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Summary
Background: Anatomical and molecular data can be acquired simultaneously 
through the use of positron emission tomography (PET) in combination with 
 computed tomography (CT) or magnetic resonance imaging (MRI) as a hybrid 
 technique. A variety of radiopharmaceuticals can be used to characterize various 
metabolic processes or to visualize the expression of receptors, enzymes, and other 
molecular target structures. 

Methods: This review is based on pertinent publications retrieved by a selective 
search in PubMed, as well as on guidelines from Germany and abroad and on 
 systematic reviews and meta-analyses.

Results: Established radiopharmaceuticals for PET, such as 2-[18F]fluoro-2-
 deoxyglucose ([18F]FDG), enable the visualization of physiological processes on the 
molecular level and can provide vital information for clinical decision-making. For 
example, PET can be used to evaluate pulmonary nodules for malignancy with 95% 
sensitivity and 82% specificity. It can be used both for initial staging and for the 
 guidance of further treatment. Alongside the PET radiopharmaceuticals that have 
 already been well studied and evaluated, newer ones are increasingly becoming 
available for the noninvasive phenotyping of tumor diseases, e.g., for analyzing the 
expression of prostate-specific membrane antigen (PSMA), of somatostatin 
 receptors, or of chemokine receptors on tumor cells. 

Conclusion: PET is an important component of diagnostic algorithms in oncology. It 
can help make diagnosis more precise and treatment more individualized. An 
 increasing number of PET radiopharmaceuticals are now expanding the available 
options for imaging. Many radiopharmaceuticals can be used not only for non-
 invasive analysis of the expression of therapeutically relevant target structures, but 
also for the ensuing, target-directed treatment with radionuclides. 
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C linical molecular imaging permits the in vivo 
 characterization of biological processes on a cellu-
lar and molecular level (1, 2, e1). To this end, 

 molecular imaging in nuclear medicine uses the highly 
selective binding or metabolization of radioactively 
 labeled molecules to, e.g., visualize the expression of sur-
face receptors or cell metabolism. As part of this, only 
trace amounts of the substance are injected, meaning that 
pharmacological effects are unlikely and physiological 
metabolic processes are not affected. 

Methods
Against the backdrop of the authors‘ many years of 
scientific and specialist clinical experience, this over-
view is based on a selective literature search in 
PubMed. The search terms included: “pos itron 
emission tomography + PET,” “radiopharmaceutical,” 
“radiotracer,” “fluorodeoxyglucose + FDG,” “prostate 
specific membrane antigen + PSMA,” “so matostatin 
receptor.” Randomized controlled trials in particular 
were taken into consideration, and current guidelines 
were also included.

PET in oncology
Positron emission tomography (PET) offers an imaging 
technique in nuclear medicine imaging that enables the 
visualization of (often functional) molecular in-
formation (3, e1). Today, PET is almost exclusively 
performed as a hybrid procedure in the context of 
multimodal imaging, either in combination with com-
puted tomography (PET/CT) or magnetic resonance 
imaging (PET/MRI) (4). This procedure has become a 
central component of the diagnostic algorithms used in 
oncology (Table). 

Producing radiopharmaceuticals for PET is 
 complex, in addition to which central distribution is 
limited due to the half-life of the respective nuclides. 
PET radiopharmaceuticals are primarily labeled with 
the positron emitters fluorine-18  (18F) or gallium-68 
(68 Ga). The positron is the antiparticle of the electron, 
from which it differs only in terms of the sign of the 
electric charge and the magnetic moment. If the 
 positively charged positron and negatively charged 
electron meet in tissue, annihilation occurs, whereby 
the two particles are converted into two photons of 
511 keV each. The angle between the two emission 
directions is approximately 180° (5). These two 
photons are ultimately detected in the ring of PET 
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TABLE

Selected clinical indications for positron emission tomography (PET) in oncology

Possible indications for PET in oncological diseases are shown. Examples of tumor entities have been taken into consideration for which an S3 guideline is available in the oncology guideline 
program of the German Cancer Society/German Cancer Aid (Deutsche Krebsgesellschaft/Deutsche Krebshilfe), as well as laryngeal cancer and neuroendocrine tumors that are not currently 
 accounted for in this program.
*1 Featured in the guideline on methods of outpatient and inpatient treatment (lung cancer, Hodgkin‘s lymphoma, laryngeal cancer, head and neck tumors) or in specialized outpatient care 

 (esophageal cancer and colorectal cancer) 
*2 Not all indications
*3 Randomized controlled clinical trial

Tumor entity

Lung cancer*1

Hodgkin‘s 
 lymphoma*1,*2

Head and neck
tumors*1

Laryngeal cancer*1

Esophageal cancer*1

Adenocarcinoma of 
the esophagogastric 

junction

Colorectal cancer*1

Cervical cancer

Breast cancer

Malignant ovarian 
cancer

Melanoma

Chronic lymphocytic 
leukemia

Prostate cancer

Gastroenteropancre-
atic neuroendocrine 

tumors

Indication 

Characterization of pulmonary nodules,  
particularly in patients at high risk for surgery  

Staging of primary non-small-cell and small-cell lung cancer 

Recurrence diagnosis in primary non-small-cell and small-cell lung 
cancer

Prior to treatment initiation, early treatment response;  
following treatment completion, recurrence diagnosis

Decision on whether to perform neck dissection 

Decision on whether to perform laryngoscopic biopsy in suspected 
persistent disease or recurrence following completion of treatment 

with curative intent  

Detection of distant metastases

Advanced staging following conventional staging

Prior to resection of liver metastases with the aim of avoiding 
 unnecessary laparotomy

Specific investigations in the setting of recurrence,  
e.g., prior to salvage surgery

Diagnosis of metastasis in clinical abnormalities/equivocal findings 
with other imaging techniques

Staging and diagnosis of recurrence

In suspected or proven stage IIC and III locoregional metastasis

Selection of biopsy area in cases of Richter‘s transformation

Diagnosis of recurrence following primary treatment

Localization, staging, and diagnosis of recurrence

Radiophar-
maceutical

18F-FDG

18F-FDG

18F-FDG

18F-FDG

18F-FDG

18F-FDG

18F-FDG

18F-FDG

18F-FDG

18F-FDG

18F-FDG

18F-FDG

68Ga/18F -
-PSMA 
ligands

68Ga- 
DOTA-TATE/-

TOC/-NOC

Featured in guidelines

S3 guideline  
on lung cancer  (12)

S3 guideline on
Hodgkin‘s lymphoma (e7)

S3 guideline on oral 
cancer  (e10)

(no German S3 guidelines 
on laryngeal cancer 
 currently available)

S3 guideline on esopha-
geal cancer (e15)

S3 guideline on gastric 
cancer  (e19)

S3 guideline on colorectal 
cancer  (e22)

S3 guideline on cervical 
cancer  (e25)

S3 guideline on breast 
cancer  (e28)

S3 guideline on malignant 
ovarian cancer (e32)

S3 guideline on
melanoma  (e36)

S3 guideline on chronic 
lymphocytic leukemia  

(e40)

S3 guideline on prostate 
cancer  (27)

ENETS guidelines  (33, 
e43)

Selected
publications

(6*3, 13–15, e5*3, 
e6*3)

(7*3, 16, e8, e9)

(17*3, e11–e13)

(e14*3, e11)

(e16–e18)

(e20, e21)

(e23*3, e24*3)

(e26*3, e27)

(e29–e31)

(e33–e35)

(e37–e39)

(e41, e42)

(21, 22, 25, 28)

(31, 32)
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 detectors in opposite scintillators and form the basis 
for the localization of the site of decay in the recon-
structed PET image. 

By imaging the individual molecular phenotype, 
PET makes it possible to investigate oncologically 
relevant questions—such as the differentiation 
 between benign and malignant lesions, initial staging, 
primary tumor detection, early detection of 
 recurrence, as well as treatment response assess-
ment—quantitatively and, in particular, earlier and 
more precisely compared with other techniques. The 
technology behind PET makes the method more 
 sensitive in the detection of even small tumors com-
pared with other imaging methods and, since both 
molecular information and size are taken into account 
in lesion characterization, it is able to differentiate 
these more specifically. A number of radiopharma-
ceuticals are now available to this end. In particular, 
early stage diagnosis (e.g., lung cancer [6]) and the 
assessment of tumor response to treatment (e.g., 
lymphomas [7]) have been enhanced by this form of 
metabolic imaging.

A number of radiopharmaceuticals can be labeled 
either with a diagnostic radionuclide such as 
 gallium-68 or, alternatively, with a suitable thera-
peutic radionuclide such as the β-emitter lutetium-177 
(177Lu) (8, 9). This offers the possibility to non-
 invasively analyze expression of the target molecular 
structure using PET imaging, followed by targeted 
radionuclide therapy.

This article provides an overview of diagnostic 
radiopharmaceuticals frequently used in oncological 
PET investigations, illustrates examples of guideline-
compliant clinical applications, and presents a selec-
tion of other radiopharmaceuticals.

Radiopharmaceuticals for PET
Glucose metabolism imaging
As a radiopharmaceutical that can be used universally, 
the glucose analog 2-18F-fluoro-2-deoxyglucose 
(18F-FDG) is the one most frequently used in clinical 
routine, since it is metabolized by numerous tumor 
 entities as well as other cell types such as, e.g., macro-
phages. The hallmark of many malignant tumors is 
 increased aerobic glycolysis, in the course of which 
glucose is metabolized to form adenosine-5‘ triphos-
phate (ATP). This characteristic property of tumor cells 
was first described by Otto Warburg in the 1920s (10). 
As part of this process, glucose is taken up by the 
 insulin-independent glucose transporters 1 and 3 
(GLUT1 and GLUT3), which are overexpressed in 
many tumor cells (11). 

The main indications for 18F-FDG PET in oncol-
ogy include:
● Management of invasive diagnostic methods in 

 localized cancer
● Differentiation between benign and malignant 

lesions
●  Initial staging of malignant tumors
●  Detection of unknown primary tumors

● Detection of recurrence
● Early response assessment and therapy surveil-

lance.
The use of 18F-FDG PET can be illustrated using 

oncological lung investigations as an example. 
 According to the current S3 guideline, solitary 
 pulmonary nodules measuring >8–10 mm should be 
investigated using 18F-FDG PET in patients at in-
creased risk for surgery if diagnosis is not possible 
using invasive diagnostic methods (12). In a meta-
analysis, 18F-FDG PET showed a sensitivity of 0.95 
and a specificity of 0.82 in the diagnosis of malignant 
nodules (13). This differentiation between benign and 
malignant findings makes it possible to avoid further 
invasive measures and their attendant morbidity and 
potential mortality. In the case of lung cancer with an 
indication for curative treatment, 18F-FDG PET 
should be used for mediastinal and extrathoracic 
 staging, since it currently represents the most sensi-
tive and specific imaging-based staging technique 
(14). It has high sensitivity in the detection of loco -
regional and distant metastasis (Figure 1), particularly 
due to the additional detection of metastases unsus-
pected in previous staging including contrast-
 enhanced CT of the chest and upper abdomen (15). 
The use of 18F-FDG PET in lung cancer significantly 
reduces the rate of futile thoracotomies (e.g., recur-
rence, distant metastasis, or death within 12 months 
of surgery); the use of PET in the Dutch randomized 
controlled PLUS study made it possible to avoid 
 futile thoracotomy in 20% of patients with non-small 
cell lung cancer (21% compared with 41% of patients 
in the group that did not undergo PET; relative risk 
 reduction of 51%, p = 0.003) (6).

As a parameter of vitality, 18F-FDG PET has 
 become firmly established in the staging, treatment 
response assessment, and therapy surveillance of 

Figure 1: Molecular imaging of tumor 
 metabolism
a) 18F-FDG PET of metastatic lung cancer; 

physiological, intense visualization of the 
brain, kidneys, and urinary bladder

 b) Fusion PET/CT showing multiple lymph 
node metastases in a right central primary 
tumor 

CT, computed tomography;  
18F-FDG, 2–18F-fluoro-2-deoxyglucose;  
PET, positron emission tomography

a b

Deutsches Ärzteblatt International | Dtsch Arztebl Int 2018; 115: 175–81 177



M E D I C I N E

Hodgkin‘s and non-Hodgkin‘s lymphoma (16). For 
example, the HD15 study conducted by the German 
Hodgkin Study Group (GHSG) investigated whether 
radiotherapy could be restricted to patients with PET-
positive residual findings following the completion of 
chemotherapy. Even without subsequent radiother-
apy, patients with PET-negative residual lymphomas 
had a similar prognosis to patients that achieved com-
plete remission on CT. In that particular study, PET 
had a negative predictive value (NPV) of 94% and 
contributed to a de-escalation of chemotherapy (7). 
18F-FDG PET is also well-established in the therapy 
surveillance of solid tumors and, thus, in the individ-
ualization of treatment. For example, neck dissection 
can be dispensed with in patients with locally 
 advanced head and neck tumors in whom a PET 
yields negative cervical lymph node findings follow-
ing chemoradiotherapy; this resulted in a 76% reduc-
tion in the number of surgical procedures required in 
the PET surveillance group (54 compared to 221 neck 
dissections in the group without PET surveillance) 
(17). The 2-year overall survival rate in the PET 
 surveillance group in the PET-NECK trial was 84.9% 
compared with 81.5% in the planned neck dissection 
group  (17).

In summary, 18F-FDG represents a radiopharma-
ceutical that can be used in numerous entities and 
which, in addition to its use in sensitive initial 
 staging, is increasingly becoming a standard of care in 
therapy surveillance (Table); as such, PET plays a 
crucial role in personalized medicine.

Prostate-specific membrane   antigen imaging
Prostate-specific membrane antigen (PSMA) is a 
 transmembrane protein expressed, e.g., in benign and 
malignant prostate tissue. It functions as an enzyme; 
however, its actual role in the prostate epithelium is not 
yet fully understood (18). High PSMA expression is as-
sociated with an unfavorable tumor phenotype (higher 
initial T-stage, higher initial prostate-specific antigen 
[PSA], and higher Gleason score) and a higher rate of 
biochemical recurrence (19). The introduction of small-
molecule inhibitors—based on a robust PSMA-binding 
glutamate-urea-lysine scaffold—has been rapidly 
translated into clinical application due to their excellent 
imaging properties and high sensitivity in the detection 
of PSMA-expressing metastases, particularly in 
 prostate cancer (20). 

Indications for diagnostic investigations using 
PSMA ligands include, e.g.:
● Diagnosis of biochemical recurrence following 

primary prostate cancer treatment
● Evaluation of PSMA expression prior to radio -

ligand therapy in advanced castration-resistant 
metastatic prostate cancer.

A number of 68Ga- or 18F-labeled PSMA ligands 
are now available for use in clinical routine (21–24). 
In the case of biochemical recurrence of prostate 
cancer, PSMA ligand PET/CT yields high detection 
rates even in very small metastases or low PSA levels. 

For example, it was still possible to detect metastases 
in 39%–46% of cases at PSA levels of ≤ 0.2 ng/ml 
(21, 22). As such, PSMA imaging (Figure 2) is more 
sensitive than are methods such as bone scintigraphy 
or CT (25, 26). Therefore, according to the current S3 
guideline, PET hybrid imaging with radiolabeled 
PSMA ligands can be performed in a first step in the 
context of recurrence diagnosis to assess tumor 
spread, assuming findings give rise to therapeutic 
consequences (27). However, the significance of de-
tection of early recurrence is controversial, since 
these are often asymptomatic biochemical recur-
rences whose treatment can lead to a reduction in pa-
tient quality of life. Simultaneous 68Ga-PSMA ligand 
PET/MRI appears to be superior to multiparametric 
MRI for the localization of primary tumors (98% sen-
sitivity compared with 66%) (28). 68Ga-PSMA ligand 
PET shows higher sensitivity and specificity for the 
detection of lymph node metastases in the primary 
staging of high-risk cancer compared with other 
methods, although metastases from PSMA-negative 
primary tumors and micrometastases may evade 
 detection (25). 

A number of PSMA ligands, such as PSMA-617 
and PSMA I&T, can also be labeled with β−-emitters, 
such as 177Lu, which, in early non-randomized obser-
vational studies, has opened up the promising option 
of molecular targeted treatment of advanced 
 castration-resistant metastatic prostate cancer that 
progresses following guideline-compliant systemic 
therapy (29). Prior diagnostic PSMA ligand PET is 
helpful to evaluate suitability for PSMA ligand 
 therapy.

Somatostatin receptor imaging
The majority of neuroendocrine tumors (NET) express 
somatostatin receptors, which can be investigated using 
molecular imaging. The importance of radiolabeled 
 somatostatin analogs in the diagnosis of NET is 
 established (30), and a number of different ligands are 
clinically available for PET, e.g., 68Ga-DOTATOC, 
68Ga-DOTATATE, and 68Ga-DOTATOC (e2). The 
 ligands bind with varying affinity to the somatostatin 
receptor subtype 2, as well as in part to other receptors  
(e2). 

The main indications for somatostatin analog PET 
in oncology include:
● Initial localization and staging of endocrine tumors
● Detection of unknown primary tumors
● Restaging during treatment
● Evaluation of somatostatin receptor expression 

prior to peptide receptor radionuclide therapy 
(PPRT) or somatostatin analog therapy (to esti-
mate probability of response).

A recently published meta-analysis showed a high 
sensitivity of 90.9% and specificity of 90.6% for 
68Ga-DOTATATE PET in the staging of pulmonary 
and gastrointestinal NET (31). A meta-analysis 
 including 14 studies on 1561 patients showed that, 
following the use of somatostatin receptor PET, 
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management changed in 44% of cases due to im-
proved staging (32). Thus, somatostatin receptor PET 
represents an integral part of NET staging in the 
guidelines of the European Neuroendocrine Tumor 
Society (ENETS) and is, e.g., the method of choice 
for the  localization and staging of pancreatic NET  
(33). 

Radiolabed 177Lu-DOTATATE (34) for targeted 
radionuclide therapy achieved an estimated 
 progression-free survival of 65.2% after 20 months in 
the NETTER study on advanced gastroenteropancre-
atic NET compared with 10.8% under high-dose 
long-acting octreotide therapy in the control group; 
the objective response rate was also significantly 
higher under 177Lu-DOTATATE (18% vs. 3%, 
p <0.001) (8). Furthermore, the risk of death was 60% 
lower in the 177Lu-DOTATATE group (hazard ratio of 
death in the 177Lu-DOTATATE group 0.40, p = 0.004) 
(8). A number of other tumors, such as meningiomas, 
pheochromocytomas, and Merkel cell carcinomas, 
also express high levels of somatostatin receptors and, 
as such, are amenable to diagnostic investigation and, 
in some cases, also treatment.
Other radiopharmaceuticals
The use of radiopharmaceuticals, some of which have 
only recently become available, offers a multitude of 
other imaging options, particularly in clinical research. 
Radiopharmaceuticals for the imaging of amino acid 
transport and metabolism, such as O-(2-18F-
 fluoroethyl)-L-tyrosine (18F-FET) or 11C-methionine, 
are primarily used in the diagnosis of brain tumors. 
Radiolabeled amino acids are absorbed to only a small 
extent in normal brain tissue. Therefore, they can be 
used in the differential diagnosis of gliomas and non-
neoplastic lesions, in biopsy planning for the detection 
of highly malignant areas, in the definition of tumor ex-
tent, and in the assessment of treatment response (e.g., 
recurrence vs. pseudoprogression, pseudoresponse) 
(35). Expression of the CXC chemokine receptor 4 
(CXCR4) can be measured using 68Ga-Pentixafor. 
CXCR4 is physiologically expressed, e.g., on stem and 
progenitor cells and plays a major role in mobilization 
and targeted cell migration. However, CXCR4 is also 
expressed in many hemato-oncological as well as solid 
neoplasia and is often associated with a tendency to 
metastasize and an unfavorable prognosis (36). 
 Following 177Lu labeling, targeted endoradiotherapy of 
CXCR4-expressing cells can be performed (37).

Limitations of PET
Due to its use of radioactive tracers, PET is associated 
with radiation exposure to the patient; this depends on 
the activity applied—this being approximately 3.8 
mSV (200 MBq 18F-FDG) in the case of 18F-FDG (e3), 
and lower in the case of somatostatin analogs and 
PSMA ligands (23)—and thus, if anything, in the lower 
range of radiation exposure of many diagnostic pro-
cedures. Added to this is the fact that, when performing 
PET/CT, CT causes additional radiation exposure, 
which is subject to significant variation depending on 

the scanning protocol used. However, oncological PET 
is a targeted indication and the benefit to the patient 
outweighs the theoretical risk of radiation exposure in 
the applications reported here. Since a definitive 
 diagnosis of malignancy is not possible using non-
tumor-selective radiopharmaceuticals such as 
18F-FDG—despite their higher specificity compared 
with other imaging methods—bioptic confirmation is 
sometimes required to establish therapeutic relevance 
(e.g., solitary distant metastasis in lung cancer). Fur-
thermore, PET is relatively costly compared to other 
imaging methods. Given the important role assigned to 
PET in the guidelines, many oncological indications 
are reimbursable in the US and most European coun-
tries. In Germany, reference is still frequently made in 
many of these indications to the lack of randomized 
clinical trials with patient-relevant endpoints. However, 
this useful standard for the assessment and approval of 
new therapeutic agents cannot be readily extrapolated 
to the assessment of diagnostic procedures (38, 39). It 
is often impossible to translate the value of a diagnostic 
measure into endpoints such as survival time. For 
example, although the exclusion of a disease can 
 represent a value that is neutral in terms of survival 
time, it is nevertheless relevant to the patient, particu-
larly if unnecessary surgery can be avoided as a result. 

Figure 2: Molecular imaging of prostate-
 specific membrane antigen 
a) 68Ga-PSMA-11 PET in metastatic prostate 

cancer; physiological, intense visualization 
of the lacrimal and salivary glands, liver, 
spleen, small intestine, kidneys, and 
 urinary bladder

b) Fusion PET/CT showing a solitary para -
iliac lymph node metastasis

CT, Computed tomography;  
68Ga, gallium-68;  
PSMA, prostate-specific membrane antigen; 
PET, positron emission tomography

a b
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To a certain extent, it is also not (or no longer) possible 
to randomize diagnostic investigations (e.g., if the pro-
cedure already corresponds to the established inter-
national standard and/or forms the basis for testing the 
treatment approach). Were this not the case, linking 
randomization of the diagnostic procedure with 
 randomization of the subsequent therapeutic options 
would mean, e.g., also irradiating PET-negative target 
areas, which is impracticable for ethical reasons. A 
 patient-relevant benefit can also be demonstrated 
beyond randomized clinical studies, e.g., in com-
parative accuracy studies or studies simultaneously 
evaluating a new biomarker and a new therapeutic 
agent (40, e4).
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Key messages
● Positron emission tomography (PET) is an important component of diagnostic 

 algorithms in oncology.
● PET improves diagnostic accuracy particularly in localized disease (e.g., in lung 

cancer).
● PET is able to guide the extent of treatment and helps to individualize therapy. 
● Numerous radiopharmaceuticals enable—depending on the radionuclide 

used—both diagnosis and targeted radionuclide tumor therapy. 
● PSMA ligands and radiolabeled somatostatin analogs expand the oncological 

 armamentarium for targeted tumor therapy.
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IgG4-Associated Inflammatory Pseudotumor with Bilobar Hepatic Foci
A previously healthy 58-year-old man had elevated 
hepatic enzyme concentrations in a routine test; 
 computed tomography revealed multiple, bilobar 
 abnormal foci in the liver, and, after an extensive 
work-up to rule out other possible causes, he was 
 referred to us with the suspected diagnosis of 
 Hodgkin’s lymphoma. A bone marrow biopsy of the 
iliac crest, however, yielded no evidence of lympho-
matous infiltration. The hepatic foci that were thought 
to be a manifestation of lymphoma (Figure) were 
found, on biopsy and histological examination, to 
have the typical appearance of IgG4-associated 
 cholangiitis, with up to 200 IgG4-positive plasma cells 
per high-power field. Serologic testing revealed a 

markedly elevated IgG4 concentration (2528.5 mg/dL). Short-term high-dose steroid treatment was given, followed by immune suppression with 
azathioprine. The liver values returned to normal, the serum IgG4 level fell to 678.4 mg/dL, and the hepatic nodules were no longer visible on a 
follow-up magnetic resonance scan 5 months later. As this case illustrates, IgG4-associated disease can mimic Hodgkin’s lymphoma both histo-
logically and in imaging studies.
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Translated from the original German by Ethan Taub, M.D.

a) Abdominal CT revealing bilobar hypodense hepatic lesions, compatible with lymphoma.  
b) H & E stain of the hepatic lesions, showing inflammatory infiltrates and plasma cells.
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