SCIENTIFIC REPLIRTS

Tau Internalization is Regulated by
6-0 Sulfation on Heparan Sulfate
Proteoglycans (HSPGs)

Received: 8 June 2017 . Jennifer N. Rauch?, John J. Chen?, Alexander W. Sorum?, Gregory M. Miller?, Tal Sharf?,

Accepted: 28 March 2018 . Stephanie K. See?, Linda C. Hsieh-Wilson?, Martin Kampmann©? & Kenneth S. Kosik*

Published online: 23 April 2018
The misfolding and accumulation of tau protein into intracellular aggregates known as neurofibrillary
tangles is a pathological hallmark of neurodegenerative diseases such as Alzheimer’s disease. However,
while tau propagation is a known marker for disease progression, exactly how tau propagates from one
cell to another and what mechanisms govern this spread are still unclear. Here, we report that cellular
internalization of tau is requlated by quaternary structure and have developed a cellular assay to screen
for genetic modulators of tau uptake. Using CRISPRi technology we have tested 3200 genes for their
ability to requlate tau entry and identified enzymes in the heparan sulfate proteoglycan biosynthetic
pathway as key regulators. We show that 6-O-sulfation is critical for tau-heparan sulfate interactions
and that this modification regulates uptake in human central nervous system cell lines, iPS-derived
neurons, and mouse brain slice culture. Together, these results suggest novel strategies to halt tau
transmission.

The Microtubule-Associated Protein Tau (MAPT or tau) is an intrinsically disordered protein that under patho-
logical conditions aggregates into filamentous inclusions known as neurofibrillary tangles (NFTs)'. While the
composition and structure of NFTs are well characterized®?, the in vivo process of aggregation is not well under-
stood. The presence of NFTs is characteristic of a number of human diseases, collectively termed tauopathies. In
tauopathies, such as Alzheimer’s disease (AD), NFT pathology advances in a predictable pattern throughout the
brain affecting regions involved in learning and memory*. This progression of NFT pathology correlates with
cognitive decline in patients and permits neuropathological diagnoses of patients in different stages of AD".

The spread of protein aggregates during disease progression is a common theme in many neurodegenerative
diseases, including a-synuclein in Parkinson’s disease®, Huntingtin protein in Huntington’s disease’, and superox-
ide dismutase-1 in amyotrophic lateral sclerosis®. However, the exact mechanisms underlying intercellular spread
of these aggregates, including tau, is unclear. Increasing evidence suggests the transmission of tau pathology is
mediated by the release, uptake, and trafficking of pathogenic or misfolded tau aggregates within synaptically
connected neurons”'’. Once internalized, misfolded tau proteins act as a seed that recruits soluble endogenous
tau into growing aggregates!!. Aggregated tau is proteotoxic in model systems, suggesting that oligomeric and/or
fibrillar tau may contribute to neurodegeneration'?. However, it is unclear how the different quaternary architec-
tures of tau affect internalization and if all structures have the ability to transfer between neurons. Conflicting
studies have shown varying results regarding tau uptake with some studies showing internalization of small mon-
omeric or oligomeric tau species'® and others suggesting that only oligomeric and/or fibrillized tau is internal-
ized". Discrepancies between culture systems and sources of tau protein may account for these differences, but
this has not been explicitly tested. Further, a better understanding of the cellular processes that are necessary for
transmission of tau aggregates could lead to the discovery of novel therapeutic strategies that would inhibit the
spread of tau pathology and its consequences. Recent work on a-synuclein has shown that a cell surface receptor,
lymphocyte activation gene-3 (LAG3), can bind a-synuclein and trigger its endocytosis into neurons'®. Based on
this, and previous observations in the literature'é, we hypothesized that perhaps a receptor could also exist for tau.
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Figure 1. Tau uptake is regulated by quaternary structure. (a) 2N4R monomer, oligomer, and fibrillized
proteins show distinct banding patterns on a non-reducing SDS-PAGE gel. 2N4R Fibrils before (top) and after
(bottom) sonication as visualized by negative-stain EM. Bar represents 500 nm (b) DLS of 2N4R monomer,
oligomer, fibril, and sonicated fibril species. Experiments were performed in triplicate and the error shown

is SD. (c) Uptake of 2N4R quaternary structures in H4 cells after 1 h at 37 °C. (d) Uptake of 2N4R quaternary
structures in iPS-derived neurons after 1 h at 37 °C. For all uptake experiments, three independent experiments
were performed in duplicate, identical control experiments were performed at 4 °C and subtracted from 37°C
data to generate final curves shown, and the error shown is SEM.

Heparan sulfate proteoglycans (HSPGs) are a diverse family of proteins modified with the linear sulfated
glycosaminoglycan (GAG) heparan sulfate (HS). HSPGs are present in virtually all cells and are involved in a
multitude of processes including cell attachment, migration, differentiation, and inflammation'”. HS chains
consists of a basic disaccharide building block 3-1,4-linked D-glucuronic acid (GlcA) and a-1,4-linked
N-acetyl-D-glucosamine (GlcNAc). During assembly, HS chains can be highly modified; GIcNAc residues can be
N-deacetylated and N-sulfated, GlcA can be epimerized at C5 to L-iduronic acid (IdoA), and ester-linked sulfate
groups can be installed at C2 of the GlcA/IdoA and/or at C6/C3 of the GIcNAc. There is no defined template for
HS modification on HSPGs. Thus, the availability of precursor material and abundance of biosynthetic enzymes
in the cell are thought to dictate chain length, sulfation pattern, and epimerization'®. Previous work has impli-
cated HSPGs as a potential receptor for tau internalization'*!®. However, this work has not examined whether
specific HSPG proteins or specific HS modifications on these proteins can act as determinants for cellular tau
entry, and therefore does not contain the molecular detail that would guide therapeutic strategies. Very recently it
has been shown that fragments of tau can discriminate between different sulfation modifications (6-O-sulfation)
on heparin. This work showed for the first time that, in vitro, tau can discriminate between very structurally
similar glycans and that tau-HS binding was greatly affected by modifications at the 6-O position. Within the cell
there are a variety of enzymes known to be important for imparting this information on cellular receptors, thus
we envisioned that there might be a specific protein or motif that would allow specification of tau entry.

In this work we used central nervous system (CNS) cell lines, iPS-derived neurons, and mouse brain slice
culture to understand the guidelines for tau uptake. We find that the quaternary structure of tau dictates the effi-
ciency of uptake and we used tau monomers to screen for genetic modulators of internalization. We found that
HSPG-modifying enzymes influence tau internalization and knockdown of these enzymes can repress the uptake
of tau. We confirm that 6-O-sulfation patterns on HS chains are critical for tau binding, and show that competi-
tion or removal of these motifs on the cell surface reduced the internalization of tau.

Results

Internalization of tau in CNS culture is regulated by quaternary structure. Tau protein can form
multiple quaternary structures in solution, and recent evidence suggests that small tau oligomeric species may
play a critical role in the spread of tau pathology and neurotoxicity'?. Furthermore, work on smaller fragments of
tau have suggested that the size of tau can regulate seeding capacity'*. Therefore, to study the overarching rules
that govern the transmission of full length tau, we tested the uptake capacity of various tau structures in a variety
of model systems, including human CNS-derived cell lines and iPS-derived neurons.

First, we recombinantly expressed and purified the longest isoform of tau, 2N4R, and used established proto-
cols to produce oligomeric and fibrillized tau species (see Methods). Characterization of these constructs using
non-reducing SDS-PAGE analysis, revealed that tau monomers appear as one distinct band at ~64kDa, while
tau oligomers/fibrils show additional bands of high molecular weight potentially corresponding to some sort of
protofibril species (Fig. 1a). TEM preparations of fibril samples displayed characteristic long helical filaments

SCIENTIFICREPORTS | (2018) 8:6382 | DOI:10.1038/s41598-018-24904-z 2



www.nature.com/scientificreports/

that could be fragmented upon sonication (Fig. 1a). We employed Dynamic Light Scattering (DLS) analysis to
further characterize our tau constructs®. Analysis of our different tau species (Fig. 1b) showed, as expected, that
monomeric tau was monodispersed and small in average size (5.7 = 0.9 nm), whereas oligomers, sonicated fibrils
and fibrils were larger and more dispersed (19 £ 3 nm, 33 £ 11 nm, and 80 & 8 nm respectively).

To test the efficacy of these tau species towards internalization by cells, we labeled each protein preparation
with an Alexa Fluor-488 (AF488) probe and then added various concentrations of protein to the cell media of H4
neuroglioma cells. After one hour, cells were washed, lifted from the plate and analyzed for fluorescence using
flow cytometry. To control for non-specific binding to the membrane, identical experiments were performed at
4°C (a non-permissive temperature for endocytosis), and any fluorescence observed was subtracted from our
results. Monomeric, oligomeric and sonicated fibrils were efficiently internalized, while fibril samples were not
(Fig. 1c and Supplementary Fig. 1d). Tau uptake was a time-dependent process, with uptake observed in as little
as 10 minutes (Supplementary Fig. 1a). This assay for tau uptake was robust for other human CNS cell lines,
including SHSY-5Y neuroblastoma, and ReN VM neural progenitors (Supplementary Fig. 1b,c). Further, human
iPS-derived neurons also showed a preference for smaller structures of tau, with fibrillized tau showing nearly no
uptake (Fig. 1d). Taken together, these results suggest that cellular uptake of tau is regulated by size and that large
species of tau are inefficiently internalized across multiple cell types.

Functional genomics to find modulators of tau uptake. With a robust and high-throughput assay for
tau uptake in hand, we used this platform to screen for genetic modulators that could either increase or decrease tau
internalization. To do this, we developed an H4 CRISPRi cell line that stably expresses a catalytically inactive Cas9
fusion protein (dCas9-KRAB). CRISPRi represses transcription of genes with high specificity using single guide
RNAs (sgRNAs) that guide the dCas9-KRAB protein to the transcription start site (TSS) of the targeted gene?®'. Asa
proof of concept, we screened a next-generation CRISPRi library of sgRNAs that targeted 3200 different genes with
five different sgRNAs per gene, and contained hundreds of non-targeting negative-control sgRNAs?2. H4 CRISPRi
cells transduced with sgRNAs were then incubated with 25nM AF488 labeled 2N4R monomer (2N4R-488) for 1 hr
and sorted based on AF488 fluorescence. The cell populations with the top and bottom thirds of AF488 fluorescence,
representing higher than average and lower than average tau uptake, respectively, were recovered, genomic DNA
was isolated and the locus encoding the sgRNA was PCR-amplified and frequencies of each sgRNA in the two pop-
ulations were determined by next-generation sequencing (Fig. 2a). To detect hit genes, we applied our previously
developed quantitative framework for pooled genetic screens?*?** as described in the Methods.

We selected sixteen genes for individual validation studies, including genes with particularly strong pheno-
types in the primary screen, as well as genes in pathways previously implicated in tau uptake. Fifteen of the
sixteen follow-up hits were found to repress expression of their target gene (i.e. knockdown) as determined by
qPCR (Supplementary Fig. 2a). Fourteen of the fifteen gene knockdowns also reproduced their screen pheno-
type i.e. either increased or decreased tau uptake as compared to a non-targeting sgRNA control (Fig. 2b and
Supplementary Fig. 2b).

Interestingly, we found that some of the strongest phenotypes in our screen were attributed to genes that are
known cell cycle regulators (Supplementary Fig. 2c). The selective knockdown of genes such as TP53,led to a
decrease in G1 length and thus an overall increase in cell proliferation (Supplementary Fig. 2d). Endocytosis is
known to increase during G1 phase®; therefore, it seemed logical that cell cycle regulators that can shorten the
G1 phase could reduce the amount of tau uptake and vice versa. In line with these observations a small molecule
inhibitor of CDK4/6 that causes a stall in G1 phase (PD0332991) was sufficient to almost double the amount of
tau taken up in H4 cells (Supplementary Fig. 2e). Further work will be needed to dissect if and how these genes
might influence post-mitotic neurons.

Hits that were of particular interest included genes involved in heparan sulfate proteoglycan (HSPG) biosynthesis
(EXT2 and HS6ST1) as well as DNM2, a GTPase involved in endocytosis. These single gene knockdowns repressed
uptake of tau monomer by over 50% (Fig. 2b) and also reduced the uptake of tau oligomers (Fig. 2c). Further, these
gene knockdowns were sufficient to reduce the uptake of tau in iPS-derived neurons (Fig. 2d). Treatment of cells
with an inhibitor for DNM2, Dynasore, was also able to reduce uptake of tau (Supplementary Fig. 2f).

Tau binds to heparin derivatives and shows specificity for 6-O-sulfated heparins. Based on our
pilot screen results, we were particularly interested in the enzymes involved in HSPG biosynthesis. Previous
reports had indicated that internalization of tau could be regulated by HSPGs!'®, but our identification of HS6ST1,
an enzyme that is responsible for 6-O-sulfation of HSPGs, supports a hypothesis that specific motifs on HSPGs
might be important for tau uptake.

HSPGs are decorated with HS chains that consist of a repeating GlcA-GlcNAc building block. During assem-
bly, HS chains can be highly modified and, importantly for their function, they can be sulfated at multiple sites
within the disaccharide (Fig. 3a). To ascertain whether specific sulfation motifs were important for tau binding,
we employed a heparin ELISA assay. In this assay, biotin-labeled heparin derivatives (Fig. 3b) were immobilized
on streptavidin-coated plates, purified tau protein was incubated with the plate at increasing concentrations, and
antibodies were used to detect tau binding. Tau bound heparin with an affinity of 4.6 0.6 nM, consistent with pre-
vious reports®. Over sulfated heparin (>3 sulfates per disaccharide) bound tau even tighter (2.2 4 0.5nM), while
fully-desulfated heparin showed a drastically reduced binding (>1uM) (Fig. 3c). Removal of N-sulfates or 2-O-sulfates
had little effect on tau binding (15.0 £ 5nM and 7.4 &= 1.0 nM, respectively), while removal of all O-sulfates and, in par-
ticular 6-O-sulfates, led to a significant decrease in tau binding (>1 1M in each case; Fig. 3¢,d). The relative binding of
6-O-desulfated heparin in the presence of 10nM tau was 6.9% that of heparin, consistent with our hypothesis that tau
interacts with the 6-O-sulfation motif on HS chains, and that HS is important for tau internalization.
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Figure 2. CRISPRi screen for tau uptake modulators. (a) Screening strategy using H4 CRISPRI cells, see text for
details. (b) Reconfirmation of selected hits in H4i cells with 2N4R monomer (50nM, 1h at 37°C), normalized
toa WT (no sgRNA) control. (c) Uptake of 2N4R oligomers (50 nM, 1h at 37 °C) in H4i cells with selected gene
knockdowns, normalized to a WT (no sgRNA) control. (d) Uptake of 2N4R monomer (200nM, 1h at 37°C)

in iPS-derived neurons with selected gene knockdowns, normalized to a WT (no sgRNA) control. All uptake
experiments were performed in duplicate over three independent experiments with the data combined. Lines
on the graphs represent WT mean +/— 3 standard deviations, error bars represent SEM, a one-way ANOVA
analysis with Dunnett’s method was used to determine significance between the gene knockdown and the non-
targeting sgRNA *p-value <0.05, **p-value < 0.01, ***p-value < 0.001.

Cellular internalization of tau is effected by the presence of 6-O-sulfation. To confirm that
6-O-sulfation was indeed a determinant of tau uptake, we developed a cellular competition experiment to mon-
itor tau internalization. In this experiment, we added heparin or heparin derivatives free into the cell media
immediately prior to addition of 2N4R-488. We found that internalization of tau can be efficiently competed by
the presence of heparin or HS in the media (Fig. 4a). Likewise, addition of 2-O-desulfated heparin was able to
reduce uptake, whereas 6-O-desulfated heparin or chondroitin sulfate (negative control) were significantly less
effective at reducing uptake (Fig. 4a). These results were consistent when tested in iPS-derived neurons (Fig. 4b),
demonstrating that the 6-O-sulfation motif is indeed a critical determinant for cellular tau entry.

To test if HS 6-O-sulfation would also prevent internalization of tau in an ex vivo system, we generated acute
brain slices from adult mice using established methods?”. These slices showed normal electrophysiology, sug-
gesting good vitality (Supplementary Fig. 3a). Their ability to uptake tau was tested by incubating the cultures
with 2N4R-488 for 30 min at 37 °C or, as a control, 4°C. The cultures were washed, stained with Hoechst dye
to label nuclei, and mounted on coverslips to image. Incubation at 37 °C showed uptake of tau in the slice cul-
tures, whereas very little fluorescence was observed in the 4 °C control cultures (Fig. 4c and Supplementary
Fig. 3b). Consistent with our previous results, incubation with heparin, heparan sulfate, or 2-O-desulfated hep-
arin reduced uptake of tau as quantified by the median 488 fluorescence intensity (Fig. 4d). Chondroitin sulfate
and 6-O-desulfated heparin incubation did not reduce the median fluorescence, verifying that 6-O-sulfation
is also important for tau internalization ex vivo (Fig. 4d and Supplementary Fig. 3b). Quantification of median
Hoechst fluorescence across all the images showed that similar cell numbers were analyzed for each condition
(Supplementary Fig. 3c).

Finally, in order to test if direct removal of 6-O-sulfates from the cell surface could reduce uptake of tau in
cell culture, we overexpressed two different extracellular endosulfatases (Sulfl & Sulf2) that selectively cleave
6-O-sulfates on GIcNAc?. Overexpression of these enzymes in H4 cells, showed a dramatic decrease in tau uptake
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Figure 3. Binding of tau to heparin derivatives. (a) HS chains consist of GlcA/IdoA-GlcNAc disaccharide units
that can be modified at positions indicated in red and blue. (b) List of heparin/heparin derivatives that were
used, their average molecular weights, and description of their sulfation modifications. (¢) Binding of 2N4R

to various heparin derivatives by ELISA with data fit to a Hill binding model (line) where appropriate. (d)
Normalized relative binding of 2N4R (10 nM) to various heparin derivatives. Three independent experiments
were performed, data were normalized to heparin controls, and the error shown is SD.

with Sulfl reducing uptake to 17 4 9%, and Sulf2 reducing uptake to 36 &= 15% (Fig. 4e). Overexpression of the con-
structs was confirmed with immunocytochemistry and qPCR analysis (Fig. 4f and Supplementary Fig. 3d) and the
ability of the enzymes to reduce 6-O sulfation on the cell surface was confirmed by HPLC (Supplementary Fig. 3e,f).

Discussion

In recent years, a growing body of literature has reinforced the hypothesis that prion-like cell-to-cell propaga-
tion of protein aggregates underlies disease progression of numerous neurodegenerative disorders®. For some
of these protein aggregates (PrP, a-synuclein), specific pathways and protein conformers that are key for trans-
mission have been delineated quite fully’>*’. However for other proteins, such as tau, many details regarding its
transmissibility are still unclear. It has been shown in various cellular and animal models that exogenously added
tau aggregates can induce tau pathology;”!* however, the disparity between the experimental systems and the
tau species used in each study makes it hard to draw a unifying theme. Tau is a complex protein that has several
isoforms, posttranslational modifications, and the ability to form multiple quaternary structures’!. Therefore, we
have focused our research on the development of a cellular assay that can robustly detect internalization across
various tau constructs and CNS cell systems.

The data presented here demonstrate that full-length human tau (2N4R) can be efficiently internalized across
multiple relevant cell systems and that this uptake is dependent on the overall size of the tau species, similar to
what has been seen before for smaller fragments of tau'®. By screening through thousands of potential gene reg-
ulators, we have identified enzymes involved in HSPG synthesis/modification as critical modulators of tau inter-
nalization. This is a critical point, since it is still debated exactly how tau induces neurotoxicity. One hypothesis
suggests that tau oligomers are the toxic species and that the formation of tau fibrils inside neurons (NFTs) could
be a protective mechanism. This is supported by neuropathological studies measuring oligomeric tau (MC1+) in
AD patients which show that neuronal loss and cognitive deficits correlate with increased MCI1 reactivity and that
these changes precede NFT formation®2. Our data are consistent with this hypothesis, as tau fibrils were unable
to be internalized, and thus would be unable to “seed” misfolding inside the cell. Our results also indicate that
both monomeric and oligomeric tau are internalized with similar efficiency and presumably using similar cellular
mechanisms, since genetic regulators of monomer tau uptake also affect oligomer uptake. However, this work has
only focused on uptake mechanism of “naked” tau and has not focused on seeding potential or the possibility of
exosome transfer of fibrils between neurons®. But, as tau oligomers and monomers have been found elevated in
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Figure 4. 6-O sulfation regulates tau uptake in CNS culture. (a) Internalization of 2N4R-488 (50nM, 1 h

at 37°C) into H4 cells is strongly inhibited by incubation with heparin, heparan sulfate, and 2-O-desulfated
heparin as compared to 6-O-desulfated heparin or chondroitin sulfate (0.05 mg/ml for all derivatives).

(b) Internalization of 2N4R-488 (200nM, 1h at 37 °C) into iPS-derived neurons is inhibited by incubation with
heparin, heparan sulfate, and 2-O-desulfated heparin as compared to 6-O-desulfated heparin or chondroitin
sulfate (0.5 mg/ml for all derivatives). All uptake experiments were performed in duplicate over three
independent experiments with the data combined. Lines on the graphs represent WT mean +/— 3 standard
deviations, error bars represent SEM, and a one-way ANOVA analysis with Dunnett’s method was used to
determine significance compared to the negative control *p-value < 0.05, **p-value < 0.01, ***p-value <0.001,
ns=not significant. (c) Internalization of 2N4R-488 (200 nM, 30 min at 37 °C) into mouse slice culture is
strongly inhibited by incubation with 2-O-desulfated heparin, but not 6-O-desulfated heparin (0.5 mg/ml).
Hoechst stain is used to label nuclei. (d) Quantification of the median 488 fluorescence intensity for tau uptake
in mouse slice culture. Two independent experiments were performed with multiple images (>5) from each
condition. Error bars represent SEM. (e) Uptake of 2N4R-488 (50nM, 1h at 37°C) tau is reduced when Sulf1
or Sulf2 is overexpressed in H4 cells as compared to WT or mock transfected cells. Uptake experiments were
performed in duplicate over three independent experiments with the data normalized to WT and combined.
Error bars represent SEM. (f) ICC confirms that Sulfl and Sulf2 are overexpressed (red) in H4 cells. Hoechst
stain is used to label nuclei.

the CSF of AD patients®*** and tau antibodies have been shown to block tau spreading®*”

recapitulates at least one in vivo scenario.

Using CRISPRi technology, we identified multiple genetic factors that can influence the uptake of tau in cell
culture. The identification of HSPGs as regulators of tau internalization is not an entirely new concept. Indeed, it
has been known for years that tau can bind heparin, and that this molecule can be used as an in vitro inducer of
aggregation®®. Tau internalization has also been linked to HSPGs previously'®, and the data presented here adds
more detail to the molecular picture and confirms previous in vitro work that identified 6-O sulfation as a major
determinant of tau binding'®. The HSPG family consists of over 12 members, with a wide array of HS sulfation
modifications and chain length complexity. Our comprehensive analysis has shown that binding of tau to HS in a
cellular context is directly related to the sulfation pattern, and specifically on the presence of 6-O sulfates on the

it seems likely our assay
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glucosamine subunit. Further work will be needed to understand if there are specific HS chain lengths or regions
on tau that are important for this interaction.

This work is an important step forward in the characterization of HS-tau interactions. With these new insights
we can begin to envision ways to design small molecules that mimic the HS structures that interact with tau
to block its aggregation and neutralize its toxicity. It is plausible to expect that novel treatments that target the
HS-tau interaction may contribute to AD treatment and could improve the effects of other treatments.

Methods
Chemicals. Heparin, chondroitin sulfate, heparan sulfate, and desulfated heparins (Neoparin & Galen Labs
Supplies). Dynasore hydrate (Sigma). Hoechst (Thermo Scientific).

Protein purification, labeling and fibrillization.  Full length tau protein (2N4R, 1-441aa) was purified with
slight modification to previously published protocols®. Briefly, 2N4R tau in the pRK172 plasmid was expressed in
E. coli BL21 (DE3). Cell pellets were harvested and resuspended in cell lysis buffer (50mM MES pH 6.5, 5mM DTT,
1mM PMSE 1mM EGTA) + cOmplete protease inhibitor tablets (Roche). Lysate was sonicated, boiled for 10 min,
and then centrifuged at 50,000 x g for 30 min at 4 °C. The supernatant was then precipitated with ammonium sulfate
(20% w/v) and centrifuged at 20,000 x g for 30 min at 4 °C. The pellet was resuspended into 4 mL of MonoS$ Buffer
A (50mM MES pH 6.5, 50mM NaCl, 2mM DTT, 1 mM PMSE 1 mM EGTA) and dialyzed overnight against the
same buffer. The protein was loaded onto a MonoS column (GE Healthcare) and eluted with a linear gradient of
NaCl using MonoS Buffer B (Buffer A+ 1 M NaCl). Fractions containing 2N4R tau were pooled, concentrated, and
dialyzed overnight into PBS pH 7.4. Protein concentration was determined using a BCA assay (Thermo Scientific).

Protein was labeled with Alexa Fluor® 488 or 647 5-SDP ester (Life Technologies) according to the suppliers
instructions. After labeling, 100 mM glycine was added to quench the reaction and the proteins were subjected
to Zeba desalting columns (Thermo Scientific) to remove any unreacted label. Average label incorporation was
between 1 and 1.5 moles/mole of protein, as determined by measuring fluorescence and protein concentration
(Amax X MW of protein/[protein] x €4y.). To prepare tau fibrils and oligomers, 10 uM protein, in PBS 1mM DTT
pH 7.4, was mixed with heparin (0.05 mg/ml) and incubated with shaking at 37 °C. The formation of oligomers
was observed after 4 h of shaking, whereas fibril formation was formed after 5 days'’. To make sonicated fibril
samples, fibrillized protein was sonicated using a MiSonix Sonicator 4000 (QSonica, LLC) at 50% amplitude for
60 1s pulses. Mutation of 2N4R (C291S, C322S) to remove both cysteine residues important for dimer formation
allowed us to further confirm that tau monomer could indeed be internalized (data not shown).

Transmission electron microscopy. Tau fibrils and sonicated fibrils (1 1M) were absorbed on 200-mesh
formvar-coated copper grids, washed, and stained with a 2% uranyl acetate solution. Grids were then imaged with
aJEOL JEM-1230 (JEOL USA, Inc) at the indicated magnifications.

Dynamic light scattering. Protein solutions (1 uM) were filtered (0.45um) and analyzed using a Zetasizer
Nano ZS (Malvern). The time-dependent autocorrelation function of the photocurrent at a fixed angle of 175°
was acquired every 105, with 15-20 acquisitions for each run and with at least three repetitions. The error bars
displayed on the DLS graphs were obtained by the standard deviation (SD) between replicates.

Cell culture, transfections and treatments.  H4 cells were cultured in DMEM supplemented with 10%
FBS, 100 pg/ml penicillin/streptomycin. SHSY-5Y cells were cultured in DMEM/F12 supplemented with 10% FBS,
100 pg/ml penicillin/streptomycin. ReN-VM cells were cultured on Matrigel (Corning) coated plates in DMEM/
F12 supplemented with 2 pug/ml heparin (STEMCELL Technologies), 2% B27 (Life Technologies, 100 pg/ml
penicillin/streptomycin, 20 pg/ml bFGF (Stemgent), 20 pg/ml EGF (Sigma). Cultures were maintained in
a humidified atmosphere of 5% CO, at 37 °C. Transfection of H4 cells with Sulfl (Addgene #13003) or Sulf2
(Addgene #13004) were performed with Lipofectamine 3000 (Invitrogen) according to the manufacturers
instructions and cells were assayed 48 h later. Overexpression was confirmed with immunocytochemistry using
the his tag epitope and qPCR. For competition experiments, heparin (and various derivatives) was added to the
media just prior to tau addition at the indicated concentrations.

iPS culturing and differentiation.  CRISPRi iPSc with an inducible TRE3G-dCas9KRAB-T2A-mCherry
were maintained in 6-well Matrigel (Corning) coated plates with mTeSR1 media (STEMCELL Technologies)
and split with ReLeSR (STEMCELL Technologies) at a 1:20 ratio every 4-5 days. For differentiation, CRISPRi
cells were split with Accutase and virally infected twice with a NeuroD1-IRES-eGFP-Puro (Addgene #45567)
according to previously published methods*. Doxycyclin was added to induce expression of NeuroD1, and the
following day cells were selected with puromycin (5pug/ml). After selection, cells were lifted with Accutase treat-
ment and replated 1:12 in PEI coated 24-well plates. Three days later, media was changed to Brain Phys Neuronal
Medium (STEMCELL Technologies) with doxycycline and AraC to remove any remaining dividing cells. At day
8, cells were infected with specific sgRNA constructs. iPS neurons were assayed between days 14-18 of maturity
as described below. Immunocytochemistry was used to confirm neuronal properties (Supplementary Fig. le).

Flow cytometry. H4 cells were plated at 50,000 cells per well in a 24-well plate. The next day media was
replaced, and cells were treated with varying concentrations of AF488-labeled tau protein for 1 h (unless indicated
otherwise) at 37 °C. For ReN-VM uptake experiments the media was replaced with DMEM/F12 without B27
or heparin. Cells were then washed twice with PBS and trypsinized to lift cells from the plate. Identical control
experiments were performed at 4 °C to confirm that tau protein was internalized and not just adhering to the cell
membrane. Lifted cells were analyzed using an Accuri-C6 Flow Cytometer and propidium iodide was used to
exclude dead cells from the analysis.
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CRISPRi screen. We generated a stable CRISPRi-enabled H4 neuroglioma cell line by transducing H4
cells with the lentiviral plasmid pHR-SFFV-dCas9-BFP-KRAB*! and selecting a polyclonal population of
BFP-expressing cells by FACS. These cells were transduced with a next-generation CRISPRi sgRNA library
(sublibrary “Cancer and Apoptosis”)??, and transduced cells were selected using puromycin (1 pg/mL). Media
was replaced with fresh DMEM containing AF488-labeled Tau monomers at a final concentration of 25nM for
1h at 37°C. Cells were washed twice, trypsinized, and resuspended in FACS buffer (PBS with 0.5% FBS). A
BD-FACAria II, was used to sort live cells into two populations based on the top and bottom thirds of AF488 fluo-
rescence; approximately 15 million and 17 million cells were recovered from the high- and low-fluorescence pop-
ulations, respectively. The resulting DNA was isolated, the cassette encoding the sgRNA was amplified by PCR,
and relative sgRNA abundance was determined by next-generation sequencing as previously described?*. We
analyzed the resulting data using our previously developed quantitative framework for pooled genetic screens®?*,
Statistical significance for each targeted transcription start site was calculated using the Mann-Whitney U test to
compare the phenotypes of the 5 sgRNAs targeting the transcription start site to the phenotype distribution of the
280 non-targeting sgRNAs in the library.

ELISA. Heparin was purchased from AMSBio (AMS.HEP001-100) and all heparin derivatives were pur-
chased from Neoparin (GT6011, GT6012, GT6013, GT6014, GT6020, GT6030). Heparin/heparin deriva-
tives were biotinylated by reacting their free amines (estimated abundance of 1-5% for heparin) with EZ-link
Sulfo-NHS-LC-Biotin (Thermo) according to the manufacturer’s protocol. Briefly, heparin/heparin derivatives
and biotin reagent were combined in PBS (pH 7.4) and incubated at room temperature for 1 h. Excess reagent was
removed, buffer exchanged for Milli-Q water, and samples concentrated by centrifugation with Amicon Ultra-
0.5mL Centrifugal Filters (Millipore, 3k cut-off). For ELISA assays, biotinylated heparin/heparin derivatives were
immobilized on streptavidin plates followed by a 2h incubation with 2N4R tau protein containing a C-terminal
myc tag (10-fold dilution series). Bound tau was detected using an anti-myc HRP-conjugated antibody (Bethyl,
A190-105P), visualized using TMB substrate (R&D Systems), and quantified by UV-Vis. Absorbance for each
plate was measured at 450 and 550 nm. The 550 nm measurement is a correction for plate imperfections and was
subtracted from the 450 nm values. Data were normalized to heparin controls and fit with a Hill binding mathe-
matical model where appropriate using the equation Y= B, *X"/(K -+ X"), where H is the Hill slope (variable),
X is the concentration of tau, and B,,, is the binding maximum.

Mouse slice culture & EPSP measurements. Protocols and procedures were approved by the
Institutional Animal Care and Use Committee of the University of California, Santa Barbara and were performed
according to the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Slice
cultures were prepared as previously described”. Hippocampal excitatory postsynaptic potentials (EPSPs) were
measured using a multi-electrode array (MEA). Stimulus current was injected into a region of the hippocampal
slice by an MEA electrode, with the magnitude of stimulus current ranging from 20-80 pA. EPSPs were then
measured by recording an electrode in a different region of the hippocampal slice. Smaller stimulus currents
excite fewer cells, and thus the measured EPSPs have smaller magnitudes.

gPCR. Purelink RNA Extraction Kit (Invitrogen) was used to isolate RNA from samples. RNA (1 pg) was
then converted to cDNA using SuperScript Reverse Transcriptase III (Invitrogen) according to the supplier’s
instructions. Real-time quantitative PCR was performed using Power SYBR Green PCR Master Mix (Applied
Biosystems) according to QuantStudioTM 12 K Flex Real-Time PCR System protocol. GAPDH mRNA level was
used to normalize samples.

Immunocytochemistry. Cells were fixed with 4% paraformaldehyde for 15 min at RT followed by three
washes with PBS. Cells were permeabilized with 0.25% Triton X-100 in PBS, and blocked for 1hr in blocking
buffer at RT (1% BSA, 300 mM Glycine, 0.1% Gelatin, 4% Donkey Serum in TBST). After blocking, cells were
incubated with primary antibodies diluted in blocking buffer overnight at 4°C. The day after cells were washed
three times (5 min each) with 0.05% Tween-20 in PBS. The following primary antibodies were used: Tau-46
(Invitrogen, 36400, 1:1000), MAP2 (Millipore, AB5622, 1:1000), and anti-his (Thermo Scientific, MA1-21315,
1:1000). Secondary antibodies (Life Technologies, A21422, A21206, 1:1000) were incubated for 1 hr at RT, washed
three times with 0.05% Tween-20 in PBS and imaged with an Olympus IX71 Microscope or an Olympus Fluoview
1000 Spectral Confocal.

Disaccharide analysis. Cells pellets of WT, Sulfl, and Sulf2 overexpressing cells were resuspended in PBS
and digested with pronase (final concentration 2 mg/mL) overnight at 37 °C. Samples were passed through a
0.22-um syringe filter to remove cell particulates and applied to DEAE-cellulose columns equilibrated with 0.2 M
NaCl in PBS. The columns were extensively washed with 0.2 M NaCl in PBS, the GAGs eluted with 1.0 M NaCl
in PBS, and the eluted fractions combined, flash-frozen and lyophilized. Purified GAGs were digested using a
combination of heparinases I, II, and III, and the resultant disaccharides were isolated by size filtration and sub-
sequently labeled with AMAGC, as previously described*2. AMAC-labeled HS was lyophilized and reconstituted in
50% DMSO and stored at —20 °C prior to analysis.

Sample analysis was performed on a Zorbax Eclipse XDB-C18 RP-HPLC column (4.6 mm X 75mm, 3.6 mmy;
Agilent Technologies) running on an Agilent 1100 Series HPLC system. Samples were diluted with 60 mM
ammonium acetate (pH 5.6) and applied to the column, which was equilibrated in 98% solution A/2% solution
B (A: 60 mM ammonium acetate, pH 5.6; B: acetonitrile). The column was held at 2% solution for 0.5 min, and
the AMAC-labeled disaccharides were then eluted over a shallow gradient of 2-12% solution B over 25min at
a flow rate of 1 mL/min. Disaccharides were detected in-line by UV-Vis (260 nm). The column was regenerated
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with 95% solution B prior to equilibration. To confirm peak identities, eight standards purchased from Iduron
(AUA2S - GIcNS6S, HD001; AUA2S - GIcNS, HD002; AUA2S - GIcNAc6S, HD003; AUA - GIcNS6S, HD004;
AUA - GIcNS, HD005; AUA - GIeNAc, HD006; AUA2S - GlcNAc, HD007; AUA - GlcNAc6S, HD008) were
labeled with AMAC and spiked into cell-derived samples.
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