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Background.  The assessment of antibody responses after immunization with radiation-attenuated, aseptic, purified, cryo-
preserved Plasmodium falciparum sporozoites (Sanaria PfSPZ Vaccine) has focused on IgG isotype antibodies. Here, we aimed to 
investigate if P. falciparum sporozoite binding and invasion-inhibitory IgM antibodies are induced following immunization of malar-
ia-preexposed volunteers with PfSPZ Vaccine. 

Methods.  Using serum from volunteers immunized with PfSPZ, we measured vaccine-induced IgG and IgM antibodies to 
P. falciparum circumsporozoite protein (PfCSP) via ELISA. Function of this serum as well as IgM antibody fractions was mea-
sured via in vitro in an inhibition of sporozoite invasion assay. These IgM antibody fractions were also measured for binding to 
sporozoites by immunofluorescence assay and complement fixation on whole sporozoites.

Results.  We found that in addition to anti-PfCSP IgG, malaria-preexposed volunteers developed anti-PfCSP IgM antibodies 
after immunization with PfSPZ Vaccine and that these IgM antibodies inhibited P. falciparum sporozoite invasion of hepatocytes in 
vitro. These IgM plasma fractions also fixed complement to whole P. falciparum sporozoites.

Conclusions.  This is the first finding that PfCSP and P. falciparum sporozoite-binding IgM antibodies are induced following 
immunization of PfSPZ Vaccine in malaria-preexposed individuals and that IgM antibodies can inhibit P. falciparum sporozoite 
invasion into hepatocytes in vitro and fix complement on sporozoites. These findings indicate that the immunological assessment 
of PfSPZ Vaccine-induced antibody responses could be more sensitive if they include parasite-specific IgM in addition to IgG 
antibodies.

Clinical Trials Registration.  NCT02132299.
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Despite the global reduction in malaria incidence and mortality 
rates between the years 2000 and 2015, malaria remains a major 
public health concern. In 2017, the World Health Organization 
(WHO) estimated 216 million new malaria cases globally, of 
which 445 000 were lethal, mostly due to Plasmodium falci-
parum, an increase from the previous year [1]. Most of these 
deaths (92%) occurred in the WHO African region with 70% of 
all deaths reported in children under 5 years of age [1].

The most advanced malaria vaccine candidate, the P.  fal-
ciparum circumsporozoite protein (PfCSP)-based subunit 

vaccine RTS,S/AS01 (Mosquirix), showed limited vaccine effi-
cacy of 36.3% against clinical malaria among children aged 5 to 
17 months and of 25.9% in young infants 6 to 12 weeks of age 
in phase 3 clinical trials in several sub-Saharan countries [2, 3]. 
This RTS, S/AS01-mediated protection is short-lived and wanes 
after the first year of vaccination [2], and the vaccine was asso-
ciated with a significant increase in adverse events [4].

Complete protection against the onset of the disease-causing 
malaria blood stage infection, known as “sterile protection,” fol-
lowing controlled human malaria infection (CHMI) has been 
achieved via mosquito bite administration of radiation-attenuated 
P. falciparum sporozoites [5–7] and by direct venous inoculation 
(DVI) of aseptic, purified, radiation-attenuated, cryopreserved 
P.  falciparum sporozoites (Sanaria PfSPZ Vaccine) [8–12]. 
Administration of fully infectious P. falciparum sporozoites either 
via mosquito bite or DVI to volunteers taking simultaneously the 
antimalarial drug chloroquine (PfSPZ chemoprophylaxis vaccina-
tion) has also been tested recently, with 100% protection at 8–10 
weeks after the last immunization [13–15]. P.  falciparum atten-
uation by genetic modification is under investigation clinically, 
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with no CHMI protection data yet reported [16]. However, most 
of these live-attenuated malaria vaccinations followed by CHMI 
have been performed in malaria-naive volunteers living in malar-
ia-free countries [5–11, 13–15]. In the first report of immuniza-
tion of Africans (Malians) with life-long previous exposure to 
P.  falciparum malaria, protection against P.  falciparum infection 
was significant [12]. However, antibody responses to PfCSP by 
enzyme-linked immunosorbent assay (ELISA), PfSPZ by immu-
nofluorescence assay (IFA), and to PfSPZ by inhibition of spo-
rozoite invasion (ISI) assay were much lower in Malians than in 
nonimmune American adults who received the exact same PfSPZ 
Vaccine immunization regimen. This was hypothesized to be a 
result of immune dysregulation due to lifelong exposure to P. fal-
ciparum [12]. It could also be due to anti-P. falciparum sporozoite 
antibody and anti-liver stage T-cell responses that develop during 
natural infection [17–20] and/or the fact that prior exposure to 
blood stage infection might hamper malaria vaccine-induced pro-
tection [21]. We propose that better understanding of the type, 
kinetics, and maintenance of malaria-specific immune responses 
in malaria-preexposed populations after immunization could 
improve the development and successful deployment of malaria 
vaccines [22]. It is thought that the major driver of the powerful 
protection seen after immunization with PfSPZ-based vaccines 
is cellular immunity [13]. However, both anti-CSP monoclo-
nal antibodies and IgG from PfSPZ-immunized volunteers can 
strongly inhibit P. falciparum sporozoite infection of hepatocytes 
after passive transfer into humanized liver mice, arguing for a 
role for antibodies in protection [9, 23, 24]. As mentioned above, 
immunization of previously malaria-exposed volunteers resulted 
in weaker antisporozoite antibody responses. These studies, how-
ever, only focused on IgG responses and recent reports suggest 
that exposure to blood stage infection results in a significant anti-
parasite IgM response [21, 25].

Here, we aimed to determine (i) if PfSPZ-specific IgM anti-
bodies were induced by immunization with PfSPZ Vaccine and 
(ii) if these IgM antibodies had functional activity in inhibiting 
P. falciparum sporozoite invasion of hepatocytes. To do so, we 
used sera collected during a clinical trial investigating the safety, 
immunogenicity, and protective efficacy of DVI- administered 
PfSPZ Vaccine in Tanzanian adults in Bagamoyo, Tanzania 
(NCT02132299) (Jongo et al, manuscript submitted).

METHODS

Detailed experimental methods can be found in the 
Supplementary Methods.

Ethics Statement

All volunteers gave written informed consent before screening. 
The clinical trial was performed in accordance with Good Clinical 
Practices. The protocol was approved by the institutional review 
boards of the Ifakara Health Institute (ref. no. IHI/IRB/ No: 

02-2014), the National Institute for Medical Research Tanzania 
(NIMR/ HQ/R.8a/Vol.IX/1691), and the Ethikkommission Basel, 
Basel, Switzerland (ref. no. 261/13). The protocol was approved 
by the Tanzania Food and Drug Authority (ref. no. TFDA 13/
CTR/0003), and the trial was registered at Clinical Trials.gov 
(NCT02132299) and conducted under US FDA IND 14826.

Clinical Trial Design and Study Population

Details of the trial procedure and volunteers enrolled are given 
elsewhere (Jongo et  al, manuscript submitted). In summary, 
healthy male volunteers aged 20 to 30 years were randomized to 
DVI of 5 doses of normal saline, or 1.35 × 105 or 2.7 × 105 of PfSPZ 
Vaccine in a double-blind clinical trial at the Bagamoyo Clinical 
Trial Unit of the Ifakara Health Institute in Bagamoyo, Tanzania 
between 2014 and 2015. Vaccine efficacy was assessed by CHMI 
by DVI of 3200 PfSPZ of PfSPZ Challenge at 3 weeks after the 
last PfSPZ immunization, with protected volunteers receiving a 
second CHMI 24 weeks after the last PfSPZ immunization. The 
PfSPZ Vaccine proved to be safe and well tolerated in all Tanzanian 
volunteers. In the low-dose group, 1 volunteer of 18 (6%) was pro-
tected against CHMI at 3 weeks and 4 of 20 (20%) volunteers were 
protected at 3 and 24 weeks in the high-dose group.

Inhibition of Sporozoite Invasion Assay

To determine the capacity of serum antibodies to inhibit spo-
rozoite invasion in vitro, a previously described flow cytome-
try-based assay was performed [16, 26]. Percent of inhibition 
of invasion for each volunteer was determined by normaliz-
ing to wells containing volunteer-matched preimmune serum 
or a pooled serum sample from malaria-naive individuals. 
Normalization of all postimmune ISI values was done as fol-
lows: [(%ISI)/(%ISI baseline)] × 100.

CSP Enzyme-Linked Immunosorbent Assay

IgG and IgM antibodies were measured against full-length 
PfCSP protein, as previously described with minor modifica-
tions [16]. All ELISA values were repeated and are referred to as 
the mean of 2 independent runs. Not all volunteers were tested 
at all the time points due to sample availability.

Generation of IgM Antibody Fractions

IgM antibody fractions were generated by depletion of IgG 
and IgA using protein G and Jacalin-sepharose, respectively. 
Purity of fractions was assessed using total human IgM and IgA 
ELISAs (Bethyl Laboratories) according to the manufacturer’s 
protocol.

Sporozoite Immunofluorescence Assays

Sporozoite IFAs were performed as previously described using 
freshly dissected P.  falciparum sporozoites [16]. Sporozoites 
were visualized using Deltavision microscopy. Images were cap-
tured using the same exact exposure conditions in the hIgM/
Alexafluor-594 channel to allow comparisons of intensity across 
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samples. Images were modified for clarity with the same exact 
parameters applied to each sample.

Complement Fixation Assay

The ability of IgM antibody fractions to fix complement was 
assessed using plate-bound whole P.  falciparum sporozoites. 
C5a was detected in the supernatant following incubation of 
IgM fractions with human serum complement (Quidel Corp.) 
by ELISA.

Statistical Analysis

Statistical analyses were carried out using R [27]. The R package 
ggplot2 was used for data visualization[28] as well as GraphPad 
Prism 6.

RESULTS

Immunization With PfSPZ Vaccine Induces Sporozoite Inhibitory 

Antibodies

An overview of the vaccination schedule followed by 2 consec-
utive homologous CHMIs is given in Supplementary Figure 1 
as well as in the publication detailing the clinical trial and pro-
tection results (Jongo et al, submitted). Briefly, 2 groups of vol-
unteers (n = 20) were vaccinated 5 times each with a dosage of 
1.35 × 105 (low dose) or 2.7 × 105 (high dose) PfSPZ Vaccine and 
given controlled human malaria infection (CHMI) by direct 
venous injection of aseptic, purified, cryopreserved wild type 
sporozoites (PfSPZ challenge) [22]. Volunteers protected from 
this first CHMI (CHMI1) were then rechallenged 140 days later 
in a second CHMI (CHMI2), again by PfSPZ challenge.

To verify the inhibitory capacity of serum from PfSPZ vac-
cinated volunteers reported in Jongo et  al (manuscript sub-
mitted) in our hands, we used a previously described flow 
cytometry-based inhibition assay of P.  falciparum sporozoite 
invasion of HC04 cells (ISI assay) [16, 26]. There was variable 
preexisiting ISI activity in a subset of volunteers as measured 
using serum from baseline (Supplementary Figure 2). Thus, in 
order to measure vaccine-induced changes in serum reactiv-
ity we normalized each time point to the inhibitory activity of 
serum taken at baseline.

After the third immunization, immunized volunteers 
in the low-dose group showed an average inhibition of 
53.75%  ±  10.81% (Figure  1A) while immunized volunteers 
from the high-dose group showed inhibition by an average of 
52.73% ± 5.14% (Figure 1B). Two volunteers from the low-dose 
group and 1 from the high-dose group showed no ISI activ-
ity at this time point. After the fifth immunization, all volun-
teers in both groups developed functional antibodies with an 
average inhibition of 62.93% ± 6.36% for the low-dose group 
and 61.47% ± 3.55% for the high-dose group. ISI activity was 
unchanged after CHMI1 and was sustained until day 140 after 
CHMI1 in protected volunteers with an average inhibition of 
75.60%  ±  7.89%. ISI results of serum samples collected from 

placebo controls remained undetectable during PfSPZ vaccina-
tions but did increase significantly after CHMI1 (Figure 1C).

Collectively, these results demonstrate that PfSPZ vacci-
nation of malaria-preexposed Tanzanian volunteers induced 
antibodies that inhibit P.  falciparum sporozoite invasion in 
vitro, in agreement with results of Jongo et al (submitted) using 
the same samples with an ISI method used across other PfSPZ 
clinical trials.

PfSPZ Vaccination Induces Anti-PfCSP IgM Antibodies

PfCSP is the major, immunodominant protein on the surface 
of P. falciparum sporozoites [29]. Thus, we assessed the IgG and 
IgM antibody titers specific for full-length recombinant PfCSP 
(amino acids 21–289) [16] using ELISA.

We first verified the presence of anti-PfCSP IgG, as reported 
in Jongo et  al (submitted). We set the positivity cutoff for 
anti-PfCSP IgG antibody titers at 10.12 arbitrary units (AU) 
(Figure 2A) based on optimization with malaria-naive volun-
teers [16]. At baseline, 4 of 23 volunteers showed positive IgG 
titers (average of 18.89 ± 1.84 AU) with a total group average 
of 7.94  ±  1.15 AU (Figure  2A). Fourteen days after the fifth 
immunization, all vaccinees had developed significantly higher 
anti-PfCSP IgG antibodies with an average of 68.02 ± 8.63 AU 
(Figure 2A and Supplementary Figure 3). All placebo controls 
remained negative with an average of 9.89 ± 0.81 AU. Placebo 
controls and nonprotected vaccinees developed asexual blood 
stage parasitemia after CHM1, yet, interestingly, the anti-CSP 
IgG titers after CHMI1 were not boosted in immunized volun-
teers (average of 71.91 ± 10.23 AU) while the 4 placebo controls 
became positive after CHMI, albeit with low titers (average of 
29.32 ± 6.87 AU) (Figure 2A). On follow-up visits at 140 days 
post-CHMI1 and on 28 days post-CHMI2, the protected volun-
teers remained positive for anti-PfCSP IgG.

Next, we wanted to determine if anti-PfCSP IgM responses 
were also generated after PfSPZ vaccination. The positivity 
cutoff for anti-PfCSP IgM antibody titers was set at 9.21 AU 
based on optimization with malaria-naive serum. At baseline, 
CSP-binding IgM antibodies (Figure 2B) were detected in 4 of 
23 volunteers with an average of 12.78  ±  1.83 AU while the 
total group average was 7.39 ± 0.71 AU. Fourteen days after the 
fifth immunization, 18 of 23 volunteers were positive for anti-
PfCSP IgM titers with an average of 89.61 ± 27.30 AU. Three of 
4 placebo controls remained negative at this time point, as well 
as 1 vaccinee. Twenty-eight days post CHMI1, a significant 
increase in anti-PfCSP IgM titers was seen in all volunteers that 
experienced asexual blood stage infections, including nonpro-
tected vacinees (average: 157.88 ± 34.71 AU) and placebo con-
trols (average: 152.71 ± 54.50 AU) but no increase in anti-CSP 
IgM was seen in protected volunteers who remained free of 
parasitemia. In serum samples collected 140 days after CHMI1 
and 28 days after CHMI2, these anti-PfCSP IgM responses per-
sisted in 3 of the 4 volunteers sampled at this time point, which 
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was 189  days after the final immunization (Supplementary 
Figure 1).

Overall, these results revealed that in addition to IgG, malaria 
pre-exposed Tanzanian adults developed anti-PfCSP IgM anti-
body titers that persisted for more than 6 months after PfSPZ 
immunization and were boosted following exposure to blood 
stage parasites. No significant correlation became appar-
ent between invasion inhibition and either anti-PfCSP IgG 
(Figure 3A) or IgM titers (Figure 3B).

Antisporozoite IgM Antibodies Contribute to Inhibition of Sporozoite 

Invasion and Fix Complement

Next, we wanted to understand better the potential contribution of 
vaccine-induced anti-PfCSP IgM antibodies to in vitro sporozoite 
invasion inhibition. Here, we selected plasma samples collected 
from 5 volunteers in the high-dose group whose serum was inhib-
itory in vitro and had positive anti-PfCSP IgM titers and low anti-
PfCSP IgG 14 days after the fifth immunization. Plasma samples 
were depleted of IgG and IgA antibodies and the IgM-enriched 
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Figure 1.  Evaluation of serum from P. falciparum sporozoites (PfSPZ)-immunized malaria pre-exposed Tanzanian volunteers for functional inhibition of sporozoite invasion 
(ISI) in vitro. Percentage ISI of HC04 cells infected with P. falciparum sporozoites obtained from post-immunization sera from malaria pre-exposed volunteers immunized 
with (A) 5 × 1.35 × 105 PfSPZ Vaccine (n = 10) and (B) 5 × 2.7 × 105 PfSPZ Vaccine (n = 20). For the high-dose group, 2 subjects had 1 missing data point (at time point d 14 
post-fifth and at d 28 post-CHMI2) and were therefore not considered for the statistical analysis. Each data point indicates a volunteer’s mean inhibition as normalized to vol-
unteer-matched preimmune value across 2 independent experiments. The middle bar of each box plot represents the median and the whisker maximum length set to 1.5 IQR 
(interquartile range). Asterisks above box plots indicate a statistically significant difference of the group mean invasion compared to 0% inhibition of invasion, determined by 
1-sample t test. Bars with asterisks show statistically significant changes of inhibition of invasion between visits determined by paired t test. Immunized protected individuals 
are shown as empty triangles, immunized nonprotected volunteers as solid circles, and control subjects as crossed circles. C, Percentage ISI from sera collected from control 
volunteers from low- and high-dose group (n = 8), who received normal saline instead of PfSPZ immunization at 14 days after the third and fifth immunization and the same 
controlled human malaria infection (CHMI) of 3200 nonirradiated PfSPZ of PfSPZ challenge 3 weeks after the final immunization.
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fractions were used to test for function in ISI assay, whole P. fal-
ciparum sporozoites in IFA, and binding against full-length PfCSP 
in ELISA (Figure 4A–C). The resulting fractions after IgG and IgA 
depletion contained IgM antibodies with a median of 96.6 ± 7.7% 

pure IgM as measured by total IgM and IgA ELISA (Supplementary 
Table  1). Given the wide variation in total IgM concentrations 
found in human serum [30], we chose to test the IgM fractions at a 
volume-based dilution of 1:20 calculated using the original starting 
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Figure 2.  Induction of IgG (A) and IgM antibody (B) responses to full-length P. falciparum circumsporozoite protein (CSP) from malaria-preexposed volunteers immunized 
with 5 × 2.7 × 105 P. falciparum sporozoites (PfSPZ) Vaccine, quantified by enzyme-linked immunosorbent assay (ELISA) at the time points: baseline, day 14 post-fifth immu-
nization, day 28 post-controlled human malaria infection 1 (CHMI1), day 140 post-CHMI1, and day 28 post-CHMI2. Antibody titers are specified as arbitrary units (AU) with a 
positivity cutoff shown by a dashed line. Each data point represents the mean of the duplicate ELISA titers for 1 volunteer. Asterisks indicate statistically significant difference 
of the mean antibody titer compared to the mean titer measured at the pre-immunization time point as determined by paired t test. Bars with asterisks indicate statistically 
significant difference of the mean antibody titer between visits determined by paired t test. *P ≤ .05, **P ≤ .01, ***P ≤ .001. The small sample size of control and protected 
subjects did not allow for statistical testing when grouped by protection status. For whole-group analyses, see Supplementary Figure 3. Control volunteers are shown as 
crossed circles (n = 4) in the left panel, immunized nonprotected volunteers as solid circles (n = 16) in the middle panel, and immunized protected (n = 4) as empty triangles 
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volunteers were not considered for statistical analysis.
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volume of plasma, which was the same dilution used for serum in 
Figure 1. At a 1:20 dilution the IgM-enriched preparation inhibited 
P. falciparum sporozoite invasion in 3 out of 5 volunteers, ranging 
between 28% and 43% (Figure 4A). The 3 ISI-positive volunteers 
had the highest pre-enrichment serum anti-PfCSP IgM titers 
(average of 304 AU) while the 2 ISI-negative volunteers had an 
average of 104 AU. IgM-enriched preparations of these 3 positive 
volunteers also were positive in sporozoite IFA and had the stron-
gest binding to PfCSP by ELISA (Figure 4B and C). IgM fractions 
from plasma samples of the 4 high-dose protected volunteers col-
lected 140 days after the first CHMI were tested as well. One vol-
unteer with high anti-PfCSP IgM titers at this time point showed 
strong binding to purified sporozoites by IFA and showed invasion 
inhibition at 31% (data not shown).

As IgM antibodies are extremely efficient at fixing complement 
[31], we also wanted to determine if IgM induced after vaccination 
could fix complement after binding to P. falciparum sporozoites. 
Indeed, following binding to plate-bound whole P.  falciparum 
sporozoites, we were able to detect complement fixation by C5a 
release in supernatants in a manner that correlated with both 
anti-PfCSP IgM titer and IFA/ISI positivity (Figure 4D).

In summary, PfSPZ Vaccine-induced anti-PfCSP IgM anti-
bodies in malaria-preexposed volunteers, which persist up to 
140 days after CHMI, are capable of binding P. falciparum spo-
rozoites, inhibiting in vitro P.  falciparum sporozoite invasion, 
and fixing complement after P. falciparum sporozoite binding.

DISCUSSION

PfCSP is the most immunodominant antigen expressed on 
the P.  falciparum sporozoite surface [29] and previous studies 

of PfSPZ Vaccine, including those in Africa, have focused on 
IgG antibodies to PfCSP [8–12]. In addition to anti-PfCSP IgG 
responses, we assessed IgM antibodies following PfSPZ vac-
cination. All immunized volunteers mounted anti-PfCSP IgG 
antibodies, consistent with previous reports (Jongo et al, man-
uscript submitted), while 17 of 19 immunized volunteers made 
anti-PfCSP IgM antibodies (Figure 2A, B). As we saw ISI activ-
ity in serum samples from volunteers with high IgM and low 
IgG titers against PfCSP, we hypothesized that the IgM fraction 
could be contributing to antibody function in vitro. Indeed, we 
demonstrated that in 3 volunteers, these anti-PfCSP IgM anti-
bodies mediated ISI activity in plasma fractions after depletion 
of IgG and IgA. To our knowledge, this is the first demonstration 
of P. falciparum sporozoite inhibition mediated by enriched IgM 
preparations. We did not find correlations between anti-PfCSP 
IgG or IgM titers and ISI activity of whole serum (Figure 3A, B). 
This is not surprising given that we show that PfSPZ vaccination 
elicits a complex antibody response composed of both IgG and 
IgM, and that immunization with irradiated sporozoites elicits 
responses to a number of antigens [32]. Thus, it is unlikely that 
a single component will correlate with antibody function in a 
cohort of vaccinees.

Vaccine-induced IgM antibodies have been regarded in the 
past as short-lived and less affinity-matured compared to IgG 
antibodies [33], and early studies of naturally acquired antibod-
ies to PfCSP in Indonesia [34] and Kenya [35] showed that IgM 
responses were of lower prevalence and magnitude than IgG 
responses. Therefore, investigation of vaccine-induced humoral 
immunity has focused on IgG isotypes in malaria-exposed and 
malaria-naive populations [2, 8–12, 24, 36–38]. Indeed, PfCSP or 
P. falciparum sporozoite-binding IgG antibodies have correlated 
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with protection in some studies of PfSPZ Vaccine [8, 9, 12]  
and to some extent in the PfCSP subunit vaccine RTS,S [38].

However, in one study using radiation attenuation sporo-
zoites (RAS)-immunized mice, IgM-dominated antibodies were 
described as binding to live P.  yoelii sporozoites and limiting 
parasite liver infection by 74% in passive transfer experiments 
[39]. IgM antibodies cross-reacting with glycoproteins on the 
P. yoelii sporozoite surface have also been shown to inhibit par-
asite infection of hepatocytes in vivo and in vitro [40]. In the 
latter example, these antibodies appeared to function largely 

through FC-dependent effectors and complement fixation 
with recruitment of polymorphonuclear cells [40]. Outside of 
malaria, plasma cells secreting IgM antibodies that are somat-
ically hypermutated and that reside in the spleen have been 
detected during vaccination and in influenza virus and lympho-
cytic choriomeningitis virus infections [41].

Blood stage infection can result in IgM memory B cells that 
are long-lived and somatically hypermutated in humans, and the 
resulting IgM antibodies can contribute to protection from asex-
ual blood stage infection in mice [25]. Additionally, blood stage 
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infection can also alter germinal center formation and acquisi-
tion of antibodies to the pre-erythrocytic stages [21]. However, 
the development of functional anti-sporozoite IgM responses 
as a result of blood stage infection has not been investigated. 
Interestingly, in our study we observed a boost in anti-PfCSP 
IgM and not IgG after CHMI only in those volunteers that 
experienced blood stage infection (Figure 2). Thus, it is possible 
that in our study, prior exposure to blood stage malaria could 
explain the predisposition of these volunteers to developing anti-
CSP IgM in this population as blood stage infection appears to 
skew the immune response to IgM antibodies. However, this will 
require similar studies in malaria-naive populations.

Importantly, our data suggest that P.  falciparum sporo-
zoite-binding and invasion-inhibitory IgM could contrib-
ute to protection against malaria infection. IgM antibodies 
are excellent in fixing complement, which could either elimi-
nate circulating P.  falciparum sporozoites by formation of the 
membrane attack complex leading to parasite lysis, or by for-
mation of C5a, C3a, and other byproducts, which can subse-
quently recruit mononuclear cells and stimulate phagocytosis. 
While complement-mediated lysis has been demonstrated for 
asexual blood stage merozoites in rodents and using human 
serum [42, 43], definitive evidence of complement fixation at 
the sporozoite stage is sparse. Interestingly, we demonstrate 
here that vaccine-induced IgM antibodies were able to fix com-
plement following binding to whole P.  falciparum sporozoites 
(Figure 4D). To our knowledge, this is the first demonstration of 
complement fixation with P. falciparum sporozoites and the first 
to show this using antibodies from humans. Two reports have 
demonstrated apparent complement-dependent disruption 
of avian and rodent sporozoite morphology [44, 45], but this 
was not directly assessed for complement fixation by observ-
ing complement byproducts. However, one study in rodents did 
demonstrate complement C3b deposition on sporozoites after 
passive transfer of anti-alpha-gal antibodies and a dependence 
on complement for the protective efficacy of these antibodies 
[40]. Thus, it is possible that these IgM antibodies could be 
functioning in prevention of infection in humans as it is con-
ceivable that sporozoites could encounter IgM and complement 
during their journey from the skin to the liver parenchyma. 
Directly assessing the role of IgM binding and complement fix-
ation in the prevention of P. falciparum sporozoite infection in 
vivo will be challenging as laboratory mice have relatively low 
levels of complement activity [46], particularly in the classical 
pathway with human antibodies [47]. Nevertheless, determin-
ing whether this can be a relevant effector mechanism in pro-
tection against P. falciparum sporozoite infection will be critical 
for better understanding antibody-mediated protection after 
whole sporozoite immunization, especially in previously malar-
ia-infected individuals. This can be accomplished by carefully 
designed murine in vivo studies as well as future in vitro studies 
to determine if the inclusion of complement reveals previously 

unobserved antisporozoite antibody activity such as has been 
demonstrated for blood stages [43].

CONCLUSIONS

Immunization of malaria-preexposed volunteers with PfSPZ 
Vaccine elicits functional, sporozoite invasion-inhibitory anti-
bodies, including anti-PfCSP IgM antibodies capable of fixing 
complement in vitro. Immunological assessment of the mode 
of action of PfSPZ vaccine-induced humoral effector mecha-
nisms should therefore include monitoring of parasite-specific 
IgG as well as IgM antibodies. Future studies need to expand 
on our findings and address if (1) parasite-inhibitory IgM 
production is related to PfSPZ vaccine administration route 
and dosing; (2) PfSPZ vaccine-induced IgM responses are 
unique to malaria-preexposed individuals; and (3) the sporo-
zoite-binding IgM antibody repertoire undergoes affinity mat-
uration resulting in improved effector function over repeated 
vaccinations.
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