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Abstract

Since the early 1990s it has been postulated that hypofunction of N-methyl-D-aspartate (NMDA) 

receptors in brain networks supporting perception and cognition underlies schizophrenic 

psychosis. Recently, NMDA receptor hypofunction was described in patients with psychotic 

manifestations who exhibited autoantibodies binding the GluN1 subunit of the receptor, and who 

improved when the level of these antibodies was lowered by immunomodulation. In this disorder, 

NMDA receptor antibodies decrease the availability of NMDA receptors by internalizing them. 

Here we review this mechanism as well as data supporting or refuting the possibility that this 

disorder, or similar autoimmune disorders affecting synaptic proteins which are therefore treatable 

with immunomodulation, could account for some cases of idiopathic psychosis. We also suggest 

methodological approaches to clarify this issue.
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Autoantibodies against the NMDA receptor: Relevance to psychotic 

symptoms

Most excitatory neurotransmission in the brain is mediated by L-glutamate, an amino acid 

that activates several types of receptors, including the N-methyl-D-aspartate (NMDA) 

receptors (NMDARs). Most native NMDARs are heterotetramers composed of an obligatory 
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GluN1 subunit and various combinations of GluN2 (A–D) and sometimes GluN3 A–B 

subunits, with various arrangements depending on developmental stage, function and brain 

location [1–6]. NMDARs cluster at the core of postsynaptic densities, where they mediate 

synaptic signaling involved in persistent forms of synaptic plasticity thought to underlie 

learning and memory [7, 8]. Not surprisingly, NMDARs play a key role in human cognition 

and behavior. For example, both working and episodic memory rely on NMDAR-regulated 

networks [9–12]. The perception of auditory and visual stimuli, even at the early sensory 

level, is also modulated by NMDARs [13]. As a consequence, pharmacological interventions 

that interfere with the function of NMDARs result in striking behavioral abnormalities. In 

healthy volunteers, the NMDARs-blocking agents phencyclidine and ketamine cause not 

only impaired working memory and perceptual abnormalities, but also other symptoms 

characteristic of schizophrenic psychosis, such as paranoia, dissociative states and impaired 

executive function [14, 15].

Decreased function of the synaptic NMDARs has also been described in naturally-occurring 

human disorders associated with psychotic symptoms [16, 17]. The most interesting among 

these disorders, because it is treatable, is produced by IgG autoantibodies targeting the 

GluN1 subunit of the NMDA receptor [18]. This disorder, which in this review we call 

NMDAR antibody synaptopathy (NMDARAS), was first reported in 2007 [19], affects both 

sexes, and debuts most often in persons 12–29-years old [20], an age range that includes the 

age of onset for schizophrenic psychosis. So far NMDARAS has been detected mostly in 

patients with a severe course, often requiring intensive care [20–22], but cases with a milder 

form consisting only of psychotic symptoms have also been reported (see for instance [23–

25]). This disorder is eminently treatable. Even with severe NMDARAS, about 80 % of the 

patients recover after immunotherapy: they not only cease to require intensive care, but their 

psychotic symptoms disappear [20].

Idiopathic psychoses are not unusual: they have been estimated to affect 0.1–0.5 % of the 

population [26, 27]. The possibility of finding among patients with psychosis some with 

NMDARAS, amenable to treatment, has recently spurred several groups to look for 

NMDAR antibodies in the sera of patients diagnosed with schizophrenia. The results have 

been disappointing. Some studies have not found them [28–30]. Others have found 

antibodies against the NMDAR, but generally not of the IgG type [31, 32]; furthermore, 

these non-IgG antibodies could also be detected in patients without psychosis or even in 

healthy individuals and therefore lacked any specificity for psychosis, suggesting that the 

association of antibodies with psychosis was purely coincidental [33]. However, there are 

compelling reasons, which we articulate in this review, to continue searching for antibodies 

against the NMDAR in such patients. We review evidence suggesting hypofunction of the 

NMDA receptor, long postulated to underlie schizophrenic psychosis, could be explained by 

an autoimmune mechanism in some patients with psychosis.
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Hypofunction of the NMDA receptor: The glutamate hypothesis of 

psychosis

The term psychosis refers to an array of symptoms including hallucinations, delusions, 

paranoia and thought disorder. Psychosis may be caused by the ingestion of drugs, such as 

LSD, or by metabolic derangements of the brain, as in liver failure. Most often the cause of 

psychosis is unknown, that is, idiopathic, as exemplified by schizophrenia. Largely because 

dopamine D2-receptor-blocking agents improve the positive symptoms of schizophrenia 

[34], and because dopamine striatal synthesis and release are increased in this disorder [35, 

36] characterized by dysfunction of dopamine-regulated frontotemporal cognitive networks 

[37, 38], schizophrenia has long been considered primarily a disorder of the dopaminergic 

system.

However, more recent formulations of the pathophysiology of schizophrenia include an 

important role for dysfunction of the glutamatergic system, which may actually underlie the 

hyperdopaminergic state in schizophrenic psychosis [39]. The glutamate hypothesis was first 

postulated in the early 1990s following observations of the similarity between the positive 

and negative symptoms of schizophrenia and the symptoms developed by healthy subjects 

given the NMDA receptor-blocking agents phencyclidine and ketamine [14, 15]. To the 

evidence provided by these initial studies in humans, were later added genetic [16, 40, 41], 

electrophysiologic [42–45], imaging [46–48] and post-mortem [49, 50] findings supporting 

hypofunction of the NMDA system in schizophrenia, as well as in animal models of 

psychoses [51, 52]. However, the NMDA system does not appear to be hypofunctional in 

schizophrenia as a result of glutamate production being decreased; on the contrary, 

glutamate may be increased in schizophrenia [39, 48], and hypofunction of NMDARs or of 

signaling pathways modulating NMDARs (Fig 2) is more likely [39, 48].

Effect of NMDAR hypofunction on the GABAergic and dopaminergic systems

Hypofunction of NMDARs has repercussions critical for cognitive neuronal networks. In 

animal models, NMDAR hypofunction has been associated with decreased activity of 

gamma-aminobutyric acid (GABA) synthesis in the parvalbumin-containing subpopulation 

of inhibitory GABA neurons [43]. NMDA receptor-GABA hypofunction in the dorsolateral 

prefrontal cortex leads to a diminished capacity for the gamma-frequency synchronized 

neuronal activity that is required for working memory function [43, 53], and NMDA 

receptor-GABA hypofunction impairs pyramidal inhibition (Figure 1). Overactive pyramidal 

cells, notably those in the hippocampal formation, can drive a hyperdopaminergic state [10, 

54] (Figure 1). The resultant enhanced release of dopamine by midbrain neurons from the 

ventral tegmental area could cause some of the behavioral and cognitive manifestations of 

schizophrenia [54] while excessive dopamine release by nigral neurons could cause the 

dyskinetic movements described in up to a quarter of antipsychotic–naïve patients with 

schizophrenia [55].
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Synaptic autoimmunity against the NMDAR in humans

One of the mechanisms that may lead to hypofunction of the NMDARs is an autoimmune 

attack on these receptors. As they are located mostly in the postsynaptic membrane, with a 

large extracellular component [3], NMDARs have the potential to present antigenic epitopes 

outside the neuron. These epitopes could bind antibodies produced by one’s own immune 

system, ultimately resulting in autoimmune damage to the NMDAR.

Remarkably, in the past few years, antibodies have been described that target extracellular 

neuronal domains involving receptors on the synaptic surface [19, 56–59]. Brain biopsies of 

patients with these autoimmune disorders have shown anti-receptor-antibody-producing 

plasma cells, derived from B lymphocytes, but no complement production or neuronal loss 

[19, 60–62]. In this situation, the affected receptor is damaged but the neuron remains 

viable. Furthermore, the affected receptor can be restored by lowering antibody titers; 

therefore immunotherapeutic approaches to decrease antibody titers can be effective in 

reversing the symptoms [19, 56, 58, 59]. Among these disorders, the most frequently 

described to date involves IgG antibodies directed against the GluN1 subunit of the NMDA 

receptor [20, 63].

Molecular mechanisms of synaptic autoimmunity against the NMDAR GluN1 subunit

In NMDARAS, IgG antibodies are directed to the N-terminal extracellular domain of the 

GluN1 subunit of the NMDA receptor, specifically an epitope region at GluN1 aa369 [18, 

64, 65]. Cultures of dissociated rat hippocampal neurons and antibody-containing 

cerebrospinal fluid (CSF) from patients with NMDARAS have been used to study the 

molecular mechanism by which IgG antibodies cause hypofunction of the NMDAR [66, 67]. 

Antibodies decrease the levels of synaptic NMDA receptor and disrupt NMDA receptor 

currents in cultured neurons [18, 66]. In addition, the antibodies disrupt the interaction 

between NMDAR and the ephrin B2 receptor (EphB2R), a major stabilizer of NMDARs at 

postsynaptic sites, facilitating the displacement of NMDARs from the synapse [68]. The 

antibody does not act as a receptor antagonist, by modulating the physiologic receptor 

binding domain, but causes capping and internalization of the receptor [66–68]. This effect 

is specific to the antibody isolated from the serum or CSF of patients: by itself alone, the Fab 

fragment of the antibody does not cause receptor internalization, but this effect is recovered 

when the entire antibody is reconstituted [66]. Complement is not necessary: antibodies 

within patient CSF are both necessary and sufficient to cause the loss of surface NMDARs 

[66, 67]. Antibody-mediated internalization is independent of NMDAR activity and does not 

occur as a compensatory response to agonism of the receptor, suggesting that the mechanism 

of internalization is primarily NMDAR crosslinking by patient antibodies [67]. In 

NMDARAS, NMDA receptors are bound by immunoglobulins during endocytosis, a 

scenario that would not occur under physiological conditions of receptor internalization. 

However, the postendocytic trafficking of NMDARs is not affected by IgG binding the 

receptor [67].

A recent study showed the pathogenic effects of the antibodies in a model of 

cerebroventricular passive transfer of CSF antibodies from NMDARAS patients to mice 

[69]. The resulting findings, which fulfill the Witebsky’s criteria [70] for an antibody-
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mediated disease, included: 1) the development of symptoms in animals infused with 

patients’ CSF, but not control CSF; 2) the infused antibodies reacted predominantly with 

brain regions with high density of NMDAR (e.g., hippocampus) and specifically recognized 

these receptors; 3) in proportion to their concentration, brain-bound antibodies decreased the 

density of total and synaptic NMDAR clusters and total NMDAR protein concentration 

without affecting PSD95; and 4) the intensity of the above-mentioned findings correlated 

with the time-course of patients’ antibody infusion and symptoms resolved in parallel to the 

restoration of NMDAR levels after stopping the infusion of CSF antibodies [69].

Detection and manifestations of NMDA-receptor-antibody synaptopathy (NMDARAS) in 
humans

Prevalence—Being a recently recognized disorder, the true prevalence of NMDARAS is 

unknown. Case discovery in the reported series [20] may have been biased toward sicker 

patients. But even this potentially more serious manifestation of NMDARAS is not rare, 

accounting for 1% of all admissions to one intensive care unit (ICU) of women aged 18 – 35 

years [71]. A multicenter, population-based prospective study of causes of encephalitis in the 

UK showed that 4% of patients had anti-NMDA receptor encephalitis and that this was the 

second most common immune-mediated cause, after acute disseminated encephalomyelitis 

[72]. In a center focused on the etiology and epidemiology of encephalitis (California 

encephalitis project), NMDARAS was found to be more frequent than any single viral 

encephalitis [73]. NMDARAS is much more frequent than the classical paraneoplastic 

syndromes (compare refs [84] and [74]).

Demographics and presentation—Eighty percent of the patients reported were women 

[20]. The higher discovery in women may be explained by the association of NMDARAS 

with ovarian teratomas, which contain neuronal elements expressing NMDA receptors that 

act as antigens [20]. The age of onset of NMDARAS ranges between eight months and 85 

years, but the median age of onset is 21 years, and the majority of cases cluster in the 12–29 

age range with a peak from 18–23 years [20]. This peak is strikingly similar to the age of 

onset of schizophrenic psychosis (Figure 3).

Patients with NMDARAS in the first decade of life tend to present with seizures or 

movement disorders, while psychiatric abnormalities are the usual mode of presentation for 

those over 12, perhaps reflecting a developmental vulnerability of those neural circuits most 

important in psychiatric disease. Behavioral manifestations occurred during the first month 

of the disease in over 90% of the patients, regardless of age group [20]. Psychiatric 

manifestations were not circumscribed to schizophrenia-like psychosis, but included manic 

psychosis and other mood disorders [24]. Mood symptoms are frequent in the months 

preceding the diagnosis of schizophrenia spectrum disorder and throughout the course of the 

disease [75]. Most of the patients described with NMDARAS worsened, developing 

catatonia, dyskinesias and central hypoventilation that required intensive care.

The possibility of NMDARAS causing idiopathic psychoses goes well beyond being 

academically interesting and may have profound clinical implications. About 80% of 

patients with NMDARAS in a sample that included 70% requiring intensive care improved 
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greatly after immunotheraphy [20]. First-line immunotherapy used a combination of steroids 

and intravenous immunoglobulin or plasmapheresis. Of patients who did not improve with 

first-line treatment, the majority improved with second-line immunotherapy, most often 

rituximab or cyclophosphamide [20]. Judging from the experience with other autoimmune 

brain disorders, such as multiple sclerosis [76], an even more favorable outcome may be 

likely if the immunological attack is milder, resulting only in psychotic symptoms.

Correlation between symptoms and antibody titers: parallels with pharmacologic NMDA 
receptor antagonists

Informative parallels can be drawn between the clinical effects of antibodies against NMDA 

receptors and the clinical effects of pharmacologic NMDA receptor non-competitive 

antagonists, such as phencyclidine and ketamine. These drugs induce behaviors similar to 

the positive and negative symptoms of schizophrenia, along with repetitive orofacial and 

limb movements, autonomic instability, and seizures. This profile of symptoms caused by 

antagonists of NMDA receptor is dose dependent: at low doses, NMDA receptor antagonists 

cause illusionary perceptions, ideas of reference and paranoia, coupled with impaired 

performance on the Wisconsin Card Sorting and other tasks requiring executive function, but 

no substantial memory loss [14]; higher doses of these drugs manifest with psychosis, 

agitation, memory disturbance, and decreased responsiveness to pain [15]; and at even 

higher doses these substances cause dissociative anesthesia, a state of profound 

unresponsiveness with catatonic features, and coma [15]. The low-dose pharmacological 

effect resembles the symptoms in patients with milder forms of NMDARAS and lower CSF 

anti-NMDA receptor antibody titers, so far best documented in the process of recovery of 

the serious illness, when patients again manifest psychotic symptoms similar to the initial 

presentation [74]. The high-dose drug effect mimics the more severe stages of NMDARAS, 

characterized by catatonia, impaired respiratory drive and coma [74]. In NMDARAS, 

NMDA receptor availability correlates strongly and inversely with CSF antibody titers [18]. 

Abundant antibodies cause internalization of a larger proportion of NMDA receptors, 

decreasing the availability of these receptors in a manner similar to their binding by non-

competitive antagonists (Figure 4).

Determination of anti-NMDAR antibodies in patients with idiopathic psychoses

NMDARAS has been identified in single cases or small series of patients with psychosis 

resembling schizophrenia (see for instance [77–79]). In addition, the similarity between 

some of the symptoms of NMDARAS and idiopathic psychosis such as schizophrenia has 

added renewed interest to the hypothesis that some cases of schizophrenia have an 

autoimmune basis [80] [81]. Autoimmunity could explain the clinical course of remissions 

and exacerbations in about one-third of the patients with schizophrenia [82], as well as the 

upregulation of inflammation-related genes in brain tissue [83, 84], brain inflammation 

detected with positron emission tomography [85], and the association of schizophrenia with 

genes expressed in tissues that have important roles in immunity [86]. The tantalizing 

prospect of finding a reversible disorder has prompted a number of investigators to search 

systematically for NMDA receptor antibodies in patients with psychoses [87]. To date, all 

studies have been performed using patient sera, not CSF. Three studies failed to detect any 

cases with raised levels of IgG anti-NMDA receptor antibodies among a total of 505 patients 
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with schizophrenia [28–30]. Other studies detected a small proportion of patients with 

antibodies. Some studies found a small proportion of patients with NMDAR antibodies 

among first episode psychosis (2/46, [25]) or in schizophrenia (4/51 [88]) in adults or 

children (6/43 patients [23]). The last study included a negative healthy control group. Other 

studies [33, 89], using a methodology different from Dalmau’s three-step procedure [18], 

have found similar proportions of antibodies among patients with schizophrenia and controls 

with neurological disorders such as Parkinson’s disease and even healthy controls (See Box 

1). These reports highlight the complexity of serologic findings and, perhaps, their less 

robust relationship to clinical status, as compared to CSF findings, which are more likely to 

reflect immunological events inside the blood-brain-barrier [33, 65, 90].

Concluding remarks: The case for continuing the search for synaptic 

autoantibodies in psychoses

NMDARAS provides a tantalizing model of a human disease causing psychosis for which 

highly specific biomarkers—increased serum and CSF levels of IgG antibodies directed 

against the GluN1 subunit of the NMDA receptor—are already available, thus facilitating 

genetic and other studies. However, despite the evidence reviewed linking NMDAR 

hypofunction and autoimmune disease to the idiopathic psychoses, direct measurements of 

antibodies in serum have failed to identify even a subgroup of patients with schizophrenia 

who harbor pathogenic antibodies. Scenarios that may explain this discrepancy include:

1. It is possible that offending antibodies may be present in serum in amounts too 

small to be detected. Even in patients with severe NMDARAS, antibodies are 

more likely to be detected in CSF than in serum [65]. Intrathecal antibody 

synthesis has been documented in NMDARAS, and CSF antibody levels 

correlated better with the severity of clinical symptoms than did serum levels 

[65]. CSF analysis was crucial in the identification of novel antigens, including 

NMDA receptor, AMPAR, GABAB receptor, GABAA receptor, mGluR5, DPPX, 

and LGI1 and Caspr2 [91]. Serum negativity is more likely with a milder form of 

the disease, presenting with psychosis but not requiring intensive care, 

particularly if the antibodies are predominantly generated in the brain [90, 92]. 

For these reasons several investigators have emphasized the importance of testing 

CSF in patients with psychoses (see for instance [29, 33, 93]).

2. Hypofunction of NMDARs may be due to antibodies directed to proteins that 

modulate NMDARs (Fig 2), rather than to the NMDARs themselves. It is 

instructive that some of the antibodies recently described to be associated with 

psychotic symptoms target, not NMDA receptors, but AMPA receptors [94, 95], 

mGluR5 [96], or the potassium-channel complexes [97], all of which modulate 

NMDA receptors [57]. Any of the proteins of the complex system, only partially 

understood, that preserves intact NMDAR function could in theory be targeted 

by specific antibodies and result in NMDAR hypofunction.

3. If NMDARs in the human brain present antigens that differ from those of 

rodents, screening studies using rat brain tissue may fail to detect specific anti-

human antibodies. NMDAR structure varies across species, particularly in 
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regions of the brain highly evolved, such as the frontal lobe [9]. GluN1 shows 

high sequence identity between human and rat, but even for this subunit there are 

seven non-identical amino acids [98]. The other NMDAR subunits are even more 

different across species [98]. Supporting the possibility that current methodology 

may lack sensitivity, some patients with psychotic manifestations, but negative 

sera and CSF antibody testing, improved after immunotherapy [99, 100]. Testing 

using marmoset or other model closer to human may provide a more sensitive 

paradigm to test for still undiscovered antibodies targeting human NMDAR or 

other synaptic receptors.
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Glossary

Autoimmunity
is the system of immune responses of an organism against its own tissues. Any disease that 

results from such an aberrant immune response is termed an autoimmune disease.

Episodic memory
Memory of autobiographical events (times, places, associated emotions, and other contextual 

who, what, when, where, why knowledge) that can be explicitly stated.

Executive function
is an umbrella term for the management (regulation, control) of cognitive processes, 

including working memory, reasoning, task flexibility, and problem solving as well as 

planning and execution.

Dyskinesias
are excessive movements of the face or extremities.

Glutamate
is the main excitatory neurotransmitter in the brain.

Idiopathic disease
A disease of unknown cause.

IgG, Immunoglobulin G
is a type of antibody, a protein complex composed of four peptide chains—two identical 

heavy chains and two identical light chains arranged in a Y-shape. They are produced by B 

lymphocytes evolved to plasma cells.

N-methyl-D-aspartate receptor (NMDAR)
a glutamate receptor and ion channel protein found in nerve cells. It is involved in synaptic 

transmission and plays an important role in learning and memory.

NMDAR hypofunction hypothesis
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a glutamate-based hypothesis which postulates that reduced NMDAR activation underlies 

the development of different schizophrenia symptoms.

NMDARAS (NMDA Receptor Antibody Synaptopathy)
A disorder in humans caused by IgG antibodies against the GluN1 subunit of the receptor 

that cause internalization of the receptor.

Psychosis
An array of symptoms of mental illness, including hallucinations, delusions, paranoia and 

disordered thinking.

Prevalence
is the proportion of the population who harbors a given disease at a given time.

Working memory
enables the temporary holding of information for perceptual, linguistic and other cognitive 

processing.
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Trends Box

• Hypofunction of N-methyl-D-aspartate (NMDA) receptors occurs in 

schizophrenia.

• Recently, autoantibodies have been found to cause NMDA receptor 

hypofunction.

• These autoantibodies target the GluN1 subunit of the receptor, internalizing it, 

and can be detected in the cerebrospinal fluid and, less often, in the sera of 

affected patients.

• These patients have psychotic manifestations in the course of their disease; 

cerebrospinal fluid was obtained when they worsened, often requiring a 

respirator.

• Despite the severity of their disease they recovered with immunotherapy.

• Within in the context of rigorously controlled studies, antibodies against 

NMDA receptors, or other proteins modulating them, should be sought in the 

cerebrospinal fluid of patients with schizophrenic or manic psychoses 

unexplained by psychotropic drug ingestion or other metabolic factors.
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Outstanding questions

To clarify to what extent, if any, autoantibodies cause idiopathic psychoses at least the 

following three questions should be addressed:

1. What is the prevalence of elevated IgG antibodies targeting the GluN1 subunit 

of the NMDA receptor in cerebrospinal fluid, in addition to sera, of people 

with idiopathic psychosis?

2. Could NMDA receptor hypofunction in some idiopathic psychoses be caused 

not by direct autoimmune attack on NMDA receptors but by antibodies 

directed to other still poorly characterized proteins modulating NMDA 

receptors?

3. Are there antigens in human NMDA receptors that are not found in rodents 

and therefore may generate antibodies not detectable with some of the 

methods that use rodent brain tissue for antibody detection?
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Figure 1. 
Effect of NMDA receptor (NMDAR) hypofunction. This is a simplified diagram of some of 

the cognitive networks that are affected by NMDAR hypofunction. Three critical nodes are 

shown: (1) The subiculum, effector region of the hippocampal formation; (2) the prefrontal 

cortex (PFC), supporting working memory and executive function; and (3) the ventral 

tegmental area (VTA), which houses dopaminergic neurons involved in facilitating episodic 

and working memory, as well as motivation. (A) At each of these nodes, glutamatergic 

excitatory inputs to pyramidal or dopaminergic neurons (these from multiple brain regions, 

prominently lateral hypothalamus [101]) provide collaterals to NMDARs on gabaergic 

neurons, which in their turn inhibit excessive pyramidal firing. Gabaergic interneurons in the 

subiculum and PFC are parvalbumin positive (PV) and, in the PFC are identified with the 

fast-spiking cells, critical for the generation of synchronous gamma oscillations [53, 102]. In 

the VTA, gabaergic interneurons also harbor NMDARs [103] and stain with glutamic acid 

decarboxylase (GAD); by contrast VTA PV neurons are mostly projection neurons [104]. 

Dopaminergic VTA neurons project to the nucleus accumbens (NAc), PFC and hippocampus 

(not shown). The NAc inhibits the globus pallidus medialis (GPm), which in turn inhibits 

tonically VTA dopaminergic neurons [10, 54]. (B) NMDAR hypofunction is associated with 

increased pyramidal firing, which in turn increases the inhibitory activity of the NAc over 

the GPm and lessens its inhibitory tone over the VTA dopaminergic neurons. As a result, 

there is an increased production of dopamine, as found in psychoses, which are also attended 

by impaired working memory associated with abnormal functioning of PV interneurons [39, 

54]. Increased pyramidal firing has also been documented with NMDAR ablation restricted 

to the NMDARs on frontal pyramidal neurons [105].
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Figure 2. 
Simplified diagram of some of the synaptic receptors known to modulate NMDARs. The 

excitatory neurotransmitter glutamate (Glu) is secreted at the presynaptic terminal and 

activates the NMDA receptor on the postsynaptic membrane. The NMDAR is a tetramer 

composed of two GluN1 and two NR2 subunits. It is modulated by a number of synaptic 

proteins. On the presynaptic membrane, metabotropic glutamate type 2/3 receptors (Glu 

2/3), which bind glutamate, downregulate Glu production, while in the postsynaptic 

membrane metabotropic glutamate type 5 receptors (Glu 5) upregulate the NMDAR via the 

Gq/11 protein and phospholipase C enzyme [106]. Src kinase (Src kinase) contributes to 

stabilize NR2 though its action on the postsynaptic density (PSD) complex [107, 108]. 

Enhanced ErbB4 signaling through PSD-95 and neuregulin 1 may cause NMDAR 

hypofunction [109]. NMDAR activation requires the presence of glycine (Gly) or D-serine 

(D-ser) occupying a binding site in the GluN1 subunit [110].
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Figure 3. 
Age at onset of NMDA receptor antibody synaptopathy (NMDARAS) and of schizophrenic 

psychosis. Graphic built with data from [20] for NMDARAS and from [111, 112] for 

schizophrenic psychoses.
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Figure 4. 
Diagram illustrating how more severe clinical findings in patients with anti-NMDAR disease 

are associated with lesser NMDA receptor availability on the postsynaptic region and higher 

levels of brain antibodies. The clinical picture resembles that caused by phencyclidine (PCP, 

green bar), in which the profile of symptoms correlates with the circulating concentration of 

the drug. Post-synaptic receptors depicted in blue represent α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPAR), those in green N-methyl-D-aspartate receptors 

(NMDAR). The small round vesicles that are released in the synapse represent glutamate. 

Modified from Dalmau et al [74].
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