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ABSTRACT Cyclic diguanylate (c-di-GMP) is a second messenger that regulates the
transition from motile to sessile lifestyles in numerous bacteria and controls viru-
lence factor production in a variety of pathogens. In Clostridium difficile, c-di-GMP
negatively regulates flagellum biosynthesis and swimming motility and promotes
the production of type IV pili (TFP), biofilm formation, and surface motility in vitro.
Flagella have been identified as colonization factors in C. difficile, but the role of TFP
in adherence to host cells and in colonization of the mammalian gut is unknown.
Here we show that c-di-GMP promotes adherence to epithelial cells in vitro, which
can be partly attributed to the loss of flagella. Using TFP-null mutants, we demon-
strate that adherence to epithelial cells is partially mediated by TFP and that this
TFP-mediated adherence requires c-di-GMP regulation. In a mouse model of coloni-
zation, the TFP-null mutants initially colonized the intestine as well as the parental
strain but were cleared more quickly. Moreover, compared to the parent strain, C.
difficile strains lacking TFP were particularly deficient in association with the cecal
mucosa. Together these data indicate that TFP and their positive regulation by c-di-
GMP promote attachment of C. difficile to the intestinal epithelium and contribute to
persistence of C. difficile in the host intestine.
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Clostridium difficile, recently reclassified as Clostridioides difficile (1), is a spore-
forming, obligate anaerobe responsible for diarrheal diseases resulting in substan-

tial morbidity and mortality (2). C. difficile infections (CDI) usually occur following
antibiotic therapy; however, community-associated C. difficile infections in patients
without recent antibiotic use are increasingly common (3). Moreover, �20 to 30% of
CDI patients experience at least one recurrence of CDI after cessation of treatment, with
additional recurrences becoming increasingly likely (4–6). Antibiotic treatment facili-
tates C. difficile infection by disrupting the normally protective microbiota, reducing
competition from other bacteria, and altering the bile salt profile in the gut, allowing
more-efficient germination and outgrowth of C. difficile (7–10). Actively growing C.
difficile may produce one or both of the toxins TcdB and TcdA, which glucosylate Rho
family GTPases in target cells, ultimately resulting in the disruption of the intestinal
epithelium and the characteristic inflammation of CDI (11–13). Despite being essential
for disease development, TcdA and TcdB are not required for colonization of humans
or animal models of CDI (14–17). The factors involved in C. difficile colonization and
persistence within the gut are largely unknown.

One of the best-studied colonization factors in C. difficile is the flagellum. In the
epidemic-associated C. difficile strain R20291 (18), a mutation in fliC, which encodes
flagellin, reduced adherence to Caco-2 epithelial cells in vitro (19). Additionally, fliC
mutant bacteria were outcompeted by the parental strain in mouse coinfection exper-

Received 21 December 2017 Returned for
modification 14 January 2018 Accepted 21
February 2018

Accepted manuscript posted online 26
February 2018

Citation McKee RW, Aleksanyan N, Garrett EM,
Tamayo R. 2018. Type IV pili promote
Clostridium difficile adherence and persistence
in a mouse model of infection. Infect Immun
86:e00943-17. https://doi.org/10.1128/IAI
.00943-17.

Editor Vincent B. Young, University of
Michigan-Ann Arbor

Copyright © 2018 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Rita Tamayo,
Rita_tamayo@med.unc.edu.

BACTERIAL INFECTIONS

crossm

May 2018 Volume 86 Issue 5 e00943-17 iai.asm.org 1Infection and Immunity

https://orcid.org/0000-0002-3745-3316
https://doi.org/10.1128/IAI.00943-17
https://doi.org/10.1128/IAI.00943-17
https://doi.org/10.1128/ASMCopyrightv2
mailto:Rita_tamayo@med.unc.edu
http://crossmark.crossref.org/dialog/?doi=10.1128/IAI.00943-17&domain=pdf&date_stamp=2018-2-26
http://iai.asm.org


iments (19). In strain R20291, a point mutation in the flagellar motor gene motB, which
results in bacteria that produce paralyzed flagella, did not influence colonization or
attachment to the cecum in mice, indicating that the flagellum itself functions in
adherence (19). However, in strain 630Δerm, an erythromycin-sensitive derivative of C.
difficile strain 630 (20), mutations in fliC and fliD increased attachment to Caco-2 cells,
increased virulence in hamster models of infection, and led to a modest defect in
mouse cochallenge infections with the parental strain (19, 21, 22). These strain-specific
phenotypes may be attributable to differences in the abilities of strains R20291 and
630Δerm to phase vary the production of flagella (23–26).

Other cell surface proteins have been implicated in adherence to epithelial cells in
vitro, including SlpA, FbpA, and Cwp66 (27–31). While most of these proteins have not
been shown to alter colonization of C. difficile in animal models, a mutant lacking the
putative fructose binding protein FbpA displayed a modest defect in cecal colonization
in a mouse model of C. difficile infection (30). Given these data and the lack of severe
colonization defects reported for putative C. difficile colonization factors, it is likely that
adhesion of C. difficile to the intestinal epithelium involves multiple, potentially redun-
dant factors. Type IV pili (TFP) are involved in a number of bacterial behaviors in other
species, including surface attachment, surface-based twitching motility, biofilm forma-
tion, and cell-cell interactions (32–34). In many Gram-negative pathogens, TFP contrib-
ute to adherence to both primary and transformed host cell lines (35–38). Accordingly,
TFP are required for optimal colonization in animal models for a number of pathogens,
such as Pseudomonas aeruginosa, Vibrio cholerae, Escherichia coli, and others (39–43).
There are a number of mechanisms by which TFP machinery may enhance colonization,
including direct adhesion to host cells (44), promotion of microcolony formation (45),
and epithelial cell invasion (46). In Gram-positive bacteria, TFP have not been as well
studied. Genes encoding TFP are rare in most bacilli but are nearly ubiquitous among
clostridia (47). TFP are required for gliding motility in Clostridium perfringens (48).
Ectopic expression of a pilin gene from C. perfringens in Neisseria gonorrhoeae increased
attachment to mouse myoblasts, suggesting a role in adherence for TFP in C. perfrin-
gens (49).

TFP genes have been found in every sequenced strain of C. difficile, and a compar-
ative phylogenomics analysis of C. difficile indicates that TFP genes are among the set
of core genes for the species (50, 51). Work from our lab and others revealed that TFP
in C. difficile are critical for a number of bacterial behaviors, particularly in response to
increased levels of the second messenger cyclic diguanylate (c-di-GMP) (52–54). In
many bacterial species, c-di-GMP regulates the switch between motile and nonmotile
states (55, 56). Likewise in C. difficile, c-di-GMP negatively regulates flagellar swimming
motility and positively regulates TFP biosynthesis and TFP-dependent behaviors (52, 53,
57). Regulation occurs via c-di-GMP-specific riboswitches upstream of the respective
flagellum and TFP biosynthetic operons, where the flagellar riboswitch is an “off switch”
and the TFP riboswitch is an “on switch” (53, 57–59). An insertional mutation in the
major pilin gene pilA1 or in pilB1, which encodes the pilus assembly ATPase, results
in bacteria that lack TFP (52, 53, 60). The pilA1 and pilB1 mutants display reduced
autoaggregation, surface motility, and biofilm formation under conditions of high
c-di-GMP (52, 53). While the contributions of biofilm formation and surface growth to
C. difficile infection are unclear, bacterial mats have been observed in mouse models of
C. difficile infection (61, 62).

Based on the known roles of TFP in host colonization by other pathogens and the
importance of TFP to autoaggregation and surface behaviors of C. difficile, we hypoth-
esized that TFP contribute to host cell attachment and colonization during C. difficile
infection. Moreover, we postulated that c-di-GMP positively regulates TFP-mediated
interactions with host tissues. In this study, we found that high c-di-GMP promotes
early attachment to a variety of epithelial cell types in vitro and that TFP may be
important for maintenance of adherence to epithelial cells. Using an antibiotic-treated
mouse model, we further demonstrated that C. difficile mutants lacking TFP initially
colonize as well as the parent strain but are eliminated more quickly from the intestine.
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This study provides evidence that TFP promote adherence of C. difficile to epithelial
cells and are important for the persistence of C. difficile in the mammalian intestinal
tract.

RESULTS
c-di-GMP promotes attachment of C. difficile to intestinal epithelial cells. Work

from our lab and others recently demonstrated that high intracellular c-di-GMP con-
centrations in C. difficile promote autoaggregation, biofilm formation, and surface
motility (52, 53, 59). Because c-di-GMP increased both interbacterial interaction and
attachment to a surface, we hypothesized that c-di-GMP also promotes attachment to
epithelial cells. To test this hypothesis, we performed bacterial attachment assays under
anaerobic conditions using monolayers of HT-29 and Caco-2 human intestinal epithelial
cells. We used a previously described strategy to artificially increase intracellular
concentrations of c-di-GMP in C. difficile, using the nisin-inducible expression of dccA,
which encodes a C. difficile diguanylate cyclase (57). This concentration of nisin and
level of dccA expression did not substantially inhibit growth, particularly at the mid-
exponential phase, when the bacteria were collected (53). C. difficile strains grown with
or without nisin to induce dccA expression and stimulate c-di-GMP production were
incubated with HT-29 or Caco-2 cells. Incubations were limited to 1 h under strict
anaerobic conditions (required by C. difficile), as the monolayers begin to lose integrity
by 4 h (see Fig. S1 in the supplemental material). Expression of dccA in 630Δerm led to
12- and 96-fold increases in attachment to HT-29 and Caco-2 cell monolayers, respec-
tively, compared to C. difficile bearing the control vector grown with nisin induction
(Fig. 1A and B). In contrast, expression of dccAmut, which encodes a catalytically inactive
variant of DccA, did not significantly alter attachment to either cell line. To confirm that
the C. difficile isolates were associated with the epithelial cells in these assays, we
visualized the bacteria attached to the epithelial cells using a Gram stain. While the
bacteria harboring the vector and pDccAmut were sparsely and individually distributed
on the surface of the epithelial cell monolayers, the bacteria harboring pDccA were
present in much higher numbers and also clustered together (Fig. 1C, D, and E).
Together these data indicate that c-di-GMP promotes attachment of C. difficile to
intestinal epithelial cells.

Negative regulation of flagellum biosynthesis by c-di-GMP contributes to
increased attachment to epithelial cells in vitro. Dingle et al. previously showed that
C. difficile 630Δerm isolates with mutations in fliC or fliD, encoding flagellin or flagellar
cap, respectively, are more adherent to Caco-2 monolayers (21). We thus tested
whether inhibition of flagellum biosynthesis by c-di-GMP is responsible for the in-
creased attachment. We used C. difficile 630Δerm with an intron insertion in sigD, which
encodes the flagellar sigma factor (63); this mutant was previously shown to lack
flagella and swimming motility (23, 53, 64). We compared the attachment rates of the
sigD mutant bearing vector alone or complemented with a plasmid containing sigD
under the control of a nisin-inducible cpr promoter to the attachment rates of the
parental strain bearing vector. Consistent with the previous results showing that
aflagellate C. difficile isolates are more adherent to tissue culture cells, the 630Δerm sigD
mutant containing vector alone adhered to HT-29 cells at significantly higher levels
than those of the parental vector-bearing strain (Fig. 2A). Complementation with the
sigD gene under the control of the nisin-inducible cpr promoter restored adherence to
parental levels (Fig. 2A). We next evaluated the effect of increasing c-di-GMP in the
absence of flagella by stimulating c-di-GMP synthesis in the sigD mutant background.
Expression of dccA in the sigD mutant strain resulted in a further 3.8-fold increase in
attachment over the sigD mutant bearing vector or expressing the dccAmut allele (Fig.
2B). This result indicates that additional, sigD-independent factors mediate increased
adherence to epithelial cells in response to c-di-GMP.

Type IV pili promote adherence of C. difficile to epithelial cells. Because c-di-
GMP promotes TFP production, we hypothesized that TFP contribute to the observed
increase in adherence to epithelial cells. To test this, we examined the ability of
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630Δerm with a mutation in pilA1 (encoding the major pilin) or pilB1 (encoding the
pilus biosynthesis ATPase) to adhere to HT-29 and Caco-2 cells. These mutants were
previously shown to lack the ability to produce TFP under either low or high c-di-GMP
conditions and to be deficient in TFP-dependent behaviors (52, 53). The pilA1 and pilB1

FIG 1 c-di-GMP promotes C. difficile attachment to epithelial cell monolayers in vitro. (A and B) C. difficile strain
630Δerm bacteria containing vector (pMC-Pcpr), pDccA, or pDccAmut were grown to mid-log phase in BHIS with 10
�g/ml thiamphenicol to maintain the plasmids and 1 �g/ml nisin to induce expression as indicated. Bacteria were
added to HT-29 (A) or Caco-2 (B) epithelial cell monolayers, and the mixture was centrifuged briefly and incubated
for 1 h. Serial dilutions of bacterial inoculums and outputs were plated, and CFU were enumerated to determine
the percentage of bacteria that remained attached. The means and standard deviations for 3 biological replicates
are shown. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey’s posttest. **, P � 0.01; ***,
P � 0.001. (C to E) C. difficile containing the indicated plasmids was grown to mid-log phase as described for panels
A and B and added to HT-29 cell monolayers grown on coverslips. After 1 h of incubation, coverslips were rinsed
with PBS and stained with crystal violet and safranin counterstain. C. difficile cells are stained dark purple (indicated
by white arrows), and the HT-29 cell monolayers are stained red. Bars, 10 �m. Images are representative of 4
biological replicates for each strain.

FIG 2 Aflagellate C. difficile adheres better than flagellate C. difficile to HT-29 cell monolayers. C. difficile
cultures were grown to mid-exponential phase in BHIS with 10 �g/ml thiamphenicol and 1 �g/ml nisin
to induce gene expression as indicated. Bacteria were added to HT-29 epithelial cell monolayers,
centrifuged briefly, and incubated for 1 h. Serial dilutions of bacterial inoculums and outputs were plated
to enumerate CFU and determine the percentages of bacteria that remained attached. (A) Mutation of
sigD increases attachment to HT-29 cells; (B) increasing c-di-GMP in the sigD mutant further promotes
attachment to HT-29 cells. Strain backgrounds and plasmids are indicated. The means and standard
deviations for 3 biological replicates are shown. Data were analyzed by one-way ANOVA and Tukey’s
posttest. **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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mutants showed somewhat reduced adherence to HT-29 cells compared to the paren-
tal strain, but the differences were not statistically significant (Fig. 3A). C. difficile with
basal c-di-GMP levels produce relatively low numbers of TFP during growth in BHIS
medium (37 g/liter Bacto brain heart infusion, 5 g/liter yeast extract) (53). We reasoned
that increasing intracellular c-di-GMP by overexpressing dccA, which stimulates TFP
biosynthesis (53), might reveal a role for TFP. However, elevating c-di-GMP augmented
adherence equally in the parental and TFP-null strains (Fig. 3B).

While 1-hour adherence assays effectively measure the initial attachment of the
bacteria to the epithelial cells, the relatively short incubation may miss factors that are
important for maintained adherence or expansion of the attached bacteria. Indeed,
many experiments evaluating bacterial adherence to epithelial cells use longer coin-
cubation periods, such as 24 h (65, 66). However, Caco-2 and HT-29 cell monolayers lose
integrity after prolonged incubation under the strict anaerobic conditions required by
C. difficile (Fig. S1). To assess adherence of C. difficile to epithelial cells over a longer time
frame, we decided to use another epithelial cell line that is more tolerant of anaerobic
conditions, Madin-Darby canine kidney (MDCK) epithelial cells (67). Whereas monolay-
ers of either Caco-2 or HT-29 cells were substantially disrupted after as few as 4 h in the
anaerobic chamber, MDCK cells maintained their monolayers after 24 h of incubation
in the anaerobic chamber (Fig. S1). As with HT-29 and Caco-2 cells, TFP were dispens-
able for attachment to MDCK cells at 1 h (Fig. 4A). After 24 h of incubation, the C. difficile
pilA1 and pilB1 mutants showed significantly reduced attachment to MDCK cells
(Fig. 4B). Growth of pilA1 and pilB1 mutant bacteria was equivalent to that of the
parental strain in Dulbecco’s modified Eagle medium (DMEM) plus 10% fetal bovine
serum (FBS) (see Fig. S2 in the supplemental material). The mutations also did not affect
flagellum-based swimming motility (see Fig. S3 in the supplemental material).

To confirm that the reduced attachment to MDCK cells was due to the lack of TFP,
we complemented the pilA1 mutation by ectopic expression of pilA1. For expression of
pilA1, we used the native promoter and leader sequence (5= untranslated region [UTR])
containing the c-di-GMP-sensing riboswitch. Ectopic expression of pilA1 from its native
promoter (pPilA1) partially restored attachment of the mutant bacteria to near that of
the parental strain (Fig. 4C). Incomplete complementation is likely due to polar effects
of the intron insertion on the downstream TFP biosynthesis genes (53). However,
expression of pilA1 under the control of the riboswitch containing a mutation (A70G)
rendering it unable to bind and sense c-di-GMP (53) did not complement the effect of
the pilA mutation on adherence to MDCK cells (Fig. 4C, pPilA1mut). Together these data
indicate that TFP contribute to host cell colonization at later time points, and sensing
of c-di-GMP by the riboswitch is important in this process.

FIG 3 Attachment to HT-29 cell monolayers at 1 h is not dependent on type IV pili. Mid-exponential-
phase cultures of C. difficile 630Δerm, pilA1 mutant, or pilB1 mutant were added to HT-29 epithelial cell
monolayers, and the mixture was centrifuged briefly and incubated for 1 h. Serial dilutions of bacterial
inoculums and outputs were plated and enumerated to determine the percentages of bacteria that
remained attached. (A) Attachment of 630Δerm and TFP-null mutants to HT-29 cells; (B) attachment of
630Δerm and TFP-null mutants containing pDccA, grown in the presence or absence of 1 �g/ml nisin,
to HT-29 cells. Shown are the means and standard deviations from 3 biological replicates. No statistically
significant differences were observed between the parental strain and either mutant strain grown under
the same conditions.
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Type IV pili are dispensable at early stages of infection but are important for
persistence in the host intestine. In many bacterial pathogens, TFP play a role in
colonization of the host and/or virulence (68). We therefore examined the contribution
of TFP to the ability of C. difficile to colonize and cause disease in an antibiotic-treated
mouse model of CDI (69). After treatment with a cocktail of antibiotics, C57BL/6 mice
were inoculated by oral gavage with 105 spores of the 630Δerm parental strain, the
pilA1 mutant, or the pilB1 mutant. The intestinal burden of C. difficile was monitored by
collecting feces from the mice daily and enumerating colonies on TCCFA (see Materials
and Methods), a medium that allows outgrowth of C. difficile spores while inhibiting the
growth of other bacteria (70). The numbers of spores recovered from the feces of mice
infected with a mutant or parent strain were similar for the first 3 days of the infection,
suggesting that TFP are dispensable for initial colonization of the mouse large intestine
(Fig. 5). By days 4 and 5, mice infected with the pilB1 mutant showed a modest but
statistically significant decline in CFU compared to those infected with 630Δerm
bacteria. Both the pilA1 and pilB1 mutant-infected animals shed fewer CFU in feces on
day 6, although the differences did not reach statistical significance due to high
variability among mice infected with the pilA1 or pilB1 mutants. On day 7, spore counts

FIG 4 Type IV pili promote adherence to MDCK cell monolayers at 24 h. (A and B) Attachment of 630Δerm and TFP-null
mutants after 1 h (A) or 24 h (B) of incubation with MDCK cell monolayers. In panel A, data are expressed as the
percentages of the original inoculum recovered following incubation and PBS washes, with 3 biological replicates for each
strain. In panel B, data are expressed as the total CFU recovered per well after 24 h of incubation, with 6 biological
replicates. Data were analyzed using a one-way ANOVA with Dunnett’s test for multiple comparisons. (C) Complementation
of the adherence defect of the pilA1 mutant after 24 h of incubation with MDCK cell monolayers. Symbols represent values
from individual animals, and error bars indicate the standard deviations. Data were analyzed by one-way ANOVA using the
Holm-Sidak method to correct for multiple comparisons. *, P � 0.05; **, P � 0.01; ***, P � 0.001.

FIG 5 Single-strain infections of mice by 630Δerm, pilA1 mutant, and pilB1 mutant. Mice that had been
pretreated with antibiotics were inoculated with 105 spores. Feces were collected daily, and serial
dilutions were plated on C. difficile selective medium with spore germinant (TCCFA) to monitor the
burden of C. difficile. Symbols represent values from individual animals. Data were analyzed by two-way
ANOVA using the Holm-Sidak method to correct for multiple comparisons. **, P � 0.01; ***, P � 0.001;
****, P � 0.0001.
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for the TFP mutant infections were below the limit of detection in all mice, while all but
one mouse infected with 630Δerm were still shedding spores above the limit of
detection (Fig. 5). An independent mouse colonization experiment yielded similar
results, but with slight changes in the timing of the decline in bacterial burden.

To control for variations between mice and to better capture subtle differences
between strains, we performed coinfections with 630Δerm and either the pilA1 or pilB1
mutant. The ermB gene used to generate the pilA1 and pilB1 mutations allowed
differentiation between the Erm-resistant mutants and the Erm-sensitive parent strain.
A competition between the parent strain and a tcdR mutant, which expresses the
glucosylating toxin genes at significantly lower levels (63, 71) but should be competent
for colonization (14, 15, 17), was included as a control. On day 1 postinoculation, the
competition indices (CI) were �1, indicating equal abilities to establish colonization.
Throughout the 14-day experiment, the pilA1 mutant was usually present in feces at
numbers comparable to those of the parent strain; the exceptions are days 7 and 9,
when significantly fewer pilA1 mutant bacteria were recovered (Fig. 6A). In contrast, the
pilB1 mutant showed attenuated colonization after day 1, with CI significantly less than
1 on days 3, 5, 7, 9, and 13 (Fig. 6B). The control experiment using the tcdR mutant
yielded CI equal to or somewhat greater than 1 (Fig. 6C), indicating that TcdR is
dispensable for colonization in the mouse model and that the presence of the ermB
cassette is not responsible for the fitness defect of the mutants.

To ensure that the observed defects in colonization for the TFP-null mutants are not
specific to the 630Δerm background, we also examined the contribution of TFP to
colonization and persistence in an epidemic-associated strain of C. difficile, the ribotype
027 strain R20291 (18). When inoculated as a coinfection with the parental strain, the
R20291 pilB1 mutant was initially recovered from feces in numbers comparable to those
of the parental strain but was outcompeted by the parental strain on days 3 and 5
postinoculation (see Fig. S4 in the supplemental material). These data indicate that TFP
are dispensable for initial establishment of colonization by multiple strains of C. difficile
but support a role for TFP in maintaining colonization of the mouse intestine.

Type IV pili promote association of C. difficile with the cecal epithelium. We
hypothesized that TFP enhance intestinal colonization by promoting attachment of the
bacteria to the intestinal epithelium as observed in vitro. To test this, we compared the
ratios of TFP-null and parent strain bacteria associated with the cecal mucosa and
present in the lumen. Mice were coinoculated with the pilB1 mutant and 630Δerm
strains, and ceca were harvested at day 3, when the mutant first showed decreased
recovery from feces (Fig. 6B). The luminal fraction consisted of the cecal contents
combined with the contents of a single PBS wash. The remaining cecal tissue comprised
the tissue-associated fraction. Homogenates of each fraction were plated on selective
medium, and the CI were calculated separately. In the cecal lumen, the pilB1 mutant

FIG 6 C. difficile pilus mutants are outcompeted by the parental strain in murine coinfections. Mice were inoculated
with mixed inoculums containing �105 spores of each strain. Feces was collected every 2 days starting 1 day
postinoculation and plated on TCCFA (total spores) and TCCFA with erythromycin (mutant spores only) to
determine bacterial burdens. Competitive indices (mutant to parent) for the competition between 630Δerm and
pilA1 mutant (A), 630Δerm and pilB1 mutant (B), and 630Δerm and tcdR mutant (C). Data were excluded if in total
fewer than 10 spores were recovered. Symbols represent CI values from individual animals, and error bars indicate
the standard deviations. Data were analyzed by the Wilcoxon rank sum test comparing values to a hypothetical CI
of 1 indicating no difference. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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bacteria were recovered at a lower rate (geometric mean of CI � 0.27), but in the
tissue-associated fraction the CI was significantly lower (geometric mean of CI � 0.12)
(Fig. 7). These data indicate that the pilB1 mutant bacteria are less likely to be found in
close association with the epithelium, which may explain the defect in maintenance of
colonization in the dual-strain infections and the lack of persistence in single-strain
infections.

DISCUSSION

The mechanism by which C. difficile colonizes the host intestine is poorly under-
stood, though multiple cell surface proteins and structures have been explored as
possible adhesins. In C. difficile, c-di-GMP regulates the transition between motile and
surface-associated states in part by negatively regulating flagellar gene expression and
positively regulating TFP gene expression (52, 53). This study evaluated the contribu-
tions of c-di-GMP, flagella, and TFP to the ability of C. difficile to adhere to intestinal
epithelial cells and the role of TFP in host colonization.

While previous work demonstrated a role for c-di-GMP in biofilm formation and
autoaggregation of C. difficile, the effects of c-di-GMP signaling on the interaction
between C. difficile and host cells had not been explored. In vitro adherence assays
demonstrated that the second messenger c-di-GMP promotes attachment of C. difficile
to HT-29 and Caco-2 colonic epithelial cells. Inhibition of flagellum biosynthesis by
c-di-GMP is partially responsible for increased attachment, consistent with previous
studies investigating the roles of flagellar proteins in C. difficile adherence (19, 21). It is
possible that the presence of peritrichous flagella on the surface of C. difficile sterically
interferes with the ability of adhesins on the bacterial surface to interact with the
epithelial cells. In addition to removing the steric hindrance of the flagella, c-di-GMP
may promote the presentation of other adhesins on the bacterial surface. Increasing
intracellular c-di-GMP in a sigD mutant background led to a further increase in attach-
ment, indicating that c-di-GMP regulates additional factors involved in attachment to
epithelial cells. We hypothesized that TFP, which are positively regulated by c-di-GMP,
function in this capacity. Our in vitro data indicate that TFP are not required for early
attachment to epithelial cells but contribute to optimal prolonged adherence. Other
putative adhesins regulated by c-di-GMP, such as CD2831 and CD3246, might promote
early attachment of C. difficile to host cells (72, 73).

Our data also indicate that c-di-GMP signaling is required for promoting adherence
by TFP. Restoration of adherence in the pilA1 mutant required a functional c-di-GMP
riboswitch controlling pilA1 expression. Thus, c-di-GMP levels are high enough to
support TFP production in these experiments. There is evidence that the interaction of

FIG 7 TFP promote association of C. difficile with the cecal epithelium. Mice were coinoculated with �105

spores each of 630Δerm and pilB1 mutant. Ceca were harvested anaerobically at day 3 postinoculation.
Cecal contents and a 1-ml wash of PBS were combined into the luminal fraction. The tissue-associated
fraction was obtained by homogenizing the remaining cecum. Serial dilutions of the luminal and
tissue-associated fractions were plated on TCCFA (all C. difficile cells) and TCCFA with erythromycin
(mutant C. difficile) to determine the bacterial burden of each strain. Symbols represent CI (mutant to
parent) values from individual animals, and error bars indicate the standard deviations. Data were
analyzed by the Wilcoxon rank sum test comparing the CI in the luminal fraction to the CI in the
tissue-associated fraction. **, P � 0.01.

McKee et al. Infection and Immunity

May 2018 Volume 86 Issue 5 e00943-17 iai.asm.org 8

http://iai.asm.org


C. difficile with a surface leads to increased intracellular c-di-GMP levels (52) and that
stimulation of c-di-GMP production may occur during interactions with host cells as
well. c-di-GMP may also posttranslationally regulate TFP biosynthesis in C. difficile. Some
TFP are associated with PilB ATPases containing a MshEN domain, which binds c-di-
GMP (74, 75). This c-di-GMP binding motif is conserved in the C. difficile MshE ortho-
logue, PilB1, and potentially contributes to the positive regulation of TFP in C. difficile,
as was recently shown for C. perfringens PilB2 (76). Future work will examine the
potential roles of two distinct mechanisms of TFP regulation by c-di-GMP.

In a mouse model of CDI, both pilA1 and pilB1 mutant bacteria were deficient in
long-term colonization of the intestine. The defect was more pronounced for the pilB1
mutant, suggesting that alternative pilins in addition to PilA1 are important for C.
difficile persistence. The decreased recovery of the pilB1 mutant in the tissue-associated
fraction of the cecum suggests a role for TFP in promoting close association with the
intestinal epithelium. We speculate that C. difficile bacteria embedded more deeply in
the mucus and/or in direct contact with epithelial cells are less likely to be excreted,
serving as a reservoir for persistence and disease recurrence. While the importance of
autoaggregation, microcolony formation, and biofilm development in the host for C.
difficile disease development is unclear, mats of C. difficile associated with the intestinal
epithelium of C. difficile-monoassociated mice (61, 62) and in mucus-associated mixed-
species communities in the cecum and colon (77) have been observed. Given their role
in autoaggregation, TFP may facilitate or stabilize the formation of single or multispe-
cies microcolonies, and ultimately biofilms, on the epithelium, rather than function as
adhesins per se.

Cell monolayers in general are not representative of the diverse range of cell types
and structures found in the intestinal mucosa. Several groups have been working
toward producing more physiologically relevant tissue culture models of the intestine
that could improve the understanding of C. difficile interactions with host cells (78–81).
For example, organoids and enteroids grown from primary stem or progenitor cells
preserve some of the structure of intestinal villi and are also made up of a diverse array
of cell types, unlike monocultures of transformed cell lines. While valuable for studying
the disruption of the epithelial cell barrier by C. difficile toxins (82), these models may
not be ideal for studying putative colonization factors because these are closed
systems. Models using differentiated stem cells grown on scaffolds might enable
coculture of C. difficile and epithelial cells by allowing oxygenation of the host cells at
the basolateral surface while preserving an anaerobic environment in the apical space
(81). Improvements to these models will allow for a much better understanding of
intestinal colonization and host interaction of C. difficile and other anaerobes. Factors
that influence C. difficile colonization and persistence may prove valuable in improving
the treatment and prevention of CDI, especially in light of the high recurrence rate
among patients treated for CDI (4–6).

MATERIALS AND METHODS
Bacterial growth conditions. Strains and plasmids used in this study are listed in Table S1 in the

supplemental material. Overnight cultures of C. difficile were grown in 2 ml of TY broth (30 g/liter Bacto
tryptone, 20 g/liter yeast extract, 1 g/liter thioglycolate) in an anaerobic chamber (Coy Lab Products) with
an atmosphere of 5% H2, 5% CO2, and 90% N2. For experiments, C. difficile was diluted 1:100 in BHIS (37
g/liter Bacto brain heart infusion, 5 g/liter yeast extract) for growth unless otherwise specified. E. coli
cultures were grown in Luria-Bertani medium (Miller) with appropriate antibiotics as needed. Unless
otherwise specified, antibiotics were used at the following concentrations: thiamphenicol (Tm), 10 �g/ml;
chloramphenicol (Cm), 10 �g/ml; ampicillin (Amp), 100 �g/ml; and kanamycin (Kn), 100 �g/ml. Where
appropriate, nisin was added at a final concentration of 1 �g/ml to induce transcription from the cpr
promoter.

Construction of pilA1 complementation plasmids. To generate pPilA1 (pMC123::PpilA1-RB-pilA1),
the promoter, 5= UTR, and coding sequence of pilA1 (CD630_35130) were amplified by PCR from
630Δerm genomic DNA using primers R1183 and R978 (see Table S2 in the supplemental material). This
PCR product was digested with EcoRI and PstI, ligated into similarly digested pMC123, and transformed
into DH5�. To generate pPilA1mut (pMC123::PpilA1-RBA70G-pilA1), we generated a PCR product containing
the above fragment with an adenine-to-guanine substitution at position 70 of the riboswitch using
splicing by overlap extension (SOE). The upstream region of homology was PCR amplified from 630Δerm
genomic DNA using primers R1183 and R1184, and the downstream region was amplified using primers
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R1185 and R978. The two fragments were spliced together and amplified using R1183 and R978 and then
cloned into pMC123 as above. Clones were confirmed by PCR and sequencing of the inserts. These pPilA1
and pPilA1mut plasmids were introduced into the pilA1 mutant via conjugation with HB101(pRK24) as
described previously (57).

Attachment assays. HT-29 or Caco-2 human intestinal epithelial cells were cultured in DMEM
supplemented with FBS at 10% (HT-29) or 20% (Caco-2). Tissue culture-treated 24-well plates (Corning)
were seeded with approximately �105 cells per well. Tissue culture cells were grown at 37°C in 5% CO2

for 5 to 7 days until a confluent monolayer was achieved, with fresh medium added as needed. To avoid
oxygen toxicity to C. difficile, prior to inoculation the intestinal cells were transferred to the anaerobic
chamber, and the medium was removed and replaced with anaerobic DMEM containing the appropriate
concentration of FBS. For 24-h attachment assays, MDCK cells grown in DMEM with 10% FBS were seeded
into 24-well plates with 105 cells per well. Cells were grown at 37°C for 3 days in 5% CO2 to allow the
formation of confluent monolayers, with fresh medium added as needed.

C. difficile strains grown overnight (�16 h) in TY with appropriate antibiotics were diluted 1:50 in
filter-sterilized BHIS with antibiotics. Nisin was added if necessary for induction of gene expression. At
mid-exponential phase, the bacteria were diluted 1:10 in DMEM with FBS and vortexed. We previously
showed that C. difficile does not significantly aggregate at this stage of growth (53). Each diluted culture
(50 �l) was added to 24-well plates seeded with HT-29, Caco-2, or MDCK cells and containing 450 �l
DMEM with FBS. The plates were sealed with tape, removed from the anaerobic chamber, and centri-
fuged for 10 min at 1,000 � g to sediment the bacteria onto the tissue culture cells. This centrifugation
step was performed because c-di-GMP inhibits flagellum biosynthesis and swimming motility, which
might influence the ability of some strains tested to reach the cell monolayers. The plates were
transferred back into the anaerobic chamber and incubated at 37°C for 1 h (HT-29 and Caco-2 cells) or
24 h (MDCK cells). During the incubation, dilutions of the bacterial inoculums were plated to enumerate
the bacteria added to each well. Following incubation, the medium was removed, and the wells were
washed 3 times with 1 ml Dulbecco’s phosphate-buffered saline (DPBS; Gibco) to remove nonadherent
bacteria. After the final wash, the epithelial cells and attached bacteria were scraped from the plate and
suspended in 500 �l of DPBS by pipetting up and down until visible clumps were dispersed. Dilutions
were plated on BHIS to enumerate the attached bacteria.

Microscopy. HT-29 or MDCK cells were seeded at �105 cells per cm2 on Thermanox (ThermoFisher)
coverslips and grown for 5 days (HT-29) or 3 days (MDCK) in DMEM–10% FBS. Bacteria were grown and
added to the tissue culture cells, and the mixtures were incubated as described above for the attachment
assays. Following incubation, the monolayers were washed twice with 500 �l PBS to remove unattached
bacteria and then fixed by adding 500 �l of ice-cold methanol for 5 min. Methanol was removed, and
samples were then stained with a Gram stain kit (Becton Dickinson), mounted on slides, and imaged with
an Olympus BX61 v2 microscope at a magnification of �600.

Animal experiments. All animal studies were done in compliance with protocols approved by the
UNC-CH Institutional Animal Care and Use Committee.

C. difficile spore inoculums were generated by streaking several colonies of C. difficile onto 70:30 agar
(83) and incubating them at 37°C for 3 days in an anaerobic chamber. The growth was suspended in 10
ml DPBS, removed from the anaerobic chamber, and left overnight at room temperature to allow the
release of mature spores. Spores were purified from the suspensions by sucrose gradient as previously
described (84). Spores were enumerated by plating serial dilutions on BHIS agar containing the
germinant 0.1% sodium taurocholate (85).

Groups of 8- to 10-week-old female C57BL/6 mice were obtained from Charles River Laboratories.
Beginning 7 days prior to inoculation, the mice were given a cocktail of antibiotics in their drinking water,
provided ab libitum for 3 days as described previously (69). The antibiotics were provided at the following
concentrations: kanamycin (400 �g/ml), gentamicin (35 �g/ml), colistin (850 units/ml), vancomycin (45
�g/ml), and metronidazole (215 �g/ml) (69). Four days prior to inoculation, mice were switched back to
regular water for the remainder of the experiment. A single intraperitoneal injection of clindamycin (10
�g/g body weight) was administered either 24 h prior to infection (single-strain infections) or 48 h prior
to infection (competitions). The timing of the clindamycin injection was modified to 48 h prior to
inoculation in the competition experiments to ensure that clindamycin concentrations did not favor
growth of the mutants, which contain the ermB gene, which provides some resistance to clindamycin (86,
87). Mice were inoculated with 105 CFU of C. difficile spores (single-strain infections) or 2 � 105 total
spores (coinfections) by oral gavage. Feces was collected in preweighed tubes every 24 or 48 h for 7 to
14 days, as indicated.

Fecal samples were weighed following collection and then suspended in 1 ml DPBS by vortexing. For
single-strain infections, serial dilutions of fecal samples were plated on fructose agar containing 1 mg/ml
sodium taurocholate, 16 �g/ml cefoxitin, and 250 �g/ml cycloserine (TCCFA). The burden of spores was
calculated as CFU per gram of feces. For competition experiments, serial dilutions of fecal samples were
plated on TCCFA to enumerate total spore burden, as well as TCCFA containing 2 �g/ml erythromycin
(for 630Δerm strains) or 20 �g/ml lincomycin (for R20291 strains) to enumerate the CFU of mutant
bacteria containing the ermB resistance gene. To calculate the competitive index (CI), the ratio of mutant
to parental bacteria for each fecal sample, obtained with the formula (resistant CFU/[total CFU � resistant
CFU])output, was divided by the ratio of mutant to parental bacteria in the initial spore inoculum, obtained
with the formula (resistant CFU/[total CFU � resistant CFU])input. A CI of 1 indicates no difference in
bacterial burden, and a CI of �1 indicates that the parental strain outnumbers the mutant, while a CI of
�1 indicates that the mutant bacteria outnumber the parental strain bacteria.
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