Skip to main content
. 2018 Apr 23;9:1598. doi: 10.1038/s41467-018-04046-6

Fig. 4.

Fig. 4

Dark-pulse comb optimization for modern communication formats. a Simulation results showing the minimum comb-line powers as the waveguide’s group velocity dispersion coefficient, β2, and the ring waveguide coupling constant, θ, are varied. The comb spacing is fixed at 100 GHz. The peak value marked with X at −10 dBm is achieved for β2 = 350 ps2/km, θ = 0.011, and a detuning of δ0 = 0.0445, yielding a comb with above 50% power-conversion efficiency and a flattened net conversion efficiency of 4.4%. b Optical spectrum of the optimized dark-pulse comb with line powers in the C band between 51 dB and 71 dB above the quantum noise limit at 0.1-nm resolution. c Theoretical OSNR requirements at the receiver side for a variety of modern communication formats and symbol rates, assuming additive white Gaussian noise and Gray-level coding61. For a single-polarized signal, the limits will be the same assuming that the noise is only measured in that polarization. We note that a doubling in the symbol rate or modulation format results in roughly a 3-dB increase in the OSNR requirement