compare the amino acid composition of soluble 

proteins, protein interfaces, and transmembrane proteins for different values of solvent 

accessibility. We then show the relationship between packing fraction and solvent 

accessibility and the accuracy of the predicted side chain conformations as a function of 

rSASA. In the Discussion section, we argue that the packing fraction can be used as a metric 

to rank successful computational designs and emphasize that transmembrane proteins 

possess core regions that are as densely packed as the cores of soluble proteins, and thus 

their side chain conformations are equally predictable using the hard-sphere model.

2 Methods

2.1 Databases of Protein Crystal Structures

For our studies, we employ three datasets of protein crystal structures: one for soluble 

proteins (Dun1.0), one for protein-protein interfaces (PPI), and one for transmembrane 

proteins (TM). The Dunbrack 1.0 Å dataset [38,39] is a collection of 221 high resolution 

protein crystal structures with resolution ≤ 1.0 Å, R-factor ≤ 0.2, side-chain B-factor per 

residue ≤ 30 Å2, and sequence identity between proteins in the dataset ≤ 50%. We removed 

proteins with modified residues, leaving 182 structures, which we refer to as the “Dun1.0” 

dataset. We created the protein-protein interface dataset (PPI), a collection of 164 homo- and 

heterodimer protein structures from the Protein Data Bank (PDB). Structures were selected 

that had exactly 2 chains in the asymmetric and biological unit with no additional ligands or 

modified residues, a resolution threshold of ≤ 1.5 Å, and sequence identity ≤ 50%. We 

removed structures for which the biological unit was not assigned as a dimer by the author 

and for which one chain contained less than five residues, leaving us with 149 structures.

We also created a transmembrane dataset (TM) containing 19 high resolution 

transmembrane proteins. The structures were obtained from the Protein Data Bank of 

Transmembrane Proteins [40, 41]. The same criteria for the R-factor, B-factor, and sequence 

identity used to create the Dun1.0 dataset were applied to select the TM structures. However, 

since there are very few high-resolution transmembrane crystal structures, the resolution 

threshold was increased to 2.0 Å. In each dataset, if a protein contained two identical chains, 

both chains were used when calculating the solvent accessibility, but only one chain was 

included in all further analyses to avoid double-counting residues. The PDB codes for each 

dataset are included in the Supporting Information.

2.2 The hard-sphere plus stereochemical constraint model

As described in previous work [29, 33], the hard-sphere plus stereochemical constraint 

model (i.e. the ‘hard-sphere model’) treats each atom i as a sphere that interacts pairwise 

with all other non-bonded atoms j via the purely repulsive Lennard-Jones potential:

URLJ(ri j) = ε
72 1 −

σi j
ri j

6 2
Θ(σi j − ri j), (1)
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where rij is the center-to-center separation between atoms i and j, σij = (σi +σj)/2, σi/2 is the 

radius of atom i, Θ(σij − rij) is the Heaviside step function, and ε is the strength of the 

repulsive interactions. The values for the atomic radii (Csp3, Caromatic: 1.5 Å; CO: 1.3 Å; O: 

1.4 Å; N: 1.3 Å; HC: 1.10 Å; HO,N: 1.00 Å, and S: 1.75 Å) were obtained in prior work [29] 

by minimizing the difference between the side chain dihedral angle distributions predicted 

by the hard-sphere dipeptide mimetic model and those observed in protein crystal structures 

for a subset of amino acid types. Hydrogen atoms were added using the REDUCE software 

program [42, 43], which sets the bond lengths for C-H, N-H and S-H to 1.1, 1.0 and 1.3 Å, 

respectively, and the bond angles to 109.5° and 120° for angles involving Csp3 and Csp2 

atoms, respectively. Additional dihedral angle degrees of freedom involving hydrogen atoms 

are chosen to minimize steric clashes [42].

We performed single residue repacking using the hard-sphere model. Predictions of the side 

chain conformations of single amino acids are obtained by rotating each of the side chain 

dihedral angles, χ1, χ2, …, χn (with a fixed backbone conformation [44]), and finding the 

lowest energy side chain conformations of the residue, where the energy includes both intra- 

and inter-residue steric repulsive interactions.

We then calculate the Boltzmann weight of the lowest energy side chain conformation of a 

given residue i, Pi(χ1, ...., χn) ∝ e−U(χ1,…,χn/kBT, where the small temperature, kBT/ε=10−2, 

approximates hard-sphere-like interactions. To sample bond length and angle fluctuations, 

we perform side chain dihedral angle rotations with 300 replicas of residue i with different 

bond length and bond angle combinations that mimic the distributions observed in protein 

crystal structures. We then randomly select 50 bond length and angle variants (j = 1, …, 50) 

of the 300 replicas sampled, and for each variant find the lowest energy side chain dihedral 

angle conformation and corresponding Pij(χ1, ...., χn) values [33]. We average Pij over the j 
= 50 variants to obtain 〈Pi(χ1, ...., χn)〉. We repeat this sampling 50 times, producing 50 

different 〈Pi〉a distributions with a = 1, …, 50. For each 〈Pi〉a distribution, we select the side 

chain dihedral angle combination with the highest value as our prediction, giving 50 

predicted side chain conformations for each residue i, { χ1, a
HS , …, χn, a

HS}, indexed by a = 1, …, 

50. Each of these predictions is then compared to the side chain conformation of the crystal 

structure { χ1
xtal, …, χn

xtal}.

To assess the accuracy of the hard-sphere model in predicting the side chain dihedral angles 

of residues, we calculated the deviation,

Δχa = (χ1
xtal − χ1, a

HS )2 + … + (χn
xtal − χn, a

HS )2, (2)

for each set of replicas a for each residue i. We then look at the first Δχa value (a = 1) for 

each instance i of an amino acid type in the dataset and calculate F(Δχa), the fraction of 

residues with Δχa < 30°. This is repeated for all a = 50 replicas, producing 50 F(Δχa). We 

then calculate the mean fraction 〈F(Δχ)〉 and use one standard deviation as a measure of the 
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error. (Note that if multiple side chain configurations were reported in the PDB for a given 

residue, Δχ was only calculated for the conformation labeled ‘A’.)

We have shown that steric interactions between the side chain of a residue and the rest of the 

protein are necessary to accurately predict the side chain dihedral angles of amino acid 

residues [30]. However, to obtain a lower bound on the prediction accuracy of the hard-

sphere model, we also predicted the side chain conformations for each amino acid without 

the rest of the protein, i.e. each residue modeled as a dipeptide mimetic (Fig. 1).

2.3 Packing fraction, surface identification, and relative solvent accessible surface area

The packing fraction of each residue in a protein can be calculated using,

ϕr =
∑iVi

∑iVi
v , (3)

where Vi is the ‘non-overlapping’ volume of atom i, Vi
v is the volume of the Voronoi 

polyhedron surrounding atom i, and the summations are over all atoms of a particular 

residue. Voronoi cells were obtained for each atom using Laguerre tessellation, where the 

placement of each Voronoi face is based on the relative radii of neighboring atoms (which is 

the same as the location of the plane that separates overlapping atoms) [45]. Vi was 

calculated by splitting overlapping atoms by the plane of intersection between the two 

atoms. To study the packing fraction of solvent-exposed atoms, an outer boundary is placed 

around the protein to terminate some of the Voronoi polyhedra. However, when calculating 

the packing fraction as a function of rSASA, we only include residues for which the the 

volumes of the Voronoi polyhedra are independent of the size and placement of the outer 

boundary.

To investigate the relationship between packing fraction, side chain prediction accuracy, and 

solvent accessibility, we compute the relative solvent accessible surface area,

rSASA =
SASARes

SASADipep
, (4)

where SASARes is the total solvent accessible surface area of the residue (in Å2) in the 

context of the protein environment and SASADipep is the solvent accessible surface area of 

that residue extracted as a dipeptide mimetic (Fig. 1) with the same bond lengths, bond 

angles, and backbone and side chain dihedral angles. We calculate the SASA of protein 

structures and dipeptide mimetics using the software program Naccess [46] with a probe size 

of 1.4 Å and a z-slice of 10−3 Å. Naccess uses the method first developed by Lee and 

Richards [47] to calculate SASA by taking z-slices of the protein, calculating the length of 

the solvent exposed contours in the slice, and summing over all z-slices. With our choice of 

parameters for Naccess, the error in the rSASA calculation for a given residue is ≲ 10−3, and 
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thus we define core residues as those with rSASA ≤ 10−3. Similar rSASA values for each 

residue are obtained using the software program MSMS, which uses an analytical approach 

to calculate SASA [48].

Our calculation of the denominator in the definition of rSASA differs from other methods 

for determining rSASA, which set SASADipep to a constant for each amino acid type. Most 

methods calculate SASADipep using the tripeptide Gly-X-Gly or Ala-X-Ala, where X is a 

given residue type. The conformation for the residue X within the tripeptide varies for 

different methods. For example, some methods choose a particular backbone and side chain 

dihedral angle conformation across all instances of an amino acid [46, 49, 50]. This 

approach can lead to an apparent rSASA > 1 since each residue possesses different ϕ, ψ, and 

χ values than the reference residue used to calculate SASADipep. Other methods instead 

explore all the possible conformations of backbone and side chains of an amino acid and 

select the backbone and side chain conformations that yield the maximum SASAdipep [51]. 

This method avoids rSASA > 1, but does not allow SASADipep to vary for each instance of a 

9 residue of a given type. We have taken a different approach. We compute the maximum 

SASA (SASADipep) for each residue in its particular ϕ, ψ, and χ conformation. In this way, 

we are taking into account both backbone and side chain conformations, leading to an 

accurate normalization of the solvent exposure of a residue and providing a consistent 

comparison of rSASA between different amino acid types.

2.4 Identification of protein interfaces and transmembrane regions

For the PPI dataset, protein-protein interface residues are identified as those with ΔSASARes 

≥ 0.1 Å2, where ΔSASARes = SASARes
mon − SASARes

com, SASARes
mon is the SASA of the residue in the 

monomer created by removing the other chain from the crystal structure, and SASARes
com is the 

SASA of the residue in the complex. In Fig. 4, we show the distribution of the number of 

interface residues in each complex and ΔSASARes for each complex.

For the TM dataset, many entries contain non-membrane regions. (See Fig. 3.) To ensure 

that our analyses focus on the membrane-embedded region of transmembrane proteins, 

residues from the soluble protein domains were not considered. Specifically, only residues 

with one or more atoms predicted to be inside the lipid bilayer were included in this study. 

The position of the membrane was identified using the Positioning of Proteins in 

Membranes (PPM) server [52]. The PPM server estimates the location of the lipid bilayer 

using an approach based on optimizing the free energy of the protein transfer from water to 

the membrane environment. The residues in the transmembrane region of the protein were 

then analyzed using the same methods as those for protein-protein interfaces and soluble 

proteins, where high rSASA values indicate residues that would be exposed to the lipid 

bilayer.

3 Results

In our studies, we use three high-resolution, non-redundant structural datasets. The details of 

each dataset are specified in Sec. 2.1. Briefly, Dun1.0 is a dataset of soluble proteins; PPI is 

a dataset of dimeric protein-protein complexes; and TM is a dataset of transmembrane 
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proteins. For our analyses of the TM dataset, we remove any detergent or lipid molecules 

and any portion of the protein that is not in the membrane. For protein-protein interfaces, we 

identify interface residues as those with a change in SASA between the monomer and 

complex of more than 0.1 Å2 and only include these residues in our analyses. When we 

discuss the PPI and TM datasets, we are only referring to the residues at the interface or in 

the membrane.

We began by determining the amino acid composition of the PPI and TM databases and then 

compared the amino acid compositions with that of soluble proteins (Dun1.0). We identify 

the core residues in each dataset (i.e. those with rSASA < 10−3) and calculate the fraction of 

core residues that are a given amino acid type. In Fig. 5A, we show that the cores of protein-

protein interfaces and of membrane proteins have similar amino acid compositions to that of 

the cores of soluble proteins. Some differences are seen in the composition of TM proteins, 

which have a higher frequency of Ala and Gly in their cores, which is consistent with the 

Gly-xxx-Gly motif found in transmembrane helix-helix association [53–59]. Other papers 

studying transmembrane proteins have also reported a higher frequency of Ala and Gly [36, 

60].

In Fig. 5B, we investigate the non-core regions of the proteins (i.e. those residues with 

rSASA > 0.5) for all three datasets. For TM proteins, where only residues in the membrane 

are included, residues with high rSASA are membrane-exposed residues, not solvent-

exposed. For the PPI dataset, non-core residues are residues at the interface with high 

rSASA values in the protein complex. We find that proteins in the Dun1.0 and PPI datasets 

have a similar distribution of non-core residues, with a large fraction of polar and charged 

residues, while the TM dataset has more hydrophobic residues and a small number of 

charged residues. This result is further illustrated in Fig. 5C, where we show the fraction of 

uncharged residues (Ala, Gly, Ile, Leu, Met, Phe, Ser, Thr, Trp, Tyr, and Val) in the core and 

for rSASA > 0.5 in each dataset. The cores of all three datasets are composed almost entirely 

of these 11 uncharged residues, while the non-core regions of proteins in the Dun1.0 and PPI 

datasets only contain ~40% of these residues. In contrast, the non-core regions of TM 

proteins are highly non-polar, containing ~75% of the 11 uncharged residues, because they 

are exposed to the membrane, not the aqueous environment.

In earlier studies, other groups have reported similar analyses of amino acid compositions, 

for different datasets of protein-protein interfaces and membrane proteins [36, 60–66]. We 

are not reporting any substantial differences from those data. Rather, we performed this 

tabulation to have these data for the exact datasets that we are studying. Note that our dataset 

of membrane proteins includes only the transmembrane section, not the whole protein, and 

our dataset of protein-protein interfaces only considers the interface residues.

In prior work, we demonstrated that one can repack the side chains of residues in protein 

cores using only hard-sphere repulsive interactions in the context of a calibrated atomistic 

model [30, 33]. In this study, we investigate whether the same approach can predict the 

conformations of amino acid side chains at protein-protein interfaces and in transmembrane 

proteins. The reason the hard-sphere model can accurately predict side chain conformations 

in protein cores is because they are densely packed [34, 35]. We therefore first calculated the 

Gaines et al. Page 8

Proteins. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



packing fraction of the cores of protein-protein interfaces and transmembrane proteins, and 

compared these values with the packing fraction of the cores of soluble proteins. Fig. 6A 

clearly shows that the distributions P(ϕ) of packing fractions of core residues in the Dun1.0, 

PPI, and TM datasets are all very similar with mean values, 〈ϕ〉 = 0.56 ± 0.02, 0.56 ± 0.02, 

and 0.55±0.01, respectively. In prior studies, we showed that this packing fraction matches 

the value for random close packing of elongated, bumpy particles that match the aspect ratio 

and surface roughness of core amino acids [35].

There have been many studies of the structure of protein-protein interfaces [61, 62, 64, 65, 

67–72]. A key observation is that the packing fraction in the core region of protein-protein 

interfaces is the same as that in the hydrophobic core of soluble proteins, which we is in 

agreement with our observations [61, 64, 67]. However, there is currently no consensus 

regarding the packing of core residues in transmembrane proteins. Some groups claim 

tighter packing in transmembrane proteins than in soluble proteins [22]. embrane proteins 

even in the absence In contrast, other groups, using different approaches, report that 

transmembrane proteins pack less efficiently than the cores of soluble proteins [23,24]. Note 

that some groups studying transmembrane proteins do not limit their studies to residues in 

the transmembrane region, which makes it difficult to make specific conclusions about 

transmembrane residues.

The cores of soluble proteins, the cores of protein-protein interfaces, and the cores of 

transmembrane proteins all have high packing fraction and near-zero solvent accessibility. 

To study the dependence of the prediction accuracy on packing fraction, we first determined 

the relationship between packing fraction and solvent accessibility. As anticipated, the 

packing fraction is inversely proportional to solvent accessibility, because the empty space 

surrounding residues in the proteins is included in the Voronoi polyhedra for non-core 

residues, as shown in Fig. 6B. This relationship allows us to use solvent accessibility as a 

surrogate for packing fraction. Solvent accessibility is preferable because it is relatively 

straightforward and rapid to calculate, and more importantly, the packing fraction is not well 

defined for non-core residues because the sizes of the Voronoi polyhedra are not restricted 

by the surrounding atoms.

We next investigate how our ability to predict side chain conformations depends on solvent 

accessibility for residues in the Dun1.0, PPI and TM databases. We performed single residue 

repacking in the protein environment using the hard-sphere plus stereochemical constraint 

model for all core and solvent-exposed uncharged residues in the datasets. As a ‘lower limit’ 

of the prediction accuracy, we used the hard-sphere dipeptide model to predict side chain 

conformations in the absence of neighboring residues. The lower limit represents the 

minimum prediction accuracy expected for that residue if it had rSASA = 1, allowing us to 

determine how much the surrounding residues contribute to the repacking prediction 

accuracy.

In Fig. 7A, we show the relationship between the prediction accuracy and rSASA for a 

representative amino acid, Ile. We find that for Ile residues with zero solvent accessibility 

(rSASA < 10−3) we are able to predict over 95% of side chain conformations within 30° of 

the crystal structure values. As the solvent accessibility increases, the packing fraction 
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decreases and therefore our ability to predict the conformation of the amino acid side chain 

decreases towards the dipeptide value. In Fig. 7B, we compare the prediction accuracy for 

core and non-core (0.2 ≤ rSASA < 0.3) uncharged residues in Dun1.0. For all residues, we 

find a decrease in the prediction accuracy as rSASA increases, except for Ser, which we 

have mentioned previously [32]. The prediction accuracy versus rSASA plots for each 

amino acid type are shown in the Supporting Information.

We performed the same calculations for residues in the PPI and TM databases. Data for all 

amino acids in the Dun1.0, PPI, and TM databases are shown in Fig. 8. For all three 

datasets, the hard-sphere model gives high prediction accuracy for core residues. A 

decreased but acceptable predictability (i.e. 80% of residues have Δχ < 30°) is observed for 

residues with 0.2 ≤ rSASA < 0.3 for all amino acid types (except for Ser and Trp) for all 

protein classes.

Thus, we have identified a crucial parameter that controls the side chain conformation 

predictability: the packing fraction and its surrogate, solvent accessibility. If the packing 

fraction is large (i.e. near 0.55–0.56), rSASA is small (i.e. < 10−3) and the prediction 

accuracy is high (> 90%). Conversely, if the packing fraction is small, rSASA is large and 

the prediction accuracy decreases towards that for an isolated dipeptide mimetic. Moreover, 

when the packing fraction is large and rSASA is small, the high prediction accuracy is the 

same in the core of a soluble protein, the core of a protein-protein interface, and the core of 

the transmembrane region of a membrane protein. As the packing fraction decreases and 

rSASA increases, the decrease of the prediction accuracy for a given amino acid is slightly 

different, depending on its protein context. Presumably, this observation implies that forces 

other than purely repulsive steric interactions come into play at lower packing fractions in 

the different protein environments.

4 Discussion and Conclusions

We have shown that the packing fraction of the cores of soluble proteins and of the cores of 

protein-protein interfaces and membrane proteins are the same. We have also studied the 

relationship between the packing fraction and the prediction accuracy of side chain dihedral 

angles using the hard-sphere model. The side chain dihedral angle prediction accuracy 

decreases with decreasing packing fraction (and increasing solvent accessibility).

These results are important for protein-protein interactions because the packing fraction 

provides a specific metric to assess designed protein-protein interfaces. One of the 

frequently highlighted issues in computational protein-protein interface design is the 

difficulty in discriminating between natural protein-protein complexes (i.e. benchmarks) and 

highly-ranked designed structures that do not bind experimentally. In future studies, we will 

explore the use of the packing fraction of interfaces to distinguish between protein-protein 

interaction decoys and true protein-protein interaction pairs. Several experimental studies 

[73–76] have shown that cavity-forming mutations to protein cores can destabilize proteins. 

In future work, we will perform studies to understand how packing fraction and interior 

voids that are caused by mutations affect protein stability and the binding affinity of protein-
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protein interactions. A similar concept has been successful in discriminating between natural 

proteins and flawed computational models [77].

In Fig. 9, we show the distribution of the fraction of each interface in the PPI dataset that is 

made up of solvent inaccessible residues with rSASA < 0.1. We find that approximately 

40% of the surface area of protein-protein interfaces are solvent inaccessible and possess 

high packing fraction (ϕ > 0.54). Thus, we are able to predict with an accuracy of ~ 90% the 

conformations of ~ 40% of the total number of residues at protein-protein interfaces. This 

result holds for protein-protein interfaces ranging in total area up to 6000 Å2.

We also showed that the cores of the transmembrane regions of membrane proteins are as 

well-packed as the cores of soluble proteins, and thus the hard-sphere model can predict the 

side chain conformations of these core residues with high accuracy. With these results, we 

can begin to better understand the molecular details of packing in the cores of membrane 

proteins, and at the interfaces between interacting, membrane embedded regions of 

membrane proteins [78–83]. In addition to enhancing our fundamental understanding, such 

knowledge is of significant practical biomedical importance. For example, the oncogenic 

transformation mediated by the E5 protein of papilloma virus is believed to occur by the 

interaction of the transmembrane helix of the E5 oncoprotein with the transmembrane region 

of the Platelet-Derived Growth Factor Receptor (PDGFR) [78, 84]. It has also been 

demonstrated that certain simple Leu and Ile peptides are also able to activate PDGFR with 

the resulting oncogenic transformation. The results we present specify the expectations for 

packing at such helix-helix interfaces. Further analyses may thus enable us to distinguish 

why some of the Leu/Ile peptides activate PDGFR, whereas others, which may differ by a 

single residue, do not.

It has been suggested that regions in the protein core with low packing fraction may give rise 

to large internal motions that are related to a protein’s biological function [23–25, 85, 86]. In 

future studies, we will correlate core residues with low packing fraction to mobile regions in 

the protein interior. To do this, we will (1) calculate the vibrational modes for the hard-

sphere plus stereochemical constraint model and (2) investigate the residue root-mean-

square displacement for proteins where multiple crystal structures are available. We will also 

calculate the entropy of side chain conformations using the Gibbs entropy. Our current 

studies considered fixed backbone ϕ and ψ dihedral angles. In future studies, we will 

investigate whether backbone fluctuations strongly affect the side chain entropy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) The chemical structure of an Ile dipeptide mimetic. The dipeptide mimetic includes the 

residue itself (purple), the carboxyl and Cα groups from residue i − 1, and the amine and Cα 
groups from residue i + 1. B) Stick representation of Ile 135 from 1Q16 as a dipeptide 

mimetic overlaid on a space-filling representation of the atoms in the purple region of panel 

A. The atoms are colored beige (carbon), red (oxygen), blue (nitrogen), and white 

(hydrogen). C) Ile 135 from 1Q16 in its protein environment (shown in stick and ribbon 

representations)
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Figure 2. 
Ribbon representation of a protein-protein complex (PDB identifier: 1DQZ). The two 

protein chains are shown in green and blue. The interface residues (displayed in orange and 

pink) were identified as those residues with a change in SASA, ΔSASARes > 0.1 Å2, 

between the monomer and the complex.
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Figure 3. 
Ribbon representation of a transmembrane protein (PDB identifier: 1Q16). The membrane 

boundary planes (displayed in blue) were obtained from the Positioning of Proteins in 

Membranes (PPM) server [52]. The region of the protein that spans the membrane is shown 

in green, and the portion of the protein that extends beyond the membrane is shown in 

orange.
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Figure 4. 
A) Frequency distribution, N(n), of the number of residues n at each protein-protein 

interface in the PPI dataset. B) Frequency distribution of the total interface areas (the sum of 

ΔSASAres over all interface residues) in the PPI dataset.
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Figure 5. 
Frequency distribution of amino acids with (A) rSASA ≤ 10−3 and (B) rSASA > 0.5 for 

residues in the Dun1.0 (grey), PPI (blue), and TM (red) datasets. The fractions are defined 

relative to the total number of residues in each rSASA category. (C) The fractions of core 

residues (light bars) and non-core residues (rSASA > 0.5, dark bars) among the 11 non-

charged residues (Ala, Gly, Ile, Leu, Met, Phe, Ser, Thr, Trp, Tyr, and Val).
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Figure 6. 
A) Distribution of packing fractions P(ϕ) of core residues in the Dun1.0 (black), PPI (blue), 

and TM (red) datasets. ϕ is calculated using Eq. 3, where the summation is over all atoms of 

all core residues in each protein. B) Packing fraction ϕ of residues as a function of the 

relative solvent accessibility (rSASA) for the Dun1.0 (black line and squares), PPI (blue 

crosses), and TM (red circles) datasets. The error bars indicate the standard deviation for the 

Dun1.0 dataset and the blue and red shaded regions indicate the standard deviations for the 

PPI and TM datasets, respectively.
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Figure 7. 
A) Fraction of residues predicted within 30° (F(Δχ ≤ 30°)) for Ile residues in the Dun1.0 

database (solid line) and their corresponding dipeptide mimetics (dotted line) as a function 

of rSASA values. The dotted line provides lower bounds for the prediction accuracy for the 

residues in each rSASA bin. Due to the low frequency of uncharged residues in the non-core 

region, we have combined all residues with rSASA > 0.5 into one bin. B) F(Δχ ≤ 30°) for 

non-charged amino acids for rSASA < 10−3 (light grey) and 0.2 < rSASA ≤ 0.3 (dark grey).
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Figure 8. 
F(Δχ ≤ 30°) for non-charged amino acids for (A) rSASA < 0.1 and (B) 0.2 < rSASA ≤ 0.3 

for the Dun1.0 (grey), PPI (blue) and TM (red) datasets.
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Figure 9. 
Distribution of the fraction of the change in SASA of each interface in the PPI dataset that is 

due to core residues ΔSASAcore compared to the change in SASA from all residues at the 

interface ΔSASAinterface. Core residues are defined as those with rSASA < 0.1.
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