Skip to main content
. 2017 Nov 10;47(2):597–604. doi: 10.1093/ije/dyx224

Table 3.

False discovery rates of variable selection methods, for each scenario

Method Pairwise correlation between all variables
0.2 0.5 0.8
5 signals among 20 variables
One-at-a-time* 0.09 (0.01) 0.58 (0.02) 0.40 (0.02)
Stepwise <0.01 (<0.01) <0.01 (<0.01) 0.01 (<0.01)
Two-step BVS* <0.01 (<0.01) <0.01 (<0.01) <0.01 (<0.01)
5 signals among 100 variables
One-at-a-time* 0.25 (0.02) 0.77 (0.02) 0.67 (0.02)
Stepwise 0.01 (<0.01) 0.03 (0.01) 0.08 (0.01)
Two-step BVS* <0.01 (<0.01) 0.01 (<0.01) 0.01 (<0.01)
5 signals among 1000 variables
One-at-a-time* 0.53 (0.03) 0.93 (0.01) 0.78 (0.02)
Stepwise 0.07 (0.01) 0.14 (0.01) 0.27 (0.01)
Two-step BVS* 0.01 (<0.01) 0.01 (<0.01) 0.06 (0.01)

Mean false discovery rate, the proportion of noise variables selected, is displayed for 200 simulations with the corresponding Monte Carlo errors in brackets.

*Selection thresholds chosen to match the sensitivity of the stepwise method in each simulation, for which a nominal P-value inclusion threshold of 0.05 was used.