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BACKGROUND AND PURPOSE
Functional selectivity describes the ability of ligands to differentially regulate multiple signalling pathways when coupled to a
single receptor, and the operational model is commonly used to analyse these data. Here, we assess the mathematical properties
of the operational model and evaluate the outcomes of fixing parameters on model performance.

EXPERIMENTAL APPROACH
The operational model was evaluated using both a mathematical identifiability analysis and simulation.

KEY RESULTS
Mathematical analysis revealed that the parameters R0 and KE were not independently identifiable which can be solved by
considering their ratio, τ. The ratio parameter, τ, was often imprecisely estimated when only functional assay data were available
and generally only the transduction coefficient R ( τ

KA
) could be estimated precisely. The general operational model (that includes

baseline and the Hill coefficient) required either the parameters Em or KA to be fixed. The normalization process largely cancelled
out the mean error of the calculated Δlog (R) caused by fixing these parameters. From this analysis, it was determined that we can
avoid the need for a full agonist ligand to be included in an experiment to determine Δlog (R).

CONCLUSION AND IMPLICATIONS
This analysis has provided a ready-to-use understanding of current methods for quantifying functional selectivity. It showed that
current methods are generally tolerant to fixing parameters. A new method was proposed that removes the need for including a
high efficacy ligand in any given experiment, which allows application to large-scale screening to identify compounds with de-
sirable features of functional selectivity.

Abbreviations
RSE, relative standard error; SSE, stochastic simulation estimation
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Introduction
Ever since the earliest description of receptor–ligand inter-
actions (Clark, 1926), attempts to develop a reliable
method for their quantification have been made. The Emax

model provides an empirical justification for the
concentration–response relationship. It makes the assump-
tion that the effect of the ligand is directly proportional to
receptor occupancy; that is to say, maximal response can
only be achieved with maximal receptor occupancy (Clarke
and Bond, 1998). The operational model relaxes this as-
sumption by incorporating an (unobserved) empirical trans-
ducer function to convert occupancy into effect (Black and
Leff, 1983), which allows the effect to represent a potential
cascade of cellular or tissue signalling. This can explain the
‘receptor reserve’ phenomenon, that is, stimulation of only
a fraction of the whole receptor population elicits an appar-
ent maximal response. Furthermore, incorporation of the
transducer function also allows the investigator to create a
link directly from ligand concentration to response without
the need to formally incorporate ligand binding as a neces-
sary intermediary step. In this sense, the operational model
is a ‘middle-out’ strategy in receptor theory which keeps
the balance between model simplicity and mechanistic
insight. Here, the equation for the operational model
(Equation 1), in the same style as Equation 5 from the original
paper (Black and Leff, 1983), is given:

E
Em

¼ R0A
KAKE þ R0 þ KEð ÞA (1)

In the operational model described by Black and Leff,
there are two key parameters: τ and KA. This is a re-
parameterization (of Equation 1 here) by Black and Leff
which they present in their Equation 6 (shown in this paper
in Equation 5). The transducer ratio parameter, τ ( R0

KE
),

encompasses receptor density (R0) and the stimulus coupling
efficiency (KE). KA is an implicit parameter in the model that
accounts for ligand binding but is not specifically estimated
in their work. In more recent developments, the operational
model has been generalized into several variants, such as
the conformation-based operational model (Roche et al.,
2013) and the operational model with constitutive activity
(Slack and Hall, 2012). Among these variants, the general op-
erational model (Equation 2) is the most widely used model
that accounts for non-zero basal (Basal), non-unity Hill slope
factor (n) and estimable maximal system response (Em) (van
derWesthuizen et al., 2014). Furthermore, it is evident within
the operational model framework that the classical concepts
of ‘full agonism’ and ‘partial agonism’ need further examina-
tion, as such classifications are made on the combination of
ligand attributes and how efficiently the system transduces
the stimulus into effect (Kenakin, 2014). It is possible that
one single ligand may appear to be a full agonist in an
efficient transduction system but a partial agonist in a less
efficient transduction system.

Recently, interest has arisen in the ability of ligands to
differentially regulate different signalling pathways when
coupled to a single receptor; a concept termed functional se-
lectivity (Urban et al., 2007). The need to link ligand concen-
tration to response at (now) multiple pathways has

rejuvenated interest in the operational model. In such stud-
ies, it is common to consider a single composite parameter,
R, in quantifying a ligand’s effect on a pathway. This parame-
ter is defined as the ratio τ

KA
and is termed the transduction co-

efficient. It is derived from an application of the operational
model to simultaneously account for both affinity and effi-
cacy of a ligand (Kenakin and Miller, 2010). Because the sys-
tem itself will complicate interpretation of this composite
parameter (e.g. system bias and observation bias), it is neces-
sary to normalize R to a reference ligand, yielding the normal-
ized transduction coefficient Δ log (R) (Kenakin et al., 2012).
Finally, as the goal of the analysis is to consider how a ligand
may bias the response to a particular pathway, it is conven-
tion to further normalize the transduction coefficient for
one pathway to another, thereby providing a single metric
to encapsulate the relative effect of a ligand on a pathway of
interest compared to a reference pathway. The additional nor-
malization leads to the now widely used metric ΔΔ log (R)
(Kenakin et al., 2012).

In this work, we explore the mathematical and statistical
properties of the operational and the general operational
model in relation to parameter estimation, which is termed
identifiability analysis. A model that contains one or more
parameters that are not able to be estimated (given perfect
data) is termed not identifiable. In other words, identifiability
analysis answers the question of whether there is a unique so-
lution for the parameters of a mathematical model based on
its structure and also the experimental design (Shivva et al.,
2013; Lavielle and Aarons, 2016). This concept is more com-
monly considered in pharmacokinetic studies where, for in-
stance, it is known that if you only administer a drug orally
to an individual, then the parameter absolute bioavailability
(F) cannot be estimated (as it requires both intravenous and
oral administration to provide the data for this parameter).
As such, this parameter is said to be not identifiable. When
model parameters are not identifiable, this means that there
are an infinite number of solutions for the model parameters
that can fit the data equally well. This causes the parameters
of the model to be imprecisely estimated and potentially mis-
represent the data. Identifiability issues are also present in
pharmacological experiments, but these properties are less
well explored. The concept of identifiability is divided into
two types: (i) structural identifiability and (ii) deterministic
identifiability (sometimes also termed pragmatic identi-
fiability). Structural identifiability is a formal mathematical
technique to determine whether a parameter can be uniquely
estimated given perfect data (data that contain no error of
any type – e.g. no assay error) (Bellman and Åström, 1970).
Deterministic identifiability addresses the degree of precision
with which a parameter can be estimated based on typical ex-
perimental data (Guedj et al., 2007). These concepts are natu-
rally hierarchical, such that if a model is not structurally
identifiable, then it cannot be applied to any data and one
or more parameters will need to be either fixed or merged into
a composite parameter (the latter is analogous to fixing one of
the parameters to a null value; e.g. 0 or 1). Once a model is
structurally identifiable, then the lower hierarchy, determin-
istic identifiability, yields knowledge about how well it can
be estimated by a given experiment. These concepts are criti-
cal in understanding how amodel can represent a given set of
experimental data.
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Application of the operational model to describe the re-
sponses elicited by a ligand in multiple pathways is known
to result in issues with mathematical identifiability of the
model (Kenakin et al., 2012; van der Westhuizen et al.,
2014). It should be noted that application of the operational
model does not explicitly include ligand binding and con-
siders a single pathway from a single ligand at a time (hence
the need for normalization). It is, in theory, possible to apply
a general equilibrium model that encompasses all pathways
simultaneously that would obviate some of these mathemat-
ical issues, but this is beyond the scope of this work.

The overarching aim of this paper is to provide a ready-
to-use understanding of the application of the operational
model for quantifying functional selectivity. This encom-
passes three specific objectives: (i) to systematically assess
the identifiability (structural and deterministic) of both the
operational model and the general operational model; (ii)
to evaluate the effects of parameter mis-specification on
the quantification of ligand bias; and (iii) to assess whether
we can relax the need for the presence of a full agonist to
quantify ligand bias.

Methods
The methods are described in two parts. In the first part, the
technical details of the methodology are provided as they re-
late to both structural and deterministic identifiability as well
as simulation estimation methods. In the second part,
methods are provided for each of the three aims.

Part 1
Structural identifiability analysis. This type of identifiability
determines whether a unique set of parameter values exist
within the model, given perfect data. If this is not true, then
the model is said to be not identifiable. This means that the
model parameters cannot be estimated in its current form
and a parameter (or parameters) will need to be fixed. The
structural identifiability analysis followed the processes
developed in previous work (Shivva et al., 2013). The
Population OPTimal design for Identifiability (POPT_I), a
MATLAB-based software (available at http://www.otago.ac.
nz/pharmacometrics/downloads/index.html), was used for
the assessment of structural identifiability. Brief details of
the application of this method are provided here for
completeness. In this work, two necessary criteria for
claiming a structurally identifiable, fixed-effect model were
adopted: (i) there was a continuous linear log–log
relationship between the log of the determinant of Fisher
information matrix (MF) and the log of the random noise;
(ii) the determinant should approach infinity as residual
variance approaches zero (Shivva et al., 2013). The values
for the random noise log(σ2) were the same for all analyses,
�7, �6, �5, �4, �3, �2, �1, 0, 1 and 2.

Deterministic identifiability analysis. Deterministic
identifiability is concerned with the precision of parameter
estimation. The relative magnitude of the SE is an
indication of the precision of the parameter estimates and is
amenable to the experimental design. The SE value can be
obtained either theoretically, via the Fisher information

matrix (MF), or they can be obtained after a data set has
been analysed using standard software (such as GraphPad
Prism®). Technically, these are termed the expected SE or the
observed SE values respectively. Both methods to calculate
the SE values give very similar results. Irrespective of the
method used to calculate the SE values, large values are a
measure of uncertainty in the parameter values that (if large
enough) may yield a claim that the model is not
deterministically identifiable. In this work, in order to
alleviate the need to generate and analyse data, we use the
information matrix (MF) and calculate the expected SE
values. Hence, it is straightforward (with appropriate
software) to calculate the expected SE values for any model
given any potential experimental design without having to
do the experiment. For convenience, we express the SE
value for a parameter as its value relative to the parameter
value (in order to normalize to scale). This is termed relative
SE (RSE) which we show as per cent. Values greater than
50% are suggestive of potential problems with deterministic
identifiability.

Briefly, and for completeness, the SE values are calculated
as the square root of the diagonal elements of the inverse of
the MF. The MF can be calculated as the product of the sensi-
tivity matrices weighted by the residual error. In this work,
optimal design software PFIM (Bazzoli et al., 2010), available
at http://www.pfim.biostat.fr/, was used to calculate the MF

and provide the expected SE values.

Stochastic simulation and estimation (SSE)
Outline of stochastic simulation estimation (SSE) unit. In
practice, the slope factor n is commonly added to improve
curve fitting. Hence, we intend to explore a range of values
of n to assess their influence on the results of this analysis.
We tried an exact numerical evaluation, but it became
unfeasible (this failure is shown in the Supporting
Information). A more general method involving simulating
data and estimating the model parameters was therefore
used. This is termed stochastic simulation and estimation
(SSE). Practically, this method requires the data to be
simulated with random error (aka ‘experimental noise’),
termed stochastic simulation, and then estimated using an
appropriate software application. It is common to use SSE
methods when the model is too complicated to perform
exact mathematical analyses. Both the simulation (SSE)
method and exact calculation (when possible) provide
equivalent answers and interpretations.

The SSE methods in this work were used to assess the in-
fluence of mis-specification of parameter values (i.e. when
the parameters were fixed to something other than their true
value). Each SSE unit consists of three steps: dataset simula-
tion, parameter estimation and analysis of the results. In
the simulation step, based on the given parameter values
and study design, pseudo-experimental data were gener-
ated from the general operational model (Equation 2)
using R version 3.0.2 (http://www.r-project.org/) within
Rstudio IDE Version 0.98.490 (http://www.rstudio.com/).
In total, there were 1000 replicates. In each replicate, two
concentration–response curves corresponding to a pair of
reference and test ligands were generated with random error.
Then, in the estimation step, each replicate was analysed in
GraphPad Prism (v7.0; GraphPad Software, La Jolla, CA,
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USA) following usual estimation methods (van der
Westhuizen et al., 2014). R code for stochastic simulation
and GraphPad Prism code for batch analysis are included
in the Supporting Information. In the post-estimation anal-
ysis step, the normalized transduction coefficient (Δ log (R))
value was calculated for each replicate by taking the differ-
ence of log(R) between reference and test ligand. For the final
outcome of each SSE unit, only the results from the repli-
cates with successful estimation were included and contrib-
uted to calculation of the median and 95% confidence
intervals (CI) for log(R) and Δ log (R).

Criteria for successful estimation. A successful estimation
was defined as not ambiguous estimates of the parameter
log (R) for the pair of ligands in a replicate. The term
ambiguous is a term coined by Prism to describe the case that
the parameters cannot be precisely estimated. This is akin to
defining the parameters as not deterministically identifiable.
Such parameters are marked in Prism with a ‘~’ before the
best fit values. Ambiguous values were omitted from further
computation. The successful estimation rate was defined as
the fraction of successful estimation runs within 1000
replicates. In general, the estimation method was
considered to be robust if its successful estimation rate was
higher than 90%.

Part 2
Systematic assessment of the identifiability of both the operational
model and the general operational model
Structural identifiability analysis. The original form of the
operational model (Equation 1) has been extended into the
general operational model (Equation 2, the same as
Equation 5 in van der Westhuizen et al., 2014) to account
for non-zero basal (Basal), non-unity slope factor (n) and
an estimable maximal system response (Em) (van der
Westhuizen et al., 2014).

E ¼ Basalþ Em � Basal
1þA=10log KAð Þ

A·10 log Rð Þ

� �n
þ 1

(2)

Here, Em is the system maximal response, Basal is the
baseline response in the absence of ligand and n is the slope
factor. These three parameters are system parameters. Note,
in this expression, it is assumed that the basal activity of the
system is constant over both time and applied ligand
concentrations. Further generalization is possible but not
considered here. Both KA and R are drug-specific parameters.
Conventionally, the parameters KA and R are transformed

into logarithms (i.e. 10 log KAð Þ;10 log Rð Þ ). Note here that this
re-parameterization does not affect the structural iden-
tifiability of the model.

The structural identifiability analysis (a formal assessment
of the model to determine if the parameters could be
uniquely estimated) was performed on both the Black and
Leff operational model (Equation 1) and the general opera-
tional model (Equation 2) in POPT_I. A generic study design
with sampling concentrations log(A) from �13 to �4, incre-
ment of 1, was assumed for both models. An arbitrary set of
parameter values was used (Table 1). [Since this work is de-
pendent on the particular set of parameter values, then the

structural identifiability analysis is said to be local – meaning
the model is identifiable (or not) based on a specific set of pa-
rameter values. This does not affect interpretation of this
work.] Structural identifiability was assessed for the Black
and Leff operational model based on four scenarios: (i) all
the model parameters (R0, KE, KA) were considered to be un-
known and estimable; (ii) R0 was assumed to be known and
fixed; (iii) KE was assumed to be known and fixed; and (iv)
R0 and KE were reduced into one single parameter τ, and both
τ and KA were considered to be unknown and estimable. For
the general operational model, four scenarios were evaluated
for the identifiability analysis: (i) all the model parameters
(Em, log(KA), log(R)) were considered to be unknown and esti-
mable; (ii) Em was assumed to be known and fixed; (iii) log(KA)
was assumed to be known and fixed; and (iv) log(R) was as-
sumed to be known and fixed.

Deterministic identifiability analysis. A deterministic
identifiability analysis (assessment of SEs of the parameter
estimates) was performed on both the operational model
and the general operational model. A similar parameter set-
up was used as in the structural identifiability analysis.
Details are provided in Table 2. A proportional
measurement error with 10% coefficient of variation was
assumed for data arising under both models. The
deterministic identifiability was assessed for each value of τ.
In terms of the general operational model, three arbitrary
sets of the parameter values were used and each stood for
one of the following circumstances: (i) a pair of highly
efficacious ligands; (ii) one highly efficacious ligand and one
less efficacious ligand; and (iii) a pair of low-efficacy ligands
(Table 3). Efficacy is defined based on τ values. Under each
circumstance, two scenarios were evaluated for the
deterministic identifiability: (i) Em was assumed to be
known and fixed; and (ii) KA values of both ligands were
assumed to be known and fixed.

Table 1
The parameter values for structural identifiability analysis of the oper-
ational model

Parameters
Operational
model

General
operational
model

n – 1

Em – 1

Basal – 0.1

R0 10 –

KE 10 –

τ 1

log(KA) �8

log(R) 8

Sampling
concentrations:
log (A)

From �13 to �4,
increased by 1

Random noise
levels: log(σ2)

�7, �6, �5, �4,
�3, �2, �1, 0, 1,
and 2

Functional selectivity quantification
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Evaluation of the effects of parameter mis-specification on the
quantification of ligand bias
Current estimation methods for the quantification of ligand
bias. In current practice, three methods have been
adopted for the estimation of the general operational
model. In method I, the value of system maximal response
(Em) is set to the empirically measured response of a known
maximal stimulant (e.g., forskolin for cyclic AMP and
phorbol 12-myristate 13-acetate for phosphorylated ERK) or
the common maximal response among multiple ligands
(Kenakin et al., 2012). In method II, the equilibrium
dissociation constant (KA) is fixed to a previously estimated
value from a separate binding assay (Rajagopal et al., 2011).
In method III, a slight modification is made into the
operational model framework (van der Westhuizen et al.,
2014). In this method, ligands are subjectively classified
into two categories: full and partial agonists, based on the
value of observed maximal response of each ligand (Emax, i).
For partial agonists, the concentration–response curve is
directly fitted to the general operational model, whereas for
full agonists, one more constraint is applied with KA

arbitrarily assigned to 1 mol·L�1 (the identity for most
mathematical operations), a value typically 6 to 8 orders of
magnitude from expected.

SSE study I: evaluation of the effects of mis-specified Em. SSE
study I was performed to evaluate the effects of mis-specified
Em on the quantification of ligand bias. For the simulation
step, a generic study design for the sampling concentrations
(Table 4) was assumed for all the SSE units and three
arbitrary sets of the parameter values (Table 4) were used
with the only difference in slope factor (n=[0.7, 1, 1.5]).
Then, in the estimation step, for these three simulated
datasets, each was used to estimate the parameters using
estimation method I with Em fixed to three different values
0.8, 1(true) or 1.2. Therefore, there were nine SSE units in
this SSE study.

SSE study II: Evaluation of the effects of mis-specified
KA. SSE study II was conducted to evaluate the effects of
mis-specified KA on the quantification of ligand bias. In the
simulation step, a generic study design for the sampling
concentrations (Table 4) was assumed for all the SSE units
and 10 arbitrary sets of the parameter values (Table 4) were
used with the only difference in slope factor (n=[0.5, 0.6,
0.7, 0.8, 0.9, 1, 1.25, 1.5, 1.75, 2]). The value of τ for the
reference ligand was assigned to a large number (Table 4) to
represent full agonist (i.e. highly efficacious ligand). In the
following, each simulated data were estimated by two
different estimation methods: method II with KA values
fixed to true or method III with KA of full agonist arbitrarily
assigned to 1 mol·L�1. In the final step, the post-estimation
analysis was applied to get summarized outcomes from
these 20 SSE units.

Assessment of the relaxation of the need for a full agonist in
quantifying functional selectivity
Method IV for the quantification of ligand bias. The current
estimationmethod for the general operationalmodel requires
a full agonist to have been identified within the study. We
propose a generalization to this estimation method (termed
method IV here) to account for the situation when only low-
efficacy ligands are present. The key steps were listed:

Table 2
The parameter values for deterministic identifiability analysis of the
operational model

Design Value

log(A) From �13 to �4, increased by 1

Random noise –

prop. err 0.1

Parameters –

τ From 0.1 to 100, increased by 0.1

KA 1.0E � 8
R τ

KA

Table 3
The parameter values for deterministic identifiability analysis of the general operational model

Setting

Ligand pair study

High + higha High + low Low + low

Ligand I Ligand II Ligand I Ligand II Ligand I Ligand II

Individual parameters τ 15 25 15 0.8 0.8 0.4

log(KA) -8 �7 �8 �7 �7 �8

log(R) 9.18 8.40 9.18 6.90 6.90 7.60

Design log(A) From �13 to �4, increased by 1

System parameters Em 1

Basal 0.1

n 1.0

prop. err 0.1
aHigh = high efficiency and low = low efficiency.
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1) Fit the classical Emax model (Equation 3) to the data from
every ligand. For each pathway, the value of n and Basal
are shared for all the ligands and there is no constraint
on the values of Emax and EC50.

E ¼ Basalþ Emax � Basalð Þ
1þ 10 logEC50�logAð Þ·n (3)

Here, Basal and n are system parameters shared among
different ligands. Emax and logEC50 are ligand-specific
parameters

2) Select the ligand with maximal Emax,i from the current
study and set as if it were a full agonist (termed pseudo full
agonist). Classify all the remaining ligands as partial
agonists.

3) For partial agonists, the concentration–response curve is
directly fitted with the general operational model,
whereas for the pseudo full agonist, the value of KA is set
to 1 mol·L�1. For each pathway, the values of n, Basal
and Em are shared for all the ligands and there is no con-
straint on the values of log(R) and log(KA).

An illustrating example with step-by-step analysis pro-
cesses and results is included in the Supporting Information.

SSE study III: Evaluation of the performance of method
IV. SSE study III was performed to evaluate the
performance of method IV by comparing to methods I and
II. The same set-up was used for the simulation as for SSE
study II, except that the values of τ were smaller in SSE
study III (Table 4) to represent low-efficacy ligands. Then,
for the parameter estimation, each simulated data were
analysed by three different estimation methods: method I
with Em set to true; method II with KA values set to true; and
method IV. Finally, the results of a total of 30 SSE units were
obtained from the post-estimation analysis.

Results

Systematic assessment of the identifiability of
both the operational model and the general
operational model
Structural identifiability of the operational model. Given
pharmacological response data only, the original form of the
operational model (Equation 1) was confirmed as not
structurally identifiable. As conceptually demonstrated in
Equation 4 (a re-expression of Equation 1 by dividing KE),
there were infinite possible combinations of R0 and KE that
rendered the same result. For example, the two parameter
sets, (R0 = 100, KE = 20, KA = 10�8) and (R0 = 10, KE = 2,
KA = 10�8), produced exactly identical curves.

E
Em

¼
R0
KE
·A

KA þ R0
KE

þ 1
� �

A
(4)

Structural identifiability analysis was performed in
Equation 1. As shown in Figure S1A, the result indicated that
this equation was unidentifiable when all parameters were
considered to be estimable. Fixing either R0 or KE rendered
the model structurally identifiable. In the absence of measur-
ing (or estimating) R0 or KE from an additional experiment, it
is not possible to distinguish their values. In order to solve
this problem and as indicated by the work of Black and Leff,
R0 and KE are therefore reduced into a single identifiable
quantity (R0

KE
), defined as the transducer ratio τ. This yielded

the reduced form of the operational model, Equation 5,
which was structurally identifiable (Figure S1B).

E
Em

¼ τ·A
KA þ τ þ 1ð Þ·A (5)

Deterministic identifiability of the operational model. It was
seen from the results of a deterministic identifiability analysis
(Figure 1) that the operational model (Equation 5) generally

Table 4
The parameter values for the SSE studies

Design Impact of Em mis-specification Impact of KA mis-specification Evaluation of method IV

log(A) From �13 to �4, increased by 1 From �13 to �4, increased by 0.5 From �13 to �4, increased by 0.5

System parameters – – –

n 0.7, 1, 1.5 Ranging from 0.5 to 2 Ranging from 0.5 to 2

Em 1 500 500

Basal 0.1 10 10

prop. err 0.1 0.1 0.1

Individual
parameters Ligand I Ligand II Ligand I Ligand II Ligand I Ligand II

τ 1.5 0.8 6 2 0.6 0.2

log(KA) �8 �7 �8 �7 �8 �7

log(R) 8.176 6.903 8.778 7.301 7.778 6.301

Δ log (R) 1.273 1.477 1.477

Functional selectivity quantification
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yielded appropriately low RSE% values (<50%) for τ and KA

for standard study designs. However, it was also evident that
the precision of the estimate of both KA and τ decreased
with increasing values of τ, indicating that the operational
model would not be deterministically identifiable for the
large values of τ, even though this model is structurally
identifiable (Figure 1). This is conceptually demonstrated in
Equations 6 and 7: when values of τ greatly exceed 10 (i.e.
highly efficacious ligand), Equation 5 is well approximated
by Equation 6, which is then unidentifiable. Equation 6 is
re-expressed as Equation 7 by dividing KA. We now see that
τ and KA only appear as the ratio when τ exceeds 10 and
hence there will be infinite possible combinations of τ and
KA that provide indistinguishable results (i.e. the model is
structurally unidentifiable).

E
Em

¼ τ·A
KA þ τ þ 1ð Þ·A ⟶

τ>10 τ·A
KA þ τ·A

(6)

E
Em

¼
τ
KA

·A

1þ τ
KA

·A
(7)

In order to circumvent this problem, the transduction co-
efficient (R) was introduced, defined as the ratio between
transducer ratio (τ) and equilibrium dissociation constant
(KA). Substituting R into Equation 5 yielding Equation 8:

E
Em

¼ R·A
1þ Rþ 1=KAð Þ·A (8)

A deterministic identifiability analysis was also performed
on Equation 8. Contrary to the behaviour of KA, the RSE of R

is now independent of the value of τ (Figure S2), indicating
that the transduction coefficient (R) could be precisely esti-
mated, even for highly efficacious ligands. In this sense, R
was not only a combination of efficacy and affinity, as origi-
nally described, but also the minimal robust element that
could be directly derived from the operational model analysis
for quantifying agonism.

Structurally identifiability of the general operational
model. Structural identifiability analysis was performed on
Equation 2. As shown in Figure S3A, the result indicated
that this equation was unidentifiable when all parameters
were considered to be estimable. Furthermore, case deletion
assessment (Figure S3B–D) identified that the general
operational model had one unidentifiable parameter and
one of Em, log(KA), or log(R) would be required to be fixed to
yield a structurally identifiable model. However, since log(R)
is regarded as the target from these analyses, only Em or
log(KA) could be considered to be fixed. Note here that
neither n nor Basal affects the structural identifiability of
the model.

Deterministic identifiability of the general operational model. A
deterministic identifiability analysis was performed on
Equation 2 for a pair of ligands. As shown in Table 5, in
general, with fixed Em or KA, the target parameter R could be
precisely estimated with low RSE% values (<50%), when at
least one highly efficacious ligand existed. For a pair of low-
efficacy ligands, estimation of R became less precise and
fixing Em gave more precise parameter estimation of R than
fixing KA. For all highly efficacious ligands, given only

Figure 1
The RSE of estimated parameters versus τ for Equation 5. In this study, a generic study design with sampling concentrations log(A) from�13 to�4,
increment of 1, was adopted. A proportional measurement error with 10% coefficient of variation were assumed. KA was set to an arbitrary value,
10�8 mol·L�1. The deterministic identifiability was assessed for each value of τ, ranging from 0.1 to 100. The left panel is for KA and the right panel
is for τ. The red dashed line indicates the 50% RSE, considered as the threshold for precise estimation.
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pharmacological response data, KA could not be precisely
estimated (RSE% values >100%), consistent with previous
findings in the operational model.

Evaluation of the effects of parameter
mis-specification on the quantification of
ligand bias
The source of parameter mis-specification addressed here was
restricted to some unavoidable cases, that is, theoretically in-
evitable mis-specification or simply fixing the parameter to
an (arbitrary) value for convenience. Note that the effects of
mis-specified KA arising from binding assay experimental er-
ror, while potentially important, was not considered on the
performance of method II and was beyond the scope of cur-
rent evaluation.

In method I, Em was prone to mis-specification. In real
cases, the true value of Em is rarely known and often empiri-
cally approximated from the maximal observed response
among a number of ligands or the response to a known max-
imal stimulant (e.g. forskolin for cyclic AMP) (Evans et al.,
2011; Kenakin et al., 2012). In so doing, Em is set to the lower
bound of its true value. On the other hand, KA is simply fixed
to an (arbitrary) value for convenience in method III.

Instead of plugging in estimated KA values from indepen-
dent binding assays (method II), the KA values of full ago-
nists were arbitrarily fixed to 1 mol·L�1. This value greatly
exceeds the biologically reasonable range of possible values
of KA (10�4~10�12 mol·L�1). In the following, we evaluate
the effects of parameter mis-specification on quantification
of ligand bias under mis-specification of Em and KA.

The influence of the mis-specified Em. In the case where the
slope factor (n) is equal to one, an exact numerical
evaluation was performed to explore the effects of the mis-
specification of Em (see Appendix A). It is clearly shown
that the mis-specified value of Em leads to an inaccurate
estimation of R. Here, we are referring to the mean error in
the estimate of R, which we specify as the true value
minus the estimated value [we use mean error to avoid the
use of bias in two different settings (statistical and
pharmacological)]. The mis-specification of R has a similar
effect on different ligands. Therefore, the normalization
process would cancel out this estimation mean error, and
the estimation of Δ log (R) would remain accurate. In other
words, the estimation of Δ log (R) is tolerant to the mis-
specification of Em.

Table 5
The results of deterministic identifiability analysis of the general operational model

Scenario Fixed parameters Em RSE(%) KA RSE(%) R RSE(%)

Ligand pair High + higha Em – 109.6b, 172.3 24.6, 23.7

KA1, KA2 5.2 – 27.6, 27.5

High + low Em – 120.9, 47.3 27.9, 44.5

KA1, KA2 6.6 – 29.3, 20.3

Low + low Em – 75.8, 67.4 76.1, 88.4

KA1, KA2 80.9 – 159.8, 147.9
aHigh = high efficacy and low = low efficacy.
bIf the RSE value is less than 50%, the parameter it describes is interpreted as precisely estimable.

Table 6
The results from the evaluation of the effects of the mis-specified Em on the estimation of log(R) and Δ log (R)

n
Em assigned
value

log(R) Δ log (R)
Successful
estimation
rate (%)

Ligand I median
[95% CI]

Ligand II median
[95% CI] Median [95% CI]

0.7 0.8 8.40 [7.92–8.84] 7.15 [6.59–7.70] 1.25 [0.86–1.70] 98.4

1(true) 8.18 [7.52–8.79] 6.93 [6.24–7.63] 1.25 [0.86–1.70] 98.1

1.2 8.02 [7.22–8.73] 6.77 [5.95–7.56] 1.25 [0.85–1.70] 97.9

1 0.8 8.28 [7.82–8.81] 7.03 [6.43–7.62] 1.27 [0.92–1.65] 98.2

1(true) 8.18 [7.55–8.89] 6.93 [6.17–7.66] 1.26 [0.91–1.65] 97.5

1.2 8.09 [7.34–8.80] 6.83 [5.98–7.60] 1.27 [0.91–1.65] 95.3

1.5 0.8 8.19 [7.73–8.66] 6.94 [6.34–7.40] 1.26 [0.94–1.63] 93.4

1(true) 8.20 [7.58–8.72] 6.94 [6.25–7.45] 1.27 [0.96–1.62] 94.0

1.2 8.17 [7.49–8.71] 6.91 [6.13–7.45] 1.27 [0.97–1.62] 91.2
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For the case where the slope factor is different from
unity, a stochastic simulation-estimation study was per-
formed to explore the effect of the mis-specification of Em.
In Table 6, it is noted that estimation of log(R) is inaccurate
with the mis-specified Em. For instance, in the case that n is
equal to 0.7 and Em is underestimated by 20%, the esti-
mated log(R) values for ligands I and II were 3–5% greater
than their true values (i.e. negligibly affected). The estima-
tion mean error of ligand bias caused by the mis-

specification of Em appears therefore to be largely cancelled
out via the normalization process.

The influence of mis-specified KA. As shown for the mis-
specification of Em, we can exactly determine the effect of
the mis-specification of KA on estimation mean error
(detailed in Appendix B). Through the derivation, it is
evident that the mis-specification of KA would lead to
inaccurate estimation of R. However, again, this affects all
ligands in question equally, and hence, estimation of
Δ log (R) remains accurate.

When the slope factor was different from unity, we per-
formed a stochastic simulation-estimation study to explore
the influence of the mis-specification of KA. In Figure 2, it is
demonstrated that Δ log (R) calculated from method III (red)
is essentially accurate, even when the slope factor n departs
from unity. It is also seen that arbitrarily assigning KA to 1-
mol·L�1 (method III, red line) is indistinguishable from the
result produced from plugging in the true values of KA

(method II, blue line), indicating that the influence of this
mis-specification of KA on the quantification of ligand bias
is trivial.

Assessment of the relaxation of the need for a
full agonist in quantifying functional
selectivity
It was shown in the deterministic identifiability analysis that
estimation of log(R) after fixing Em (method I) or fixing KA

(method II) became less precise in the absence of highly effi-
cacious ligands (Table 5). Moreover, the application of
method III was restricted, by definition, to cases wherein a
full agonist (highly efficacious ligand) was used in the exper-
iment. Method IV was proposed to relax the need for a full
agonist in method III. In this case, Em was taken to be the
highest efficacy level observed within the range of ligands
considered.

Figure 2
Values of Δ log (R), with its 95% CI, over different values of n. The
green line shows the true value. Dashed line indicates the median es-
timated value and the dash-dot line the 95% CI of estimated value.
Blue indicates the method of assigning KA to measured values from
binding assay (method II); red indicates the method of arbitrarily fix-
ing KA of full agonists to 1 (method III). The successful estimation
rates of three methods were all higher than 95%.

Figure 3
Performance comparison of method IV and other estimation methods. (A) The successful estimation rates for three estimation methods over the
range of n. Method I involves assigning Em to known system maximal response; Method II involves assigning KA to measured values from binding
assay; Method IV involves arbitrarily fixing KA of pseudo full agonists to 1. (B) Values of Δ log (R), with its 95 % CI, over the normal range of n for
Method IV. Green line indicates the true value. Dashed line indicates the median value of estimated value. Dash-dot line indicates the 95% CI of
estimated value.
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A stochastic simulation-estimation study was performed
to compare the performance of method IV with other estima-
tion methods, that is, methods I (Em set to the system maxi-
mal response) and II (KA set to the value from a previous
binding experiment). Method III was excluded from this
comparison because it, by definition, could only be applied
to the case that a full agonist was present.

Themethod IV estimation of log(R) was found to be robust
(using GraphPad Prism v7.0), with a successful estimation
rate close to 100%. Methods I and II, however, had quite poor
rates of successful estimation (less than 60%), especially for
large values of n (Figure 3A). This suggests that method IV is
more robust than typical analysis methods. Furthermore, in
Figure 3B, it was clear that the Δ log (R) calculated using
method IV was either accurate or minimally inaccurate
within the normal range of n (from 0.5 to 2).

An exact numerical evaluation (detailed in Appendix C)
supports these findings, showing that method IV yields an ac-
curate Δ log (R). As demonstrated before, the influence of mis-
specified KA can be cancelled out through the normalization
process. Hence, the estimation of Δ log (R) is accurate using
method IV. As demonstrated in Appendix C, fixing KA for a
given partial agonist to an arbitrarily large value (1 mol·L�1)
forces the apparent value of τ (τ

0
) to be sufficiently large for es-

timation of R to be precise, despite its lower efficacy. Further-
more, it is noted in the deterministic identifiability analysis
that a large value of τ contributes to the precise estimation
of transduction coefficient (R). Hence, R and thereforeΔ log (R)
can be precisely estimated in method IV.

Discussion and conclusions
Functional selectivity describes the ability of ligands to differ-
entially regulate several different signalling pathways when
coupled to a single receptor (Clarke and Berg, 2010). This is
a complicated pharmacological process involving multiple
biological steps (e.g. receptor binding, cellular and intracellu-
lar signalling), and how these multiple signalling pathways
interact with the receptor is still unclear (Kenakin and
Christopoulos, 2013b). Due to the complexity of functional
selectivity, the implementation of a full model that can ac-
commodate multiple receptor states where each state links
to a signalling pathway remains impractical (Weiss et al.,
1996; Ehlert, 2008; Stein and Ehlert, 2015). Therefore, it has
been necessary to use a simplified model. Several simplified
models have been proposed, such as the three-state model
(Leff et al., 1997), the operational model (Black and Leff,
1983), the operational model with non-zero constitutive ac-
tivity (Slack and Hall, 2012) and the conformation-based op-
erational model (Roche et al., 2013). Among them, the
simplest version is the operational model (Black and Leff,
1983), which has been widely used to quantify functional se-
lectivity (Kenakin et al., 2012).

The purpose of the current study is to gain a more in-
depth understanding of the application of the operational
model for quantification of functional selectivity. To do this,
we first systematically assessed identifiability of the opera-
tional model and the general operational model (where basal
and system maximum are also considered as parameters). In
so doing, additional rationale has been provided for

utilization of current metrics for the quantification of func-
tional selectivity. Second, current estimation methods for
the quantification of ligand bias were evaluated via both ex-
act (algebraic) and numerical (stochastic simulation-
estimation) approaches, with the goal of providing a better
understanding of the effect of parameter mis-specification.
Finally, based on the insights from these evaluations, the
current method was further generalized into a more robust
and objective procedure that has the potential to simplify
current analyses.

In many cases, metrics arise from a need to solve the
mathematical issue of quantification. For instance, the pa-
rameter τ was introduced to reduce two entangled parame-
ters, R0 and KE, into one single parameter (Black and Leff,
1983). While this parameter may not have biological mean-
ing, its form is a necessary part of the application of the op-
erational model. Likewise, the transduction coefficient R,
the ratio of τ to KA, was initially constructed to simulta-
neously account for both affinity and efficacy of a ligand
(Kenakin and Miller, 2010). However, we see that this was
also required mathematically to ensure that the model pa-
rameters were able to be estimated with reasonable preci-
sion. The issue of parameter estimation is only evident for
highly efficacious ligands, where the value of τ is sufficiently
large (say, 10) such that the model collapses to the ratio of τ
to KA (namely, R). In other words, with only functional re-
sponse assay data (and no binding data), R is the minimal el-
ement that can be directly derived from the operational
model.

The normalized transduction coefficient, Δ log (R), was
initially designed to cancel out the system bias and observa-
tion bias in the in vitro assays (Kenakin et al., 2012). Through
our analysis, we have found that this metric could also cancel
out the possible estimation mean error introduced by the
mis-specification of fixed parameters. In other words, the
value of Δ log (R) would be accurate even when Em and KA

were unknown and their values fixed (hence mis-specified).
This makes Δ log (R) an important, robust quantity in current
practice. Therefore, there is no need to run a separate assay to
determine an accurate estimate of Em or KA, when the aim of
study is to quantify ligand bias based on ΔΔ log (R). In so do-
ing, our work helps alleviate the concern that may arise on
fixing KA to a non-physiological value (1 mol·L�1), instead
of plugging in realistic value estimated from binding assay
(Rajagopal, 2013; Onaran et al., 2014).

In this work, we propose a generalization of the accepted
method III, whereby each experiment must include a full ago-
nist which is used as an approximation to the systemmaximum
(Em). Compared to the accepted method, the only modification
made in the proposed method (method IV) is to relax the re-
quirement of a full agonist and select the ligand with the
highest efficacy level among the tested ligands as if it were a full
agonist (termed a ‘pseudo full agonist’). Hence, method IV in-
herits most of the advantages and limitations of method III;
only functional assay data are required, and the estimation of
operational model parameters is inaccurate but tolerated due
to the subsequent normalization. We also found that method
IV provides more precise estimation results even in the absence
of highly efficacious ligands. As efficacy profiling of ligands is
not required, method IV (using the maximum effect from the
entire range of ligands as an approximation to the system Em)
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therefore has the potential to be applied to large-scale screening
to accelerate the discovery of novel lead compounds with desir-
able features of functional selectivity.

The choice of the various methods (I–IV) for estimating
the parameters from the operational model largely depends
on the aim of the work and the available data. If the aim is
solely to calculate, Δ log (R) and/or ΔΔ log (R) for the quantifi-
cation of ligand bias, it is our recommendation that method
IV be chosen. However, if an accurate estimate of Em, KA, R
and τ is the target, then methods I or II would be more appro-
priate. In addition, with more information at hand (e.g. bind-
ing assay data and separate Em information), it is possible to
gain insights into the system via methods I or II, which is
not available from methods III or IV where these values are
compressed (Buchwald, 2017).

A limitation of the current study is that we did not con-
sider biological constraints associated with different path-
ways. In this work, we consider a range of values of n to
encompass values that are seen in empirical applications of
the operational model. We do not attempt to provide amech-
anistic interpretation of the value. Method II, in its original
form (Rajagopal et al., 2011), fixes the KA from different path-
ways to the same empirical dissociation constant, determined
from a binding assay under conditions that would limit the
formation of a receptor ternary complex. However, the feasi-
bility of this biological constraint is still under debate
(Rajagopal, 2013; Kenakin and Christopoulos, 2013a). There
is emerging evidence that a single value of KA cannot de-
scribe data from a ligand that acts as the weak agonists in
two pathways with very different EC50 values (Kenakin and
Christopoulos, 2013a). Through the theoretical analysis
from (cubic) ternary complex model, the binding affinity
of agonist can be affected by allosteric modulation of effec-
tor (G protein) and different receptor states (Weiss et al.,
1996; Ehlert, 2008; Stein and Ehlert, 2015). This may ex-
plain the reason why a single binding affinity may be insuf-
ficient to describe a biological system. Therefore, in the
evaluation of the methods in this work, we allowed the KA

values to be different in different pathways. In so doing,
the performance of the current method II (without the po-
tentially necessary biological constraint on KA) should al-
ways be superior to its original version (which included
the biological constraint).

It is noted that in Figure 2 that the 95% CI becomes
narrower along the range of evaluated n values (i.e. yields
more precise parameter estimation). Yet, in Figure 3A, there
is a decrease in the successful estimation fraction with an in-
crease in n, and Figure 3B shows wider 95% CI with the incre-
ment of n (i.e. less precise estimation). These directly opposite
behaviours may be due to the difference of the ligand efficacy
in two scenarios presented in the two figures. Figure 2 is a case
of a highly efficacious ligand (large value of τ, τ is greater than
1) whereas Figure 3 considers low efficacious ligands (low
value of τ, τ is less than 1). From the equation Emax

Em
¼ τn

τnþ1, when

τ is greater than 1, the increment of n would increase the
value of τn

τnþ1 (more efficacious), while, when τ is less than 1,
the increment of n would decrease the value (less efficacious).
Hence, it is speculated that for the same method, more effica-
cious ligands will have a narrower 95% CIs (i.e. more precise
estimation).

Our work provides a formal assessment of the issues
pertaining to identifiability and other mathematical observa-
tions that have been raised by others (Ehlert, 2005; Kenakin
et al., 2012; Rajagopal, 2013; Kenakin and Christopoulos,
2013a; van der Westhuizen et al., 2014). For instance, it was
noted that two different parameter sets were able to produce
nearly identical curves in the general operational model
(Kenakin et al., 2012), which is a function of observability
(rather than identifiability, per se). It has also been reported
that separate estimation of τ or KA values for full agonists
from direct fitting of the operational model to a
concentration–response curve was usually not possible
(Rajagopal, 2013; van der Westhuizen et al., 2014), which
was explored here with deterministic identifiability. To our
knowledge, the current study provides the first formal as-
sessment of the identifiability of commonly used models
in functional selectivity, illustrating the utility of
identifiability analysis tools developed in the field of
pharmacometrics (Bazzoli et al., 2010; Shivva et al., 2013).
This recent trend in quantitative pharmacology sees the de-
velopment of more mechanism-based models, which are in-
evitably more complicated in their interrelationships but
are built from the building blocks provided by standard re-
ceptor theory (Wajima et al., 2009; Peterson and Riggs,
2012; Benson et al., 2014). It is therefore likely that the
models explored here, based on the operational model, will
form the basis of many other models within quantitative
systems pharmacology, which require appropriate mathe-
matical underpinning.

In conclusion, we have systematically assessed the
identifiability of the operational model and its variants and
demonstrated that current methods for quantifying ligand
bias is tolerant to mis-specification of those parameters that
are set to fixed constants. Furthermore, an objective method
is proposed that relaxes the need for specific choice of ligands
in any given experiment and provides accurate estimates of
biased ligand profiles.

Acknowledgements

X.Z. was supported by University of Otago Doctoral
Scholarship.

Author contributions
X.Z. designed and performed experiments, analysed the data
and wrote the paper. D.B.F. analysed the data and wrote the
paper. M.G. designed experiments, analysed the data and
wrote the paper. S.B.D. designed experiments, analysed the
data and wrote the paper.

Conflict of interest
The authors declare no conflicts of interest.

X Zhu et al.

1664 British Journal of Pharmacology (2018) 175 1654–1668



Declaration of transparency and
scientific rigour
This Declaration acknowledges that this paper adheres to the
principles for transparent reporting and scientific rigour of
preclinical research recommended by funding agencies, pub-
lishers and other organisations engaged with supporting
research.

References

Bazzoli C, Retout S, Mentre F (2010). Design evaluation and
optimisation in multiple response nonlinear mixed effect models:
PFIM 3.0. Comput Methods Programs Biomed 98: 55–65.

Bellman R, Åström KJ (1970). On structural identifiability. Math
Biosci 7: 329–339.

Benson N, Metelkin E, Demin O, Li GL, Nichols D, van der Graaf PH
(2014). A systems pharmacology perspective on the clinical
development of fatty acid amide hydrolase inhibitors for pain. CPT
Pharmacometrics Syst Pharmacol 3: e91.

Black JW, Leff P (1983). Operational models of pharmacological
agonism. Proc R Soc Lond B Biol Sci 220: 141–162.

Buchwald P (2017). A three-parameter two-state model of receptor
function that incorporates affinity, efficacy, and signal amplification.
Pharmacol Res Perspect 5: e00311.

Clark AJ (1926). The antagonism of acetyl choline by atropine. J Physiol
61: 547–556.

Clarke WP, Berg KA (2010). Use of functional assays to detect
and quantify functional selectivity. Drug Discov Today Technol
7: e31-e36.

Clarke WP, Bond RA (1998). The elusive nature of intrinsic efficacy.
Trends Pharmacol Sci 19: 270–276.

Ehlert FJ (2005). Analysis of allosterism in functional assays.
J Pharmacol Exp Ther 315: 740–754.

Ehlert FJ (2008). On the analysis of ligand-directed signaling at G
protein-coupled receptors. Naunyn Schmiedebergs Arch Pharmacol
377: 549–577.

Evans BA, Broxton N, Merlin J, Sato M, Hutchinson DS,
Christopoulos A et al. (2011). Quantification of functional selectivity
at the human α1A-adrenoceptor. Mol Pharmacol 79: 298–307.

Guedj J, Thiebaut R, Commenges D (2007). Practical identifiability of
HIV dynamics models. Bull Math Biol 69: 2493–2513.

Kenakin T (2014). A Pharmacology Primer: Techniques for More
Effective and Strategic Drug Discovery. Elsevier, Amsterdam.

Kenakin T, Christopoulos A (2013a). Measurements of ligand bias
and functional affinity. Nat Rev Drug Discov 12: 483.

Kenakin T, Christopoulos A (2013b). Signalling bias in new drug
discovery: detection, quantification and therapeutic impact. Nat Rev
Drug Discov 12: 205–216.

Kenakin T, Miller LJ (2010). Seven transmembrane receptors as
shapeshifting proteins: the impact of allosteric modulation and
functional selectivity on new drug discovery. Pharmacol Rev 62:
265–304.

Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S
(2012). A simple method for quantifying functional selectivity and
agonist bias. ACS Chem Nerosci 3: 193–203.

Lavielle M, Aarons L (2016). What do we mean by identifiability in
mixed effects models? J Pharmacokinet Pharmacodyn 43: 111–122.

Leff P, Scaramellini C, Law C, McKechnie K (1997). A three-state
receptor model of agonist action. Trends Pharmacol Sci 18: 355–362.

Onaran HO, Rajagopal S, Costa T (2014). What is biased efficacy?
Defining the relationship between intrinsic efficacy and free energy
coupling. Trends Pharmacol Sci 35: 639–647.

Peterson M, Riggs M (2012). Predicting nonlinear changes in bone
mineral density over time using a multiscale systems pharmacology
model. CPT Pharmacometrics Syst Pharmacol 1: 1–8.

Rajagopal S (2013). Quantifying biased agonism: understanding
the links between affinity and efficacy. Nat RevDrugDiscov 12: 483–483.

Rajagopal S, Ahn S, Rominger DH, Gowen-MacDonald W, Lam CM,
DeWire SM et al. (2011). Quantifying ligand bias at seven-
transmembrane receptors. Mol Pharmacol 80: 367–377.

Roche D, Gil D, Giraldo J (2013). Multiple active receptor
conformation, agonist efficacy and maximum effect of the system:
the conformation-based operational model of agonism. Drug Discov
Today 18: 365–371.

Shivva V, Korell J, Tucker IG, Duffull SB (2013). An approach for
identifiability of population pharmacokinetic-pharmacodynamic
models. CPT Pharmacometrics Syst Pharmacol 2: e49.

Slack RJ, Hall DA (2012). Development of operational models of
receptor activation including constitutive receptor activity and their
use to determine the efficacy of the chemokine CCL17 at the CC
chemokine receptor CCR4. Br J Pharmacol 166: 1774–1792.

Stein RS, Ehlert FJ (2015). A kinetic model of GPCRs: analysis of G
protein activity, occupancy, coupling and receptor-state affinity
constants. J Recept Signal Transduct 35: 269–283.

Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B,
Weinstein H et al. (2007). Functional selectivity and classical
concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:
1–13.

van derWesthuizen ET, Breton B, Christopoulos A, Bouvier M (2014).
Quantification of ligand bias for clinically relevant β2-adrenergic
receptor ligands: implications for drug taxonomy. Mol Pharmacol 85:
492–509.

Wajima T, Isbister GK, Duffull SB (2009). A comprehensive model for
the humoral coagulation network in humans. Clin Pharmacol Ther
86: 290–298.

Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996). The cubic
ternary complex receptor–occupancy model I. Model description.
J Theor Biol 178: 151–167.

Appendix A

Theoretical assessment of the influence of the
mis-specified Em on the quantification of ligand
bias
From Equation A1

E ¼ Basalþ Em � Basalð Þ·τ·A
KA þ τ þ 1ð Þ·A (A1)
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the location and asymptote are defined as follows:

Basaliobs ¼ Basal (A2)

Emax;iobs ¼ Basalþ Em � Basalð Þ·τi
τi þ 1

(A3)

EC50;iobs ¼
KAi

τi þ 1
(A4)

Here, Basal and Em were the true system parameter values
shared by all ligands, and τi and KAi were the true parameter
values for ith ligand.

Since these constraints (i.e. Equations A2–A4) need to be
met by all the workable parameter sets, the links between true
parameter values andmis-specified parameter values were set-
up as follows:

Basal
0 ¼ Basal (A5)

Basal
0 þ

E
0
m � Basal

0� �
·τ

0
i

τ 0i þ 1
¼ Basalþ Em � Basalð Þ·τi

τi þ 1
(A6)

KA
0
i

τ0i þ 1
¼ KAi

τi þ 1
(A7)

Here, the prime symbol denotes the corresponding mis-
specified parameter values.

The general form for the mis-specified value of Em was de-
fined as follows:

E
0
m ¼ α· Em � Basalð Þ þ Basal (A8)

Here, α is a scalar that quantifies the difference be-
tween true parameter value (Em) and mis-specified parame-

ter value (E
0
m ). The value of α should be larger than the

maximal value of τi
τiþ1. Doing so ensures that E

0
m is larger

or equal to the maximal observed response among all
the ligands.

Substituting Equations A5 and A8 into Equations A6–A7

for ligand one yielded the expressions for τ
0
1 and K

0
A1:

τ
0
1 ¼ τ1

α τ1 þ 1ð Þ � τ1
(A9)

K
0
A1 ¼ αKA1

α τ1 þ 1ð Þ � τ1
(A10)

By definition, R (transduction coefficient) is the ratio be-

tween τ and KA. So R
0
1 was calculated as follows:

R
0
1 ¼ τ

0
1

K
0
A1

¼
τ1

α τ1þ1ð Þ�τ1
αKA1

α τ1þ1ð Þ�τ1

¼ τ1
αKA1

¼ R1

α
(A11)

Similarly, R
0
2 was derived as follows:

R
0
2 ¼ R2

α
(A12)

Finally, Δ log (R
0
) was derived by taking the difference be-

tween two ligands:

Δ log R
0� �

¼ log R
0
1

� �
� log R

0
2

� �
¼ log

R1

α

� �
� log

R2

α

� �
¼ log R1ð Þ � log R2ð Þ ¼ Δ log Rð Þ

(A13)

Through the derivation above, mis-specified value of Em
would lead to inaccurate estimation of R, while the estima-
tion of Δ log (R) could still be accurate when the slope factor
was equal to unity. The estimation mean error caused by the
mis-specification of Em has been fully cancelled out in this sit-
uation. In other words, the estimation of Δ log (R) was robust
to the mis-specification of Em.

Appendix B

Theoretical assessment of the influence of the
mis-specified KA on the quantification of ligand
bias
In a two ligand system, choosing the ligand with higher effi-
cacy as the reference ligand and fixing its equilibrium dissoci-
ation constant to an arbitrary large value yielded
Equation A14:

K
0
A1 ¼ β·KA1 (A14)

Here, β was the scaling factor quantifying the difference
between true parameter value (KA1) and mis-specified param-

eter value (K
0
A1). The value of β should be larger than 1.

Substituting Equation A5 and A14 into Equations A6–A7
and solving the equation set for ligand one yields the expres-
sions for other parameters:

τ
0
1 ¼ β· τ1 þ 1ð Þ � 1 (A15)

E
0
m ¼ γ· Em � Basalð Þ þ Basal (A16)

Here, γ was equal to βτ1
β· τ1þ1ð Þ�1.

By definition, R (transduction coefficient) was the ratio

between τ and KA. So R
0
1 was calculated as follows:

R
0
1 ¼ τ

0
1

K
0
A1

¼ β· τ1 þ 1ð Þ � 1
β·KA1

¼ β· τ1 þ 1ð Þ � 1
β·τ1

·
τ1
KA1

¼ R1

γ
(A17)

At the same time, Basal
0
and E

0
m were system parameters

shared between two ligands. Substituting them into
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Equations A6 and A7 for ligand two yielded the expressions

for τ
0
2 and K

0
A2:

K
0
A2 ¼ γ·KA2

γ· τ2 þ 1ð Þ � τ2
(A18)

τ
0
2 ¼ τ2

γ· τ2 þ 1ð Þ � τ2
(A19)

Similarly, R
0
2 was derived:

R
0
2 ¼ τ

0
2

K
0
A2

¼
τ2

γ τ2þ1ð Þ�τ2
γKA2

γ τ2þ1ð Þ�τ2

¼ τ2
γKA2

¼ R2

γ
(A20)

Combining Equations A17 and A20 yielded the expres-
sion for Δ log (R

0
):

Δ log R
0� �

¼ log R
0
1

� �
� log R

0
2

� �
¼ log

R1

γ

� �
� log

R2

γ

� �
¼ log R1ð Þ � log R2ð Þ ¼ Δ log Rð Þ

(A21)

Through the derivation above, it was clearly shown that a
mis-specified value of KA could lead to inaccurate estimation
of R, while the estimation of Δ log (R) was still accurate when
the slope factor was equal to unity. The estimationmean error
caused by the mis-specification of KA has been completely
cancelled out via normalization process.

Appendix C

Theoretical assessment of the feasibility of
method IV
Method IV could be considered a natural generalization of
method III. The requirement of full agonist was relaxed into
the ligand with highest efficacy among all the ligands in the
study.

The general operational model has only one unidentifi-
able parameter, that is, fixing either Em or KA will render the
model structurally identifiable. Therefore, with mis-specified
KA, the estimated values of other parameters have to change
accordingly in line with the constraints from observed fea-
tures of the concentration response curve (e.g. Emax and
EC50).

The location parameter EC50 of the general operational
model was derived as follows:

EC50 ¼ KA

2þ τnð Þ1n � 1
(A22)

Similarly, this constraint should also be applied to the case
that KA was fixed to 1 mol·L�1, as shown in Equation A23.

EC50 ¼ 1

2þ τ 0n
� �1

n � 1
(A23)

Transforming Equation A23 yielded the expression for the
apparent value of τ (denoted here as τ

0
) when KA was mis-

specified to 1 mol·L�1:

τ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

EC50
þ 1

� �n

� 2
n

s
(A24)

As the normal value of EC50 was much smaller than
1 mol·L�1 (10�4~10�12 mol·L�1), the apparent value (τ

0
) ap-

peared to be much larger than 1. In other words, setting KA

to 1 ensured the apparently high efficacy of the ligand. In
method IV, fixing KA to 1 mol·L�1 was not the result from a
full agonist, but rather a ‘pseudo full agonist’ was created
by fixing KA to 1 mol·L�1 for the highest efficacy agonist in
the set of compared agonists. Furthermore, as noted in the
previous deterministic identifiability analysis, the large
apparent value of τ (i.e. highly efficacious ligand) could
also substantially improve the estimation precision of
parameter R.

Method IV could also be considered as the generalization
of method I. The asymptote parameter Emax of the general op-
erational model was derived as follows:

Emax ¼ Em·τn

1þ τn
(A25)

Similarly, this constraint should also be applied to the
pseudo full agonist, as shown in Equation A26.

Emax ¼ E
0
m·τ

0n

1þ τ0n
(A26)

Reorganizing Equations A26 yields A27:

E
0
m ¼

Emax· 1þ τ
0n

� �
τ0n

(A27)

As demonstrated before, when KA was assigned to 1-
mol·L�1, the apparent value of τ (τ

0
) was much larger than 1.

Therefore,
Emax· 1þτ

0 n� �
τ0 n

could be reduced to Emax, that is, Em
was implicitly fixed to the Emax value of the pseudo full ago-
nist in method IV, rather than the system maximal response.
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the supporting information tab for this article.
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Figure S1 log|MF| vs. log residual variance for operational
model. A) all parameters estimated from operational model
(Eq. 1) with data from functional assay; B) reduced opera-
tional model (Eq. 5) with data from functional assay. |MF|:
the determinant of the Fisher Information Matrix. The
criteria for claiming identifiability of a model: (i) log|MF|
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should have a continuous linear log–log relationship with the
log of the random noise and (ii) |MF| should approach infinity
as residual variance approaches zero.
Figure S2 The relative standard error of estimated parame-
ters vs. τ for Eq. 8. In this study, a generic study design with
sampling concentrations log (A) from �13 to �4, increment
of 1, was adopted. A proportional measurement error with
10% coefficient of variation were assumed. KA was set to an
arbitrary value, 10�8 mol L�1. R was defined as the ratio of τ
and KA. The deterministic identifiability was assessed for each
value of, ranging from 0.1 to 100. The left panel is for KA and
the right panel is for R. The red dashed line indicates the 50%

relative standard error, considered as the threshold for precise
estimation.
Figure S3 log|MF| vs. log residual variance for general opera-
tional model (Eq. 2). A) all parameters estimated (Em, Basal, n,
log (KA), log (R)); B) Em fixed; C) log (KA) fixed; D) log (R) fixed.
Figure S4 Concentration–response curves for cAMP forma-
tion showing pplss-3HA-hCB1 HEK signalling, on stimula-
tion with 2.5 μM FSK and a panel of six agonists, following
>16 h pretreatment in the presence of PTX. The data is fitted
by Method IV.
Table S1 The estimation of transduction coefficient (log (R))
via Method IV.

X Zhu et al.

1668 British Journal of Pharmacology (2018) 175 1654–1668


